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Abstract 
System simulation is inherently an applied technology, 
driven by specific application demands. The Modelica 
language enables equation-based, system-level, multi-
domain, and visual modeling, facilitating researchers 
conducting system simulation studies of nuclear power 
systems. This paper introduces the custom-built AESE 
library on the OpenModelica platform. Examples in 
AESE are provided to illustrate the development and 
simulation of system models for conventional pressurized 
water reactors (PWRs) and high-temperature gas-cooled 
reactors (HTGRs). The paper also describes tasks 
completed under different application scenarios, including 
hardware-in-the-loop simulation, multi-objective 
optimization, system identification, and rapid 
optimization, using model-driven and data-driven 
approaches with the AESE library. The further application 
of simulation models and data has significant practical and 
engineering value. This paper serves as a valuable 
reference for the intelligent application of energy system 
models in the context of advanced engineering challenges. 
Keywords: Modelica, Nuclear Power System, Model-
driven, Data-driven 

1 Introduction 
System-level simulation provides a framework for 

understanding and analyzing the behavior of complex 
systems, enabling enhanced design and optimization. 
Multi-domain system-level modeling has gained 
significant popularity in seamlessly integrating physical 
models from various domains using a unified modeling 
language. This approach helps to overcome interface 
issues between different domain-specific software and 
enables the modeling of comprehensive and complex real-
world systems (Mattsson et al. 1998). 

Modelica, as an example of a multi-domain system 
modeling language, employs mathematical equations to 
uniformly describe physical processes across different 
domains. It offers visual modeling capabilities to represent 
the topology of a system and enables the solution of 
steady-state and transient simulations by solving algebraic 

and differential equations. The Modelica language has 
been widely used in the aerospace, shipbuilding, 
automotive, energy, and other fields (Briese et al. 2020; 
Soriano et al. 2016; Andreasson et al. 2013). 

Nuclear power systems (NPSs) are inherently complex 
and face increasing demands for shorter development 
cycles, higher safety standards, and smarter operation. 
While traditional offline Modelica-based simulations have 
successfully supported reactor design and thermal-
hydraulic analysis (Casella and Leva 2005; Cammi et al. 
2011), the full potential of system simulation extends 
beyond this. Driven by the need for more intelligent 
system management and accelerated development, system 
simulation is evolving to support multiple practical 
scenarios that leverage both models and data. This work 
specifically focuses on the expanded application of 
Modelica-based NPS simulation across diverse technical 
dimensions: 

a）Hardware-in-the-loop simulation (HILS), which 
enables integrated control verification by coupling 
physical hardware with digital models. For complex NPSs, 
the pressure to shorten development cycles and meet 
stringent safety requirements necessitates comprehensive 
control system testing to avoid costly failures. These 
demands have driven recent advancements in HILS 
(Mihalič et al., 2022). Although Modelica is widely used 
in offline NPS simulations, its application in system-level 
HILS research for nuclear systems remains limited. 

b）Multi-objective optimization (MOO), which 
facilitates system-level design exploration by resolving 
trade-offs among competing objectives. In large-scale 
systems like NPSs, single-objective optimization often 
fails to represent the comprehensive requirements of 
engineering applications (Zhang and Wang 2024). 
Therefore, greater attention is given to multi-objective 
optimization problems that incorporate complex 
constraints. These objectives are often interdependent and 
cannot be optimized simultaneously, requiring 
coordinated strategies to identify Pareto-optimal solutions 
under varying conditions. 

c）System identification, which leverages operational 
data for rapid prediction and data-driven modeling, 
supporting fast evaluation and intelligent optimization. A 
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significant amount of data generated during nuclear power 
operation remains underutilized. However, emerging 
data-driven multi-objective (DDMO) optimization 
frameworks aim to bridge this gap. By coupling system 
identification algorithms with MOO, these frameworks 
enable efficient exploration of design spaces, enhance 
productivity, and improve predictive capabilities for 
future operational states. 

These application scenarios underscore the diverse and 
critical roles that system simulation can play in modern 
NPS development. As depicted schematically in Figure 1, 
they encompass physical integration, algorithmic 
coordination, and data utilization, collectively forming a 
comprehensive modeling–application framework. This 
paper builds upon this framework by first introducing the 
general modeling approach using the AESE library 
(Section 2), then presenting these three representative 
applications in detail (Section 3), and finally concluding 
with a summary and outlook (Section 4). 

 

 
Figure 1. The further application directions of system 
simulation discussed in this paper  
 

2 System Simulation 
2.1 Framework 

A custom-built Advanced Energy Systems Engineering 
(AESE) library (Zhang and Wang 2024) in OpenModelica 
(Fritzson et al. 2020) was developed in this study to 
describe various advanced energy systems. Figure 2 
depicts the AESE architecture and the hierarchical 
structure of its He-Xe CBC system sub-library. Designed 
for modularity and openness, the library separates 
component models from working fluid models, allowing 
easy adaptation to future fluid models. Modelica 
facilitates this by supporting a high-level component 
library framework, defining standardized interfaces, and 
using inheritance or substitution for detailed component 
implementations. The following briefly outlines the 
modeling and simulation of two typical nuclear energy 
systems: the pressurized water reactor (PWR) and the 
high-temperature gas-cooled reactor (HTGR). 

2.2 Pressurized Water Reactor (PWR) 

The PWR-NPS consists of a nuclear reactor and two 
energy conversion loops (Figure 3). This study created a 
direct propulsion PWR-NPS model using Modelica, based 
on the "NS Mutsu" nuclear merchant ship (Peng 2009). 
The model, focused on a pressurized water reactor, 
describes fluid flow, heat transfer, phase changes, and 
power output. It was visually built (Figure 4) using 
adapted components from the ThermoPower (Casella and 
Leva 2024) and AESE libraries, including a reactor with a 
point kinetics model, a steam generator (SG) with drum 
and one-dimensional flow parts, condensers, turbines, 
pumps, and control units. Steady-state tests (Table 1) and 
dynamic analysis (Figures 5-7) verified the model’s 
accuracy (Zhang et al. 2024). These results demonstrate 
that the Modelica-based model is capable of simulating 
and validating both steady-state and dynamic operations 
of conventional PWRs in the nuclear field. 

 

 

Figure 2. Schematic of the advanced energy systems engineering (AESE) library (Zhang and Wang 2024). 
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Figure 3. Structure of PWR-NPS (Zhang et al. 2024). 

 

 
Figure 4. Simulation model of the PWR-NPS (Zhang et al. 
2024). 

 
Table 1. Steady-state simulation results. 

Parameter Reference  Result Error 
Reactor thermal power 
(MW) 

36 35.81 0.52% 

Temperature of SG 
primary side inlet (K) 

558.15 555.18 0.53% 

Temperature of SG 
primary side outlet (K) 

544.15 544.82 0.12% 

Pressure of SG 
secondary side (MPa) 

3.9 3.72 4.61% 

Feedwater 
temperature of SG 
secondary side (K)  

433.15 431.28 0.43% 

Steam temperature of 
SG secondary side (K) 

524.15 519.19 0.95% 

Steam output of SG 
(kg/s) 

17 17.31 1.82% 

Mechanical power 
output of steam 
turbine (MW) 

7.35 7.38 0.41% 

 

 
Figure 5. Transient simulation results of the nuclear power 
system (Zhang et al. 2024). 

 

 
Figure 6. Transient heat transfer process on the secondary side 
of the SG (Zhang et al. 2024). 

 

 
Figure 7. Transient simulation results of the NPS (Zhang et al. 
2024). 
 
2.3 High-Temperature Gas-Cooled Reactor 

(HTGR) 

The HTGR enables efficient coupling with the Brayton 
cycle via its high outlet temperature, while Brayton cycle 
research focuses on system configuration and gas property 
effects. The AESE library also includes a He-Xe property 
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library and supports closed-Brayton-cycle (CBC) systems 
(Figure 8a), offering new tools for simulating He-Xe CBC 
systems (Figure 8b). The presence of Xe in He causes 
deviations from ideal gas behavior, addressed by Tournier 
et al. (2006) using a binary noble gas calculation theory. 
Figure 9 displays the core physical properties (left) and 
their Modelica-based implementation in the AESE library 
(right). We validated He-Xe properties against literature 
(El-Genk et al. 2007), performed steady-state (Figures 10-
11) and transient analyses for the He-Xe CBC-NPS, and 
assessed system performance across design parameters 
(Figure 12), guiding future optimization and design 
(Zhang and Wang 2024). These results indicate that the 
Modelica-based model supports pioneering studies of 
advanced reactor concepts in the nuclear field. 

 
(a) Schematic diagram of He-Xe CBC system 

 
(b) Visual model of the He-Xe CBC system in AESE 

Figure 8. Modelica-based model of the He-Xe CBC system 
(Zhang and Wang 2024)  

1- Reactor; 2-Temperature control module;  
3-Temperature sensor; 

4-Turbine; 5-Recuperator; 6-Cooler; 
7-Cooling control module; 8-Compressor; 9-Generator. 
 

 
Figure 9. He-Xe property calculation process and property 
package in AESE (Zhang and Wang 2024). 
 

 
Figure 10. Verification of the specific heat capacity (Zhang 

and Wang 2024). 
 

 
Figure 11. Relative error of key system parameter calculations 
compared to El-Genk et al. (2007). 
 

 
Figure 12. Efficiency and specific work of the system (Zhang 
and Wang 2024). 
 

3 Further Applications in Different 
Scenarios 

After validation, NPS models hold significant potential for 
valuable applications in equipment design and operation. 
For example, system models can drive real hardware to 
enable rapid control loop validation in HILS; support 
optimization algorithms for MOO design in large-scale 
systems; and utilize simulation data to drive intelligent 
algorithms for system identification and rapid 
optimization. Models can be further expanded and applied 
across various scenarios and dimensions. 
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3.1 Hardware in the Loop Simulation (HILS) 

HILS links a physical object with a computer-based 
simulation model for testing, accurately capturing the 
controller's dynamic, static, and nonlinear characteristics, 
making it a highly realistic simulation technology. 

To study the variable operating condition responses of 
nuclear-powered engineering ships (NPES), we initially 
developed a desktop-level HILS model framework (Zhang 
et al. 2024). The HILS platform framework (Figure 13) 
integrates software, hardware, and a communication chain 
(Zhang et al. 2024), with the system model executed in 
OpenModelica and real-time signal transmission handled 
via an Arduino module. This configuration enables real-
time coupling between the virtual NPES system and 
physical controllers for realistic validation and testing 
scenarios. 

 
Figure 13. Framework of the HILS platform for an NPES 
(Zhang et al. 2024). 

 
Both the offline model and the HILS software-level 

model are shown in Figure 14. The offline model uses the 
"Transient Signal Module," while the HILS model 
employs the "HILS Signal Module," enabling hardware 
communication via an Arduino module (COM3 port, 
signal pins) for control signals and sensor data. Real-time 
user interaction is supported through keyboard inputs, 
processed by signal control logic. The offline model is 
primarily used for preliminary system validation, whereas 
the HILS model allows real-time interaction with physical 
hardware for controller testing and signal feedback. 

Figure 15 shows the HILS signal filtering process for 
the NPES, averaging the signal every second. The PID 
control was critical during the NPES's three-stage 
deceleration, as demonstrated by the velocity curve in 
Figure 16.  

These results confirm the feasibility and effectiveness 
of the Modelica-based HILS platform for simulating and 
analyzing the dynamic responses of NPES under variable 
operating conditions. The key advantage of Modelica lies 
in its ability to represent multi-domain system models and 
integrate them with real hardware components, enabling 
the construction of more comprehensive and organically 
coupled HILS frameworks. 

 

 

 
Figure 14. Software-level Models of the NPES in Offline and HILS Modes (Zhang et al. 2024). 
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Figure 15. Simple filter process of the collected hardware 
response signal (Zhang et al. 2024). 

