Towards Integration of PeN-ODEs in a Modelica-based workflow

Andreas Hofmann

1

Lars Mikelsons!

IChair of Mechatronics, University of Augsburg, Germany,
{andreas.hofmann, lars.mikelsons}@uni-augsburg.de

Abstract

Hybrid modeling — the combination of first-principle mod-
els and machine learning — offers the potential to in-
crease model accuracy while reducing modeling effort.
Although approaches for creating hybrid models from sys-
tem simulation models exist, the unique characteristics of
Modelica-based, object-oriented models — such as modu-
larity and reusability — can, as of today, not be utilized.
In this contribution, we explore approaches for bridging
this gap to enable the use of hybrid models with Model-
ica. Key challenges of architecture definition, training en-
vironment and reintegration of the trained machine learn-
ing parts into a Modelica model are addressed. To illus-
trate our approach, we present a case study involving a
SCARA robot. This example demonstrates a partially in-
tegrated workflow for hybrid modeling, intended to serve
as a foundation and motivation for further research.
Keywords: hybrid modeling, PeN-ODE, SciML, Neu-
ralFMU, Julