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Abstract
Motivated by the representation of draining or leak scenar-
ios in industrial processes, this paper introduces a generic
two-phase non-miscible liquid-gas medium model. The
model represents two distinct substances with independent
thermodynamic states and enables transient simulations
involving phase-separated liquid and gas domains. It is
designed to remain compatible with the Modelica.Media
and Modelica.Fluid interfaces. In developing this model,
we analyze how specific assumptions about liquid com-
pressibility — such as the dependency of enthalpy and
density on pressure — affect the structure of the result-
ing balance equations through detailed mathematical anal-
ysis. We examine different incompressibility approaches
and their implications for the formulation of conservation
equations. This article focuses on a comprehensive theo-
retical analysis of the model formulation, highlighting the
trade-offs involved and providing insights into selecting
appropriate liquid models for dynamic simulations involv-
ing non-miscible flows.

Keywords: Liquid-Gas Medium, Draining and Leak
Scenario, Incompressibility, Numerical Robustness, Small
Modular Reactor

1 Introduction
The Modelica language (Modelica Association 2017) pro-
vides a powerful, equation-based environment for the dy-
namic simulation of complex physical systems, partic-
ularly thermal-hydraulic networks (Fritzson 2014). Li-
braries such as the Modelica Standard Library [MSL]
Modelica.Fluid, Buildings (Wetter et al. 2014),
AixLib (Müller et al. 2016), and ThermoFluidStream
(Zimmer, Meißner, and Weber 2022) offer rich sets of
components governed by the underlying thermodynamic
properties encapsulated in replaceable Medium models
via the Modelica.Media interface.

This framework is well suited for the analysis of ad-
vanced concepts, including new generation nuclear reac-
tors: Small Nuclear Reactors (SMRs). Molten Salt Reac-
tors (MSRs), for instance, present demanding simulation
requirements due to their unique characteristics and oper-
ational scenarios (Serp et al. 2014). Applying Modelica
to specific MSR transients, like draining or leak manage-

ment, has highlighted challenges in modeling systems that
transition from a fully liquid (molten salt) state to a fully
gaseous (inert gas) state via non-miscible phase interac-
tions.

Most components (pipes, pumps, volumes, etc.) within
the Modelica.Fluid library — and related libraries
based on the same design philosophy — are capable of
simulating single-phase liquid or gas flows, as well as
equilibrium two-phase flows (e.g., liquid-vapor equilib-
rium) (Casella and Leva 2024). These components typi-
cally rely on media definitions based on a single thermo-
dynamic state and often assume local phase equilibrium
when modeling two-phase flows. However, several appli-
cations —such as the simulation of draining scenarios or
gas ingress— require the ability to model liquid and gas
phases as coexisting but strictly non-miscible, without as-
suming thermodynamic equilibrium. In SMR safety stud-
ies, for instance, transient configurations may include the
loss or recovery of coolant, resulting in domains where
both gas and liquid are present but governed by distinct
physical laws. Beyond the nuclear domain, similar con-
figurations are also found in other industrial processes in-
volving large storage tanks, fluid circuit maintenance, or
safety-related depressurization events.

To address these needs, we propose a new generic Mod-
elica medium that models two non-miscible substances
while maintaining compatibility with the existing ecosys-
tem of components. The proposed BisubLiqGas
medium allows independent specification of compress-
ibility assumptions for each substance. In particular, it
enables the user to represent incompressible or weakly
compressible liquids while preserving full thermodynamic
modeling of the gas (as perfect gas). The model is de-
signed for seamless integration with Modelica.Fluid
components, allowing mixed-phase simulations across
pipes, tanks, or valves. This allows simulation of sys-
tems that transition seamlessly between fully liquid, fully
gaseous, or mixed states using standard components.

Creating such a medium, however, necessitates careful
consideration of how the individual phases are modeled,
particularly the liquid. Molten salts, like many liquids,
are often approximated as incompressible for simplicity.
Yet, incompressibility (ρ = f (T ) only) can lead to differ-
ent modeling variants regarding the pressure dependency
of thermodynamic properties like internal energy u and
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enthalpy h. For example, defining enthalpy solely as h(T )
versus allowing an implicit pressure dependency leads to
different system behavior, as detailed in Section 3. The
choice of how to model liquid incompressibility and its
thermodynamic consequences therefore becomes a critical
aspect, impacting the robustness and efficiency of simula-
tions involving such media.

The main contributions are thus twofold: (1) the pre-
sentation of a generic, standard-component-compatible
Medium model for non-miscible liquid-gas systems, and
(2) a detailed mathematical analysis of the trade-offs asso-
ciated with different representations of liquid incompress-
ibility within this context. Through rigorous derivation of
conservation equations, we analyze the structural conse-
quences of these modeling choices and their implications
for equation complexity and physical accuracy. Our focus
is on the theoretical and structural aspects of the medium
formulation, providing a foundation for future implemen-
tation and performance studies.

The paper is structured as follows:

• Section 2 introduces a non-miscible two-substance
Medium model (BisubLiqGas), detailing its for-
mulation, assumptions, and general capabilities and
limitations, applicable to various liquid-gas pairs.

• Section 3 delves into the core analysis of this paper:
the modeling of liquid incompressibility. It discusses
different incompressibility approaches and presents a
comparative study, focusing on how different incom-
pressibility assumptions impact the structure of the
equations generated for a typical test case.

2 Non-miscible liquid-gas medium
model

To represent the thermohydraulic behavior of the molten
salt/cover gas mixture in scenarios such as draining or
leak management, where the liquid and gas phases remain
macroscopically separated, a specific medium model has
been developed. This model, named BisubLiqGas, is
designed to capture the essential properties of the mixture
while maintaining manageable complexity for dynamic
system simulation.

2.1 Medium Components
The BisubLiqGas medium is a binary mixture com-
posed of two substances: one is a liquid (indexed L in for-
mulas) and the second a gas (indexed G). While the spe-
cific substances used for illustration stem from the orig-
inal MSR context (Molten Salt and Helium), the model’s
structure allows for generic application, as detailed in Sec-
tion 2.5.

• Liquid substance (Molten Salt): The spe-
cific model used is from the TRANSFORM library

TRANSFORM.Media.Fluids.NaClKClMgCl2.
LinearNaClKClMgCl2_30_20_50_pT
(Greenwood et al. 2023). This choice implies
modeling the ternary salt as a fluid whose density is
a linear function of temperature T and pressure p,
and whose specific heat capacity at constant pressure
CpL is assumed constant:

ρL(p,T ) = ρL,re f
[
1−β · (T −Tre f )+κ · (p− pre f )

]
(1)

where ρL,re f , Tre f , and pre f are the reference density,
temperature, and pressure, respectively, and β and
κ are the constant isobaric expansion and isother-
mal compressibility coefficients. The values for
these constants and the transport properties (dynamic
viscosity ηL, thermal conductivity λL) are derived
from correlations or experimental data specific to this
molten salt (Greenwood et al. 2023).

• Gas substance (Helium): The standard MSL model
Media.IdealGases.SingleGases.He is
used. This implies that Helium is treated as an ideal
gas:

p ·V = n ·R ·T ⇔ p = ρ ·Rs ·T (2)

where Rs = R/MMG is the specific gas constant for
Helium. Furthermore, its specific heat capacity at
constant pressure CpG is assumed constant and equal
to 5

2 Rs, the theoretical value for a monoatomic ideal
gas:

CpG =
5
2
·Rs = constant (3)

2.2 Fundamental Assumptions of the Mixture
Model

The BisubLiqGas model relies on the following key
assumptions for the mixture:

• Non-miscibility: The liquid (salt) and gas (helium)
phases are considered completely immiscible. No
dissolution of the gas into the liquid or vice versa
is modeled. The interface between the phases is
assumed to be sharp within components using this
medium.

• Absence of Phase Change: No evaporation, con-
densation, solidification, or fusion is considered. The
salt remains liquid, and the Helium remains gaseous
throughout the simulated operating range.

• Local Thermal Equilibrium: Within an elementary
control volume, both phases are assumed to be at the
same temperature T .

• Local Mechanical Equilibrium: Within an elemen-
tary control volume, both phases are assumed to be
at the same pressure p. (Note: Hydrostatic pressure
differences can exist at the component level).
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• Ideal Thermodynamic Mixing: The specific en-
thalpy and internal energy of the mixture are calcu-
lated as the mass-fraction weighted average of the
respective pure phase properties, implying no heat of
mixing.

2.3 Implementation and State Variables
The model is implemented by inheriting from
MSL.Media.Interfaces.PartialMedium.
The chosen independent thermodynamic state variables
are pressure p, temperature T , and mass fractions X
(ThermoStates.pTX option). The liquid substance
is considered as X1 and gas as X2. The model pro-
vides the standard set of functions required by the
PartialMedium interface to compute thermodynamic
and transport properties from various input variable com-
binations (e.g., density(setState_phX(...)),
temperature(setState_psX(...))). The
implementation ensures that calls to component property
functions use the appropriate pure substance state derived
from the mixture’s p and T .

2.4 Mixing Rules
The thermodynamic and transport properties of the mix-
ture are calculated from the properties of the pure compo-
nents Liq and Gas (evaluated at the mixture’s pressure p
and temperature T ) using the following mixing rules:

• Density (ρ): Derived from the additivity of volumes
(V = VL +VG) and the definition of mass fractions
(mi = Xim), using the linear equation of state for the
liquid (1) and the ideal gas law (2) for the gas:

ρ(p,T,X) =
mL +mG

VL +VG
=

ρL(p,T )

XL +XG
ρL(p,T )RsT

p

(4)

• Specific Enthalpy (h): Calculated by mass weight-
ing, consistent with the ideal mixing assumption:

h(p,T,X) = XL ·hL(p,T )+XG ·hG(p,T ) (5)

where hL is given by integrating CpL and accounting
for the pressure dependency (from the linear model),
and hG is given by CpG(T − T0), with a consistent
reference temperature T0 (here 0 ◦C).

• Specific Internal Energy (u): Derived from en-
thalpy and density:

u(p,T,X) = h(p,T,X)− p
ρ(p,T,X)

(6)

This is equivalent to the mass-weighted average u =
XL ·uL +XG ·uG.

• Other Properties (Approximation): To simplify
the model, other mixture properties Ymix (dynamic
viscosity η , thermal conductivity λ , specific entropy
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Figure 1. Unit test schematic using the BisubLiqGas model
with a DynamicPipe.

s, specific heat capacities Cp and cv, isentropic ex-
ponent γ , speed of sound a) are approximated by a
simple mass weighting of the pure phase properties:

Ymix(p,T,X)≈ XL ·YL(p,T )+XG ·YG(p,T ) (7)

2.5 Model Capabilities and Limitations
The BisubLiqGas medium model provides a frame-
work for simulating systems containing non-miscible
liquid-gas mixtures using standard Modelica fluid compo-
nents.

2.5.1 Current Status and Validation
The model demonstrates functionality in several unit
tests, such as simulating transient inlet conditions for
a Modelica.Fluid.Pipes.DynamicPipe compo-
nent (an example setup is shown in Figure 1). How-
ever, achieving robust performance across the full range
of standard fluid components and complex scenarios re-
mains an area of ongoing work. Challenges can arise from
component-specific assumptions incompatible with a two-
substance medium or from the numerical properties of the
medium representation itself. Investigating these aspects,
particularly the different approaches to modeling liquid in-
compressibility as discussed in Section 3, is a key objec-
tive of this paper.

2.5.2 Compatibility and Genericity
While initially motivated by an MSR application (molten
salt/helium), the BisubLiqGas model is structured for
broader applicability. The choice of liquid and gas sub-
stances can be adapted by replacing the specific compo-
nent models, provided they adhere to the required base
interfaces:

• Liquid Substance: The medium
model for the liquid phase shall extend
Media.Interfaces.PartialLinearFluid

• Gas Substance: The medium model
for the gas phase shall extend Media.

Session: Media Property Modeling in Track for Energy 
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IdealGases.Common.SingleGasNasa
(or provide a compatible interface). While the base
SingleGasNasa models can handle temperature-
dependent properties, the enthalpy calculation
within the BisubLiqGas mixing rules (Eq. (5))
currently assumes a constant specific heat capac-
ity CpG (e.g., 5/2Rs for Helium) for simplicity
in the implementation of inverse functions like
setState_phX. This simplification should be
considered when selecting or adapting the gas model
for high-accuracy simulations over wide temperature
ranges. The Cp for monatomic ideal gas is 5R/2 and
the value for diatomic ideal gas is 7R/2.

2.5.3 Inherent Limitations

The use of the BisubLiqGas model is subject to the
following fundamental limitations stemming from its core
assumptions and implementation choices:

• Component Model Validity: The overall model va-
lidity is restricted to the pressure and temperature
ranges where the chosen gas model (e.g., ideal gas
behavior for Helium) and the chosen liquid model
(e.g., linear approximation for the specific salt) re-
main acceptable representations of the real substance
properties.

• Non-Miscibility Assumption: The assumption of
perfect non-miscibility must hold. The model does
not account for any solubility of the gas in the liquid
or vice versa.

• No Phase Change: The model cannot simulate sce-
narios involving phase transitions (boiling, conden-
sation, solidification, melting). Both substances are
assumed to remain in their initial liquid or gas state.

• Mixing Rule Approximations: The linear mass-
weighting rule (Eq. (7)) used for transport properties
(dynamic viscosity η , thermal conductivity λ ) and
several thermodynamic properties (specific entropy
s, specific heat capacities cp,cv, isentropic exponent
γ , speed of sound a) is a significant simplification for
non-miscible mixtures. The accuracy impact, espe-
cially for η , λ , and a, depends heavily on the specific
substances and flow regime, and must be carefully
evaluated for the target application.

• Local Equilibrium Assumption: The assumptions
of local thermal and mechanical equilibrium (uni-
form T and p for both phases within a control vol-
ume) may break down in very rapid transients or
highly heterogeneous flows.

Despite these limitations, the BisubLiqGas model pro-
vides a practical basis for studying dynamic system-
level scenarios involving non-miscible liquid-gas mixtures
where macroscopic phase separation is dominant, such
as draining transients or tank pressurization/depressuriza-

tion, using standard Modelica components.

3 Liquid state management
In this section, we will focus solely on the liquid sub-
stance and more specifically on the treatment of thermody-
namic relationships and the handling of incompressibility
aspects.

A terminological clarification is necessary because the use
of the term incompressible is sometimes ambiguous. In
this article, we will use the following terms with precise
meanings:

• Incompressible: refers to a fluid whose density is
constant (invariant with respect to all state variables)

• Zero compressibility: refers to a fluid whose
isothermal compressibility is zero (or negligible),
meaning that the density, which normally depends on
temperature and pressure, does not vary with pres-
sure but may vary with temperature

Let us recall that isothermal compressibility is defined by:

χT =− 1
V
·
(

∂V
∂ p

)
T
=

1
ρ
·
(

∂ρ

∂ p

)
T

(8)

In a single-species, single-phase fluid, the usual state vari-
ables are pressure, density, and temperature. Mass and
energy balances provide equations for 2 of the 3 state vari-
ables. The closure equation is given by the fluid proper-
ties, particularly its equation of state.

The problem with liquids is that the equation of state of-
ten results in very small variations of density with pressure
(low isothermal compressibility). This can cause numer-
ical issues because pressure is often used as an explicit
variable in state functions where density appears more in
balance equations. We name an explicit variable one that
is used as input to state functions. In this article, the fol-
lowing approaches will be defined and compared:

• Incompressible approach

• Semi-incompressible approach where density re-
mains constant except in the mass conservation equa-
tion and in the buoyancy term of momentum conser-
vation, where it is only a function of temperature.
This is the counterpart of the Boussinesq approxima-
tion for system-scale calculations.

• Zero compressibility approach (density independent
of pressure but dependent on temperature)

• Zero compressibility approach combined with the
elimination of pressure force work in the internal en-
ergy and enthalpy relationships used in the energy
balance

A Generic Non-Miscible Liquid-Gas Medium Model in Modelica with Analysis of Incompressibility … 
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The objective is to study the impact of deviations from rig-
orous thermodynamic relationships in favor of potentially
better numerical performance.

3.1 Mathematical descriptions of the liquid
state equations

First, let’s establish the differentials of thermodynamic re-
lations as functions of pressure and temperature.

3.1.1 Density

dρ =

(
∂ρ

∂ p

)
T
·d p+

(
∂ρ

∂T

)
p
·dT (9)

By introducing the definition of isothermal compressibil-
ity χT (Eq. 8) and the definition of the isobaric thermal
expansion coefficient α (Eq. 10), we obtain the differen-
tial of density (Eq. 11):

α =
1
V
·
(

∂V
∂T

)
p
=− 1

ρ
·
(

∂ρ

∂T

)
p

(10)

α can be expressed using the density ρ instead of the vol-
ume V by applying the variable change V = m/ρ . The
mass contained in the volume being constant during the
transformation.

dρ = ρ · (χT ·d p−α ·dT ) (11)

3.1.2 Internal Energy
Specific internal energy, often used for isochoric transfor-
mations and expressed as a function of temperature and
density, can also be expressed as a function of pressure
and temperature.

The Gibbs identity is given by:

dU = T ·dS− p ·dV (12)

We assume that entropy S and volume V are functions of
temperature T and pressure p :

S = S(T, p), V =V (T, p) (13)

By injecting the differentials of the expressions of S and V
into the identity of dU (Eq. 12), we obtain:

(
∂U
∂T

)
p
= T ·

(
∂S
∂T

)
p
− p ·

(
∂V
∂T

)
p

(14)

(
∂U
∂ p

)
T
= T ·

(
∂S
∂ p

)
T
− p ·

(
∂V
∂ p

)
T

(15)

Simplifying the partial derivative with respect to temper-
ature by introducing the heat capacity coefficient (at con-
stant pressure (Eq. 16)):

Cp = T ·
(

∂S
∂T

)
p

(16)

the partial derivative of the internal energy can be ex-
pressed as function of α (Eq. 10) and Cp (Eq. 16):

(
∂U
∂T

)
p
=Cp − p ·V ·α (17)

Continuing with the partial derivative with respect to pres-
sure. To simplify the expression, we use one of Maxwell’s
relations. (

∂S
∂ p

)
T
=−

(
∂V
∂T

)
p

(18)

By injecting this relation into the expression of
(

∂U
∂ p

)
T

,
we obtain:(

∂U
∂ p

)
T
=−T ·

(
∂V
∂T

)
p
− p ·

(
∂V
∂ p

)
T

(19)

We can now simplify this relation by introducing the iso-
baric thermal expansion coefficient α (Eq. 10) and the
isothermal compressibility coefficient χT (Eq. 8).(

∂U
∂ p

)
T
=−α ·T ·V + p ·V ·χT (20)

Finally, let’s express the differential of internal energy us-
ing only these coefficients.

dU = (Cp −α · p ·V ) ·dT +(−α ·T ·V + p ·V ·χT ) ·d p
(21)

This expression is general and applies to any real fluid as
long as the volume can be expressed as a function of T and
p. This equation remains valid when all extensive quanti-
ties are expressed per unit mass.

3.1.3 Enthalpy

dH =

(
∂H
∂T

)
p
·dT +

(
∂H
∂ p

)
T
·d p (22)
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To determine the differential, let’s combine the internal
energy differential (Eq. 21) and a relation between en-
thalpy and internal energy (Eq. 23) and the differential of
volume (Eq. ??):

H =U + p ·V (23)

dH = dU + p ·dV +V ·d p

When replacing dV by its differential (Eq. ??) and sim-
plifying by the compensating term, the differential of the
enthalpy is obtained:

dH =Cp ·dT +V · (1−T ·α) ·d p (24)

This expression is the general differential form of specific
enthalpy as a function of temperature and pressure, involv-
ing calorimetric and thermoelastic coefficients.

3.2 Mathematical descriptions of the studied
approaches

3.2.1 Incompressible approach
Recall that in this approach, the density is constant and
invariant with respect to all state variables (α = 0 and
χT = 0):

The differentials of internal energy (Eq. 21) and enthalpy
(Eq. 24) are then considerably simplified:

dU =Cp ·dT (25)

dH =Cp ·dT +V ·d p (26)

The problem with this approach comes from the impos-
sibility of modeling natural circulation, density driven
flows, because the driving force of the flow, induced by
density variation, is zero. Therefore, we will introduce the
semi-incompressible approach to tackle this problem.

3.2.2 Semi-incompressible approach
In this approach, the differentials of internal energy (25)
and enthalpy (26) remain unchanged compared to the in-
compressible approach. Only the differential of density
is modified. Actually this density relation is only used in
the mass balance equation and in the buoyancy term of the
momentum balance equation:

dρ =−ρ ·α ·dT (27)

3.2.3 Zero compressibility approach
In this approach, the isothermal compressibility is zero
(χT = 0), which means that density is independent of pres-
sure but can vary with temperature. From the differential
of density (Eq. 11), we obtain:

dρ =−ρ ·α ·dT (28)

The differentials of internal energy (Eq. 21) and enthalpy
(Eq. 24) then become:

dU = (Cp −α · p ·V ) ·dT − α ·T ·V ·d p (29)

dH =Cp ·dT +V · (1−α ·T ) ·d p (30)

By noting that α · p ·V ·dT = p ·dV , we can find the classic
form:

dH = dU + p ·dV + V ·d p (31)

The zero compressibility approach is more realistic for liq-
uids, where density variation with temperature is signifi-
cant (allowing modeling of buoyancy effects), while vari-
ation with pressure is often negligible.

3.2.4 Neglected pressure work approach

In this approach, we maintain the zero compressibility as-
sumption (χT = 0), but we also assume that pressure work
is negligible in the enthalpy equation, which means that
enthalpy depends only on temperature:

dH =Cp ·dT (32)

If we now calculate the differential of internal energy
from the relationship between internal energy and en-
thalpy (Eq. 23), we obtain:

dU =Cp ·dT − p ·dV −V ·d p (33)

With the zero compressibility assumption, we can express
the differential of volume directly as a function of the dif-
ferential of temperature which gives:

dU = (Cp − p ·V ·α) ·dT − V ·d p (34)

By comparing with the expression of dU obtained with the
differential of internal energy assuming zero compressibil-
ity (Eq. 29), we can quantify the bias induced by this as-
sumption of negligible pressure work. The bias is there-
fore:

δdU = dUδW=0 −dUχT=0

=−V ·d p− (−α ·T ·V ·d p)
=−V · (1−α ·T ) ·d p (35)

This simplified approach can be useful numerically, but
it leads to a thermodynamic inconsistency that can affect
the accuracy of the simulation, particularly in cases where
pressure variations are significant.

3.3 Conservation equations
Let’s establish the mass balance for a fixed volume of a
single-species single-phase fluid.

A Generic Non-Miscible Liquid-Gas Medium Model in Modelica with Analysis of Incompressibility … 
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3.3.1 Conservation of mass

V · dρ

dt
= ∑

boundaries
ṁ (36)

Since the mass flow rate is a function of pressure, it is
preferable to choose pressure as one of the explicit vari-
ables. With the assumption of a single-phase fluid, it is
preferable to take temperature as the second explicit vari-
able.

The left term of the continuity equation (Eq. 36) expressed
as a function of temperature and pressure derives using the
differential of the density (Eq. 11):

The right term is a function of the mass flow rate at the
boundaries of the volume. By simplifying the flow as non-
inertial, the mass flow rate becomes exclusively a function
of the pressure losses at the boundaries. The calculation of
the pressure losses requires having the value of the density
and temperature to calculate the transport properties.

ṁ = f (∆p,ρ,T ) (37)

According to the scheme used to compute the flow rate
(upstream, centered, order 1, 2 etc), the indices of the den-
sity, temperature and pressure differ. However, the gen-
eral form is preferred to study the non linear behavior.
Please note that implicit forms can raised depending on
the scheme used. For clarity sake, a simplified centered
scheme can be used in this section.

Grouping the left and right terms, we obtain:

V ·ρ ·
(

χT · dp
dt

−α · dT
dt

)
= ∑ f (∆p,ρ,T ) (38)

Let’s now apply the assumptions of the different ap-
proaches to this equation.

Incompressible approach: Since the density is constant,
the derivatives of the density with respect to pressure and
temperature are zero. The density is always used to calcu-
late the pressure losses but is no longer a function of the
explicit variables, so it is removed from the function "f".
The equation (Eq. 38) becomes a simple algebraic equa-
tion.

0 = ∑ f (∆p,T ) (39)

Semi-incompressible approach: Since the density is
only a function of temperature, it can be removed from
the function "f". The equation (Eq. 38) can be simplified
to:

dT
dt

=
∑ f (∆p,T )
−ρ ·V ·α

(40)

We can clearly see with this approach that:

• The mass conservation equation becomes an equa-
tion for the time derivative of temperature

• The equation is linear and the derivative is explicit
(does not depend on itself or on another time deriva-
tive)

Zero compressibility approach: The expression for den-
sity is exactly the same as for the semi-incompressible ap-
proach. The conclusions are therefore the same.

Neglected pressure work approach: The expression for
density is exactly the same as for the semi-incompressible
approach. The conclusions are therefore the same.

3.3.2 Conservation of energy
Let’s apply the same process to the energy balance.

V · d(ρ ·u)
dt

= ∑
boundaries

Ḣ + ∑
boundaries

Q̇ (41)

For the energy balance, we will neglect external thermal
inputs (∑ Q̇). They do not change the conclusions.

The gross enthalpy flow Ḣ is the product of the mass flow
rate and the specific enthalpy. From (Eq. 37), the mass
flow rate can be expressed from the explicit variables:

Ḣ = ṁ ·h = ∑ f (∆p,ρ,T ) ·h (42)

According to the scheme used to compute the flow rate
(upstream, centered, order 1, 2 etc), the indices of the den-
sity, temperature, pressure and enthalpy differ. However,
the general form is preferred to study the non linear behav-
ior. Please note that implicit forms can raised depending
on the scheme used. For clarity sake, a simplified centered
scheme can be used in this section.

Using Eq. 41 with the partial derivatives form and the
Eq. 37:

dp
dt

·ρ ·V ·
[

∂u
∂ p

+u ·χT

]
+

dT
dt

·ρ ·V ·
[

∂u
∂T

−u ·α
]

= ∑( f (∆p,ρ,T ) ·h)
(43)

Incompressible approach: Since density is constant and
specific internal energy depends only on temperature,
many partial derivatives become zero. Equation (43) be-
comes:

dT
dt

=
∑( f (∆p,T ) ·h)

ρ ·V · cp
(44)

• The energy conservation equation becomes an equa-
tion for the time derivative of temperature

Session: Media Property Modeling in Track for Energy 

DOI Proceedings of the 16th International Modelica&FMI Conference  319 
10.3384/ecp218313 September 8-10, 2025, Lucerne, Switzerland   



• The equation is linear and the derivative is explicit
(does not depend on itself). However, the right-hand
term is also a function of pressure via the specific
enthalpy formula.

Semi-incompressible approach: Since density and spe-
cific internal energy depend only on temperature, many
partial derivatives become zero. Equation (43) becomes:

dT
dt

=
∑( f (∆p,T ) ·h)

ρ ·V · (cp −α ·u)
(45)

The conclusions are identical to the incompressible ap-
proach. The only difference comes from the term in the
denominator, which is corrected for the expansion effect.

Zero compressibility approach: The energy conserva-
tion equation (43) becomes:

dp
dt

·V · (−α ·T )+ dT
dt

·ρ ·V ·
[(

cp −
p ·α

ρ

)
−u ·α

]
= ∑( f (∆p,T ) ·h)

(46)

• The equations are linear and the derivative is explicit
(does not depend on itself).

• The resolution of pressure is no longer an algebraic
system but becomes an ordinary differential equa-
tion.

Zero compressibility + neglected pressure work ap-
proach: Since density and enthalpy depend only on tem-
perature, the energy conservation equation (43) becomes:

dp
dt

·V ·ρ ·
[

∂u
∂ p

]
+

dT
dt

·V ·
[

ρ · ∂u
∂T

+u · ∂ρ

∂T

]
= ∑ f2(∆p,T ) (47)

Note that for the formulation of internal energy, we cannot
use equation (21) but (34), which derives from enthalpy
without the pressure force work term. Moreover, the func-
tion f can be replace by f2 since the specific enthalpy de-
pends only on temperature:

dp
dt

· (−V )+
dT
dt

·ρ ·V ·
[

cp −
p ·α

ρ
−u ·α

]
= ∑ f2(∆p,T )

(48)

3.4 Applicability of TableBased medium on
these approaches

In this section, we will explain why the pre-existing
generic TableBased medium of the MSL are not per-
fectly suited to our needs. All the four approaches pre-
sented in previous section cannot be reproduced with this
medium by tuning the following parameters:

• singleState

• enthalpyOfT

For reminder, the definition of the singleState
parameter is given in the MSL package
Media.UsersGuide.MediumUsage.Constants
and is as follows:

singleState = true, if u and d are not a function
of pressure, and thus only a function of a single
thermal variable (temperature or enthalpy) and
of Xi for a multiple substance medium. Usually,
this flag is true for incompressible media. It is
used in a model to determine whether 1+nXi
(singleState=true) or 2+nXi (singleState=false)
initial conditions have to be provided for a vol-
ume element that contains mass and energy bal-
ance.