 

 

Figure 16. Data recording of hardware response and 
comparison of propeller speed control in HILS full condition 
experiment (Zhang et al. 2024). 
 
3.2 Multi-Objective Optimization 

In the He-Xe CBC system, multiple performance targets 
cannot be simultaneously maximized under the same 
operating condition, which necessitates a multi-objective 
optimization (MOO) approach. The NSGA-II algorithm 
(Deb et al. 2002) is applied within the feasible domain to 
achieve balanced optimization across conflicting 
objectives. 

We implemented an NSGA-II optimization framework 
in Python (Jazzbin et al. 2020), coupled with the He-Xe 
CBC system model in OpenModelica via OMPython 
(Ganeson 2012) for MOO calculations (Zhang and Wang 
2024). Figure 17 illustrates the MOO methodology 
architecture. OMPython links the NSGA-II algorithm to 
OpenModelica, relaying parameter settings for simulation 
and returning results to the optimization process. The 
MOO objectives include system efficiency, specific work, 
and the Brayton cycle system’s equivalent volume with 
turbomachinery aerodynamic load distribution. 

Figure 18 illustrates the Pareto optimal solution set 
obtained by optimizing two selected objectives, and 
Figure 19 shows the Pareto optimal solution set for three-
objective optimization with different population sizes. 

These results demonstrate the Modelica-based model's 
capability to integrate additional algorithms to support 
complex MOO studies in energy systems. 

 

 
 Figure 17. Workflow of NSGA-II MOO using OpenModelica and OMPython (Zhang and Wang 2024). 
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(a) Efficiency–specific work 

 
(b) Specific work–aerodynamic load 

Figure 18. Pareto optimal solution set for two-objective 
(Zhang and Wang 2024). 

 
Figure 19. Pareto optimal solution set for three-objective optimization under different population sizes (Zhang and Wang 
2024). 

 
3.3 System Identification 

System identification is essentially system approximation, 
aiming to find a model with acceptable accuracy from the 
data. The resulting model is an approximate representation 
of the actual system (Ljung 2010). The surrogate model 
obtained after system identification can accelerate the 
computational process, helping to reduce the time spent on 
repetitive calculations or iterations of system models. This 
is particularly beneficial in scenarios such as multi-
objective optimization design and multi-dimensional 
model coupling calculations. 

In the identification of steady-state systems, we 
constructed a result dataset based on simulations with a 
variety of different design parameters. The resulting 
dataset was used to train a neural network model, 

establishing a proxy for the system-wide input-output 
mapping. The BPNN is structured with an input layer, 
hidden layers, and an output layer (Figure 20). Nodes in 
the input layer represent the system's design parameters. 
The output layer includes the system’s operational or 
performance parameters, such as temperatures and 
pressures at various device nodes, system efficiency, 
specific work, and aerodynamic loading. Each output 
parameter is mapped through a multi-node hidden layer, 
collectively forming a comprehensive model that 
represents the input-output relationships across the entire 
system. 

Figure 21 compares the simulation results and network 
model calculations for 10 sets of randomly generated 
design parameters. The maximum relative error was 
approximately 1%, which indicates that the precision of 
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the constructed network model is acceptable. Furthermore, 
the network model, which can surrogate the original 
model, can be efficiently reused to meet a wider range of 
computational needs or scenarios. 

We are also working on the identification of dynamic 
system models in AESE, using dynamic mode 
decomposition (DMD) methods to predict the system's 
evolution over the long term or during a specific phase 
(Figure 22), as well as using controlled dynamic mode 

decomposition (DMDc) methods for rapid prediction of 
multi-condition transient scenarios (Figure 23). DMD 
extracts coherent spatiotemporal structures from system 
data, while DMDc incorporates control inputs to capture 
input–output dynamics (Zhang et al. 2025). The rapid 
prediction of a system's transient response aids in 
efficiently and intelligently handling dynamic data 
changes, and is of great significance for scenarios such as 
fast optimization of control systems, lifespan prediction, 
and fault diagnosis of NPSs. 

