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Abstract

System simulation is inherently an applied technology,
driven by specific application demands. The Modelica
language enables equation-based, system-level, multi-
domain, and visual modeling, facilitating researchers
conducting system simulation studies of nuclear power
systems. This paper introduces the custom-built AESE
library on the OpenModelica platform. Examples in
AESE are provided to illustrate the development and
simulation of system models for conventional pressurized
water reactors (PWRs) and high-temperature gas-cooled
reactors (HTGRs). The paper also describes tasks
completed under different application scenarios, including

hardware-in-the-loop simulation, multi-objective
optimization, system identification, and rapid
optimization, using model-driven and data-driven

approaches with the AESE library. The further application
of simulation models and data has significant practical and
engineering value. This paper serves as a valuable
reference for the intelligent application of energy system
models in the context of advanced engineering challenges.
Keywords: Modelica, Nuclear Power System, Model-
driven, Data-driven

1 Introduction

System-level simulation provides a framework for
understanding and analyzing the behavior of complex
systems, enabling enhanced design and optimization.
Multi-domain  system-level modeling has gained
significant popularity in seamlessly integrating physical
models from various domains using a unified modeling
language. This approach helps to overcome interface
issues between different domain-specific software and
enables the modeling of comprehensive and complex real-
world systems (Mattsson et al. 1998).

Modelica, as an example of a multi-domain system
modeling language, employs mathematical equations to
uniformly describe physical processes across different
domains. It offers visual modeling capabilities to represent
the topology of a system and enables the solution of
steady-state and transient simulations by solving algebraic

and differential equations. The Modelica language has
been widely used in the aerospace, shipbuilding,
automotive, energy, and other fields (Briese et al. 2020;
Soriano et al. 2016; Andreasson et al. 2013).

Nuclear power systems (NPSs) are inherently complex
and face increasing demands for shorter development
cycles, higher safety standards, and smarter operation.
While traditional offline Modelica-based simulations have
successfully supported reactor design and thermal-
hydraulic analysis (Casella and Leva 2005; Cammi et al.
2011), the full potential of system simulation extends
beyond this. Driven by the need for more intelligent
system management and accelerated development, system
simulation is evolving to support multiple practical
scenarios that leverage both models and data. This work
specifically focuses on the expanded application of
Modelica-based NPS simulation across diverse technical
dimensions:

a) Hardware-in-the-loop simulation (HILS), which
enables integrated control verification by coupling
physical hardware with digital models. For complex NPSs,
the pressure to shorten development cycles and meet
stringent safety requirements necessitates comprehensive
control system testing to avoid costly failures. These
demands have driven recent advancements in HILS
(Mihali¢ et al., 2022). Although Modelica is widely used
in offline NPS simulations, its application in system-level
HILS research for nuclear systems remains limited.

b) Multi-objective  optimization (MOO), which
facilitates system-level design exploration by resolving
trade-offs among competing objectives. In large-scale
systems like NPSs, single-objective optimization often
fails to represent the comprehensive requirements of
engineering applications (Zhang and Wang 2024).
Therefore, greater attention is given to multi-objective
optimization problems that incorporate complex
constraints. These objectives are often interdependent and
cannot be optimized simultaneously, requiring
coordinated strategies to identify Pareto-optimal solutions
under varying conditions.

¢) System identification, which leverages operational
data for rapid prediction and data-driven modeling,
supporting fast evaluation and intelligent optimization. A

DOI
10.3384/ecp218373

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

373



Further Application of Modelica-Based Nuclear Power System Simulation: Tasks in Different ...

significant amount of data generated during nuclear power
operation remains underutilized. However, emerging
data-driven multi-objective (DDMO) optimization
frameworks aim to bridge this gap. By coupling system
identification algorithms with MOO, these frameworks
enable efficient exploration of design spaces, enhance
productivity, and improve predictive capabilities for
future operational states.

These application scenarios underscore the diverse and
critical roles that system simulation can play in modern
NPS development. As depicted schematically in Figure 1,
they encompass physical integration, algorithmic
coordination, and data utilization, collectively forming a
comprehensive modeling—application framework. This
paper builds upon this framework by first introducing the
general modeling approach using the AESE library
(Section 2), then presenting these three representative
applications in detail (Section 3), and finally concluding
with a summary and outlook (Section 4).
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Figure 1. The further application directions of system
simulation discussed in this paper

2 System Simulation
2.1 Framework

A custom-built Advanced Energy Systems Engineering
(AESE) library (Zhang and Wang 2024) in OpenModelica
(Fritzson et al. 2020) was developed in this study to
describe various advanced energy systems. Figure 2
depicts the AESE architecture and the hierarchical
structure of its He-Xe CBC system sub-library. Designed
for modularity and openness, the library separates
component models from working fluid models, allowing
easy adaptation to future fluid models. Modelica
facilitates this by supporting a high-level component
library framework, defining standardized interfaces, and
using inheritance or substitution for detailed component
implementations. The following briefly outlines the
modeling and simulation of two typical nuclear energy
systems: the pressurized water reactor (PWR) and the
high-temperature gas-cooled reactor (HTGR).

2.2 Pressurized Water Reactor (PWR)

The PWR-NPS consists of a nuclear reactor and two
energy conversion loops (Figure 3). This study created a
direct propulsion PWR-NPS model using Modelica, based
on the "NS Mutsu" nuclear merchant ship (Peng 2009).
The model, focused on a pressurized water reactor,
describes fluid flow, heat transfer, phase changes, and
power output. It was visually built (Figure 4) using
adapted components from the ThermoPower (Casella and
Leva 2024) and AESE libraries, including a reactor with a
point kinetics model, a steam generator (SG) with drum
and one-dimensional flow parts, condensers, turbines,
pumps, and control units. Steady-state tests (Table 1) and
dynamic analysis (Figures 5-7) verified the model’s
accuracy (Zhang et al. 2024). These results demonstrate
that the Modelica-based model is capable of simulating
and validating both steady-state and dynamic operations
of conventional PWRs in the nuclear field.
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Figure 2. Schematic of the advanced energy systems engineering (AESE) library (Zhang and Wang 2024).
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Figure 3. Structure of PWR-NPS (Zhang et al. 2024).
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Figure S. Transient simulation results of the nuclear power
system (Zhang et al. 2024).
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2.3 High-Temperature Gas-Cooled Reactor
(HTGR)
The HTGR enables efficient coupling with the Brayton
cycle via its high outlet temperature, while Brayton cycle
research focuses on system configuration and gas property
effects. The AESE library also includes a He-Xe property
DOI Proceedings of the 16" International Modelica&FMI Conference 375
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library and supports closed-Brayton-cycle (CBC) systems
(Figure 8a), offering new tools for simulating He-Xe CBC
systems (Figure 8b). The presence of Xe in He causes
deviations from ideal gas behavior, addressed by Tournier
et al. (2006) using a binary noble gas calculation theory.
Figure 9 displays the core physical properties (left) and
their Modelica-based implementation in the AESE library
(right). We validated He-Xe properties against literature
(El-Genk et al. 2007), performed steady-state (Figures 10-
11) and transient analyses for the He-Xe CBC-NPS, and
assessed system performance across design parameters
(Figure 12), guiding future optimization and design
(Zhang and Wang 2024). These results indicate that the
Modelica-based model supports pioneering studies of
advanced reactor concepts in the nuclear field.
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(a) Schematic diagram of He-Xe CBC system
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(b) Visual model of the He-Xe CBC system in AESE
Figure 8. Modelica-based model of the He-Xe CBC system
(Zhang and Wang 2024)
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7-Cooling control module; 8-Compressor; 9-Generator.
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and Wang 2024).

Figure 11. Relative error of key system parameter calculations
compared to EI-Genk et al. (2007).
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Figure 12. Efficiency and specific work of the system (Zhang
and Wang 2024).
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3 Further Applications in Different
Scenarios

After validation, NPS models hold significant potential for
valuable applications in equipment design and operation.
For example, system models can drive real hardware to
enable rapid control loop validation in HILS; support
optimization algorithms for MOO design in large-scale
systems; and utilize simulation data to drive intelligent
algorithms for system identification and rapid
optimization. Models can be further expanded and applied
across various scenarios and dimensions.
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3.1 Hardware in the Loop Simulation (HILS)

HILS links a physical object with a computer-based
simulation model for testing, accurately capturing the
controller's dynamic, static, and nonlinear characteristics,
making it a highly realistic simulation technology.

To study the variable operating condition responses of
nuclear-powered engineering ships (NPES), we initially
developed a desktop-level HILS model framework (Zhang
et al. 2024). The HILS platform framework (Figure 13)
integrates software, hardware, and a communication chain
(Zhang et al. 2024), with the system model executed in
OpenModelica and real-time signal transmission handled
via an Arduino module. This configuration enables real-
time coupling between the virtual NPES system and
physical controllers for realistic validation and testing
scenarios.

Control

Nuclear Power System

Electrical Power System
Motor = Sensor

Mechanical System

( Software Part 5

Figure 13. Framework of the HILS platform for an NPES
(Zhang et al. 2024).

Both the offline model and the HILS software-level
model are shown in Figure 14. The offline model uses the
"Transient Signal Module," while the HILS model
employs the "HILS Signal Module," enabling hardware
communication via an Arduino module (COM3 port,
signal pins) for control signals and sensor data. Real-time
user interaction is supported through keyboard inputs,
processed by signal control logic. The offline model is
primarily used for preliminary system validation, whereas
the HILS model allows real-time interaction with physical
hardware for controller testing and signal feedback.

Figure 15 shows the HILS signal filtering process for
the NPES, averaging the signal every second. The PID
control was critical during the NPES's three-stage
deceleration, as demonstrated by the velocity curve in
Figure 16.

These results confirm the feasibility and effectiveness
of the Modelica-based HILS platform for simulating and
analyzing the dynamic responses of NPES under variable
operating conditions. The key advantage of Modelica lies
in its ability to represent multi-domain system models and
integrate them with real hardware components, enabling
the construction of more comprehensive and organically
coupled HILS frameworks.
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Figure 15. Simple filter process of the collected hardware

response signal (Zhang et al. 2024).

350

300 —— Speed Target

—— Speed Obtained by Offline
—— Speed Obtained by HILS

N
a
o

Figure 16. Data recording of hardware response and
comparison of propeller speed control in HILS full condition
experiment (Zhang et al. 2024).

3.2 Multi-Objective Optimization

In the He-Xe CBC system, multiple performance targets
cannot be simultaneously maximized under the same
operating condition, which necessitates a multi-objective
optimization (MOQO) approach. The NSGA-II algorithm
(Deb et al. 2002) is applied within the feasible domain to
achieve balanced optimization across conflicting
objectives.

We implemented an NSGA-II optimization framework
in Python (Jazzbin et al. 2020), coupled with the He-Xe
CBC system model in OpenModelica via OMPython
(Ganeson 2012) for MOO calculations (Zhang and Wang
2024). Figure 17 illustrates the MOO methodology
architecture. OMPython links the NSGA-II algorithm to
OpenModelica, relaying parameter settings for simulation
and returning results to the optimization process. The
MOO objectives include system efficiency, specific work,
and the Brayton cycle system’s equivalent volume with

5200 turbomachinery aerodynamic load distribution.
3 Figure 18 illustrates the Pareto optimal solution set
&% obtained by optimizing two selected objectives, and
Propeller Speed . . .
100 Figure 19 shows the Pareto optimal solution set for three-
objective optimization with different population sizes.
50 Cutter Speed These results demonstrate the Modelica-based model's
r' capability to integrate additional algorithms to support
o 00 w0 ' 810 P complex MOO studies in energy systems.
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Figure 17. Workflow of NSGA-II MOO using OpenModelica and OMPython (Zhang and Wang 2024).
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Figure 19. Pareto optimal solution set for three-objective optimization under different population sizes (Zhang and Wang

2024).

3.3 System Identification

System identification is essentially system approximation,
aiming to find a model with acceptable accuracy from the
data. The resulting model is an approximate representation
of the actual system (Ljung 2010). The surrogate model
obtained after system identification can accelerate the
computational process, helping to reduce the time spent on
repetitive calculations or iterations of system models. This
is particularly beneficial in scenarios such as multi-
objective optimization design and multi-dimensional
model coupling calculations.

In the identification of steady-state systems, we
constructed a result dataset based on simulations with a
variety of different design parameters. The resulting
dataset was used to train a neural network model,

establishing a proxy for the system-wide input-output
mapping. The BPNN is structured with an input layer,
hidden layers, and an output layer (Figure 20). Nodes in
the input layer represent the system's design parameters.
The output layer includes the system’s operational or
performance parameters, such as temperatures and
pressures at various device nodes, system efficiency,
specific work, and aerodynamic loading. Each output
parameter is mapped through a multi-node hidden layer,
collectively forming a comprehensive model that
represents the input-output relationships across the entire
system.

Figure 21 compares the simulation results and network
model calculations for 10 sets of randomly generated
design parameters. The maximum relative error was
approximately 1%, which indicates that the precision of
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the constructed network model is acceptable. Furthermore,

the network model, which can surrogate the original
model, can be efficiently reused to meet a wider range of
computational needs or scenarios.

We are also working on the identification of dynamic
system models in AESE, using dynamic mode
decomposition (DMD) methods to predict the system's
evolution over the long term or during a specific phase
(Figure 22), as well as using controlled dynamic mode

decomposition (DMDc) methods for rapid prediction of
multi-condition transient scenarios (Figure 23). DMD
extracts coherent spatiotemporal structures from system
data, while DMDc incorporates control inputs to capture
input—output dynamics (Zhang et al. 2025). The rapid
prediction of a system's transient response aids in
efficiently and intelligently handling dynamic data
changes, and is of great significance for scenarios such as
fast optimization of control systems, lifespan prediction,
and fault diagnosis of NPSs.
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3.4 Rapid Multi-Objective Optimization

As mentioned in the previous section, MOO can be more
efficient due to the rapid computation enabled by the
surrogate model formed after system identification.
During the optimization process, even with parallel
computing, the process remains complex and time-
consuming. This paper integrates the BPNN algorithm
into machine learning to establish a data-driven multi-
objective (DDMO) optimization framework (Figure 24).
Using this framework, the system model simulation is not
directly embedded in the MOO algorithm. Instead, a large
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dataset is first generated through simulations under
various design parameters to collect data on different
design levels of the system model. Using the BPNN
algorithm, a network model is trained based on this dataset
to accurately map the original system simulation model.
Then, this network model is integrated into the MOO
algorithm framework for the optimization design of the
system.

Figure 25 presents the results of MOO for the He-Xe
CBC system for different numbers of individuals (I) and
generations (G) for both model-driven multi-objective
(MDMO) and DDMO approaches. The results show
consistency between the two modes of optimization. The
DDMO  optimization had significantly  shorter
computation times than the traditional MODO approach
(Table 3). The DDMO shows faster optimization while
maintaining accuracy. Even considering the impact of
computer performance fluctuations, the data clearly shows
that the DDMO framework accelerated the optimization
process by over 10000 times.
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Figure 24. DDMO optimization framework.
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Figure 25. Results of the DDMO.

Table 2. Comparison of calculation times for two optimization
methods.

n-AL 58801.6 s 19s 241.8 s
w-AL 56538.8 s 2.1s 2553s
Triple 1: 300 1: 300 1: 1000
objectives G: 50 G: 50 G: 100
n-w-AL 164502.9 s 558s 185.7 s

4 Conclusions

This paper provides a brief introduction to the AESE
library developed for energy systems, particularly NPSs,
based on the Modelica language on the OpenModelica
platform. It summarizes the modeling and simulation
validation of two classic types of models and specifically
describes four scenarios for the further application of
system simulation models.

Based on Modelica for multi-domain visualization
development targeting NPSs, and benefiting from the
openness of the OpenModelica platform, system models
can be more conveniently integrated with hardware or
algorithms to complete tasks such as hardware-in-the-loop
simulation, multi-objective optimization, and system
identification, addressing task requirements in design
verification, operational control, fault diagnosis, and other
scenarios in practical engineering with greater accuracy,
safety, and speed. Model development is not limited to
merely establishing models; further application of models
also holds practical significance. Making good use of
models and their data can lead to higher productivity.

In current applications, data-driven surrogate models
often exhibit strong specificity, which is closely related to
the datasets of their particular application targets. As a
result, the advantages of surrogate models have not
received sufficient attention. To enable more generalized
rapid design and optimization of nuclear energy systems,
our next step will focus on abstracting the essential nature
of energy system models and integrating identification
algorithms. This will allow intelligent participation and
decision-making throughout the entire design and
operation process within a moderately generalized NPS.
In addition, to compensate for the limited accuracy of
system simulation in modeling key components, the
integration of Modelica-based system simulation with
other three-dimensional computational tools also deserves
further attention.
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