For a purely incompressible approach, we must therefore
have singleState = true. However, looking more closely
at the system of equations, we find that singleState = true
is not always the right condition for the mass density and
specific internal energy to depend only on temperature.

If enthal pyO f T = f alse, the function for calculating spe-
cific enthalpy (h_pT) becomes:

h = h0 +
∫ T

T0

cp ·dT +
p− pre f

ρ
· (1−α ·T ) (49)

If the density is constant (incompressible total), this ex-
pression simplifies to:

h = h0 +
∫ T

T0

cp ·dT +
p− pre f

ρ
(50)

The function for calculating specific internal energy with
singleState = true becomes:

u = h−
pre f

ρ
(51)

By substituting the expression for specific enthalpy, we
obtain:

u =h0 +
∫ T

T0

cp ·dT +
p− pre f

ρ
−

pre f

ρ

u =h0 +
∫ T

T0

cp ·dT +
p
ρ

(52)

We can clearly see that the pressure is always present in
the expression for specific internal energy. On the con-
trary, if singleState = f alse, the function for calculating
specific internal energy becomes:

u =h0 +
∫ T

T0

cp ·dT +
p− pre f

ρ
− p

ρ

u =h0 +
∫ T

T0

cp ·dT −
pre f

ρ
(53)
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In this case, specific internal energy and mass density are
well independent of pressure. However, we have the op-
posite behavior compared to what the user expects.
Moreover, this can cause problems with initialization be-
cause with singleState = false, the pressure is initialized in
the capacitive components but has no inertial term.

If now enthal pyO f T = true and singleState = true, the
function to calculate specific enthalpy (h_T) becomes:

h = h0 +
∫ T

T0

cp ·dT (54)

and the specific internal energy (u_T) becomes:

u = h0 +
∫ T

T0

cp ·dT −
pre f

ρ
(55)

Since the mass density is constant, the expression is inde-
pendent of pressure.

The semi-incompressible approach could be modeled
with the TableBased medium in the MSL. It would require
forcing the constant DensityO f T = f alse even though the
density is a function of temperature. Indeed, the constantis
defined as DensityO f T = size(tableDensity,1) > 1. The
parameters would then be:

• singleState = false
• enthalpyOfT = false
• densityOfT = false

The approach of zero compressibility cannot be
modellable with the TableBased medium in the MSL even
with the following parameters:

• singleState = false
• enthalpyOfT = false
• densityOfT = true

Introducing the (49) in the expression u = h− p
ρ

, it can be
remarked that there is the missing following term, which
is a correction term of the specific heat capacity (check
(29)) in the specific internal energy expression:

∫ T

T0

−α · p
ρ
·dT

Similarly, the approach of zero compressibility + ne-
glected pressure work cannot be modeled with the Table-
Based medium in the MSL for the same reason than for the
zero compressibility approach.

Based on the analysis operated in this section, our further
developments must concern the modeling of a own liquid
medium for the bisubtance model rather than using an ex-
isting medium from the Modelica Standard Library (MSL)
in order to:

• Build expertise in medium development

• Have total control over the approximations made

• The TableBased medium in the MSL rebuilds poly-
nomials from data points. It does not allow defining
arbitrary relationships between variables.

4 Comparison of approaches applied
to a flow in a vertical pipe

Let us now attempt to quantify the differences between the
approaches by applying them to a simple case: the flow
in a vertical adiabatic pipe. In this article, we will focus
exclusively on the theoretical study. A further study is on-
going and will contain the practical comparison using an
equivalent Modelica model, compiled and executed with
OpenModelica.

Suppose a perfectly adiabatic vertical pipe filled with an
inert liquid fluid (no heat production). Let’s start by as-
suming that the fluid is static. We can generalize later.
The conservation of energy gives us an invariance of the
sum of enthalpy and potential energy of gravity.

dH +m ·g ·dz = 0 (56)

Replacing dH by its exact expression:

Cp ·dT +V · (1−T ·α) ·d p+m ·g ·dz = 0 (57)

We can express d p in terms of dz using the hydrostatic
relation:

d p =−ρ ·g ·dz (58)

The conclusions remain valid even when introducing a
term for pressure loss: d p =−ρ g dz − d ploss

Cp ·dT +V · (1−T ·α) · (−ρ ·g ·dz)+m ·g ·dz = 0
(59)

By simplifying the terms that cancel out and dividing by
the mass ( m = ρ V ), we obtain:

cp ·dT +T ·α ·g ·dz = 0 (60)

We can therefore determine the temperature variation as a
function of height variation:

dT
dz

=
−α ·T ·g

cp
(61)

NB: With a mass density that depends on temperature, a
temperature change induces a change in mass density. By
mass conservation, in steady state, this induces a change
in flow rate, hence kinetic energy. The energy balance
should therefore be written:

H +
1
2
·m ·V 2 +m ·g · (z− z0) = constant (62)
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We choose to neglect the effects of kinetic energy for sim-
plicity.