 
Figure 20. Neural network structure for mapping system design parameters to key performance outputs. 

 

 
Figure 21. Verification results of the network model for key 
system parameter. 
 

  

Figure 22. Dynamic prediction of key system parameters based 
on DMD (Zhang et al. 2025). 

 
Figure 23. Dynamic prediction of key system parameters based 
on DMDc (Zhang et al. 2025). 
 

3.4 Rapid Multi-Objective Optimization 

As mentioned in the previous section, MOO can be more 
efficient due to the rapid computation enabled by the 
surrogate model formed after system identification. 

During the optimization process, even with parallel 
computing, the process remains complex and time-
consuming. This paper integrates the BPNN algorithm 
into machine learning to establish a data-driven multi-
objective (DDMO) optimization framework (Figure 24). 
Using this framework, the system model simulation is not 
directly embedded in the MOO algorithm. Instead, a large 
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dataset is first generated through simulations under 
various design parameters to collect data on different 
design levels of the system model. Using the BPNN 
algorithm, a network model is trained based on this dataset 
to accurately map the original system simulation model. 
Then, this network model is integrated into the MOO 
algorithm framework for the optimization design of the 
system. 

Figure 25 presents the results of MOO for the He-Xe 
CBC system for different numbers of individuals (I) and 
generations (G) for both model-driven multi-objective 
(MDMO) and DDMO approaches. The results show 
consistency between the two modes of optimization. The 
DDMO optimization had significantly shorter 
computation times than the traditional MODO approach 
(Table 3). The DDMO shows faster optimization while 
maintaining accuracy. Even considering the impact of 
computer performance fluctuations, the data clearly shows 
that the DDMO framework accelerated the optimization 
process by over 10000 times. 
 

 
Figure 24. DDMO optimization framework. 

 

 
Figure 25. Results of the DDMO. 

 
Table 2. Comparison of calculation times for two optimization 
methods. 

Project MDMO DDMO DDMO 
Dual 

objectives 
I: 50 

G: 100 
I: 50 

G: 100 
I: 1000 
G: 100 

η-w 75189.5 s 2.2 s 260.7 s 

η-AL 58801.6 s 1.9 s 241.8 s 
w-AL 56538.8 s 2.1 s 255.3 s 
Triple 

objectives 
I: 300 
G: 50 

I: 300 
G: 50 

I: 1000 
G: 100 

η-w-AL 164502.9 s 55.8 s 185.7 s 
 

4 Conclusions 
This paper provides a brief introduction to the AESE 
library developed for energy systems, particularly NPSs, 
based on the Modelica language on the OpenModelica 
platform. It summarizes the modeling and simulation 
validation of two classic types of models and specifically 
describes four scenarios for the further application of 
system simulation models. 

Based on Modelica for multi-domain visualization 
development targeting NPSs, and benefiting from the 
openness of the OpenModelica platform, system models 
can be more conveniently integrated with hardware or 
algorithms to complete tasks such as hardware-in-the-loop 
simulation, multi-objective optimization, and system 
identification, addressing task requirements in design 
verification, operational control, fault diagnosis, and other 
scenarios in practical engineering with greater accuracy, 
safety, and speed. Model development is not limited to 
merely establishing models; further application of models 
also holds practical significance. Making good use of 
models and their data can lead to higher productivity.  

In current applications, data-driven surrogate models 
often exhibit strong specificity, which is closely related to 
the datasets of their particular application targets. As a 
result, the advantages of surrogate models have not 
received sufficient attention. To enable more generalized 
rapid design and optimization of nuclear energy systems, 
our next step will focus on abstracting the essential nature 
of energy system models and integrating identification 
algorithms. This will allow intelligent participation and 
decision-making throughout the entire design and 
operation process within a moderately generalized NPS. 
In addition, to compensate for the limited accuracy of 
system simulation in modeling key components, the 
integration of Modelica-based system simulation with 
other three-dimensional computational tools also deserves 
further attention. 
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