For a real transformation with fluid displacement, we
make a change of variable to make the pressure loss term
appear in the hydrostatic equation (58). In practice, a pres-
sure loss always has a negative value. However, we as-
sume that an eventual flow would be in the "z" direction.
This avoids introducing vectors and allows us to only look
at values.

dT
dz

=
−α ·T ·g

cp
+

(1−α ·T ) ·d ploss

ρ · cp
(63)

Let’s now consider the case where the fluid is incompress-
ible (α = 0) :

dT
dz

=
d ploss

ρ · cp
(64)

In this case, the temperature can only increase (since
d ploss < 0) and depends only on the pressure loss. We
clearly see here the irreversibility of the conversion of me-
chanical pressure energy into thermal energy.

The bias on the temperature gradient induced by the as-
sumption of incompressibility is therefore of the order of
α·T ·g

cp
.

Let’s now consider the case where the pressure term is
negligible in the enthalpy, i.e., dH(T ) =Cp ·dT :

Cp ·dT +m ·g ·dz = 0 (65)

dT
dz

=
−g
cp

(66)

In this case, the temperature no longer depends on the
pressure loss. It depends only on height.

The ongoing comparison of the approaches with Open-
Modelica is using a "DynamicPipe" component from the
Modelica Standard library (MSL) coupled with a "pres-
sure" sink at the pipe outlet (top part of the vertical pipe).
The inlet conditions studied are of kind source of mass
(and the necessary potential variables) flow and source of
pressure (and the necessary potential variables).

5 Conclusion
This paper has addressed two key challenges in thermal-
hydraulic system modeling: (1) the creation of a generic
non-miscible liquid-gas medium that integrates with stan-
dard Modelica component libraries, and (2) the investiga-
tion of different approaches to model liquid incompress-
ibility through detailed mathematical analysis.

The developed BisubLiqGas medium effectively rep-
resents systems that transition between fully liquid, fully

gaseous, or mixed states, maintaining compatibility with
standard components. This allows simulation of impor-
tant scenarios like draining or leak management in sys-
tems such as Molten Salt Reactors. The model’s generic
structure enables adaptation to various liquid-gas pairs be-
yond the initial molten salt/helium application.

Our detailed mathematical analysis of different incom-
pressibility approaches revealed significant implications
for equation structure and numerical performance:

• The pure incompressible approach, while offering
the simplest equation structure (algebraic pressure
resolution), cannot model natural convection effects
due to its constant density assumption.

• The semi-incompressible approach enables
temperature-dependent density variations es-
sential for buoyancy-driven flows, converting mass
conservation into an explicit differential equation for
temperature.

• The zero compressibility approach provides greater
thermodynamic rigor but transform pressure resolu-
tion from algebraic to differential equations, increas-
ing system complexity.

• The neglected pressure work variant offers numerical
simplification but introduces thermodynamic incon-
sistencies that may affect accuracy in systems with
significant pressure variations.

The theoretical analysis of vertical pipe flow demon-
strated quantifiable differences between approaches. For
instance, the temperature gradient bias induced by incom-
pressibility assumptions is of the order α·T ·g

cp
, while ne-

glecting pressure work in enthalpy leads to temperature
gradients that depend solely on elevation rather than pres-
sure losses.

This analysis revealed fundamental limitations of existing
MSL TableBased media for implementing these ap-
proaches, particularly the counterintuitive behavior of the
singleState parameter and the inability to represent
zero compressibility formulations correctly. This justifies
the development of specialized media rather than relying
on generic table-based implementations.

These findings highlight the inherent trade-offs between
physical accuracy and numerical efficiency in fluid mod-
eling. The choice of incompressibility approach should
be guided by the specific requirements of the application:
natural convection modeling necessitates at least the semi-
incompressible approach, while systems without signifi-
cant buoyancy effects may benefit from the numerical ad-
vantages of the simpler incompressible model.

Future work will focus on implementing and validating
these theoretical approaches in practical Modelica simula-
tions, quantifying their performance differences in large-
scale system models, and extending the analysis to more

A Generic Non-Miscible Liquid-Gas Medium Model in Modelica with Analysis of Incompressibility … 

 

322 Proceedings of the 16th International Modelica&FMI Conference DOI 
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218313 



complex flow configurations. Additionally, exploring
more sophisticated mixing rules for transport properties
in the non-miscible medium would enhance the model’s
accuracy for specialized applications.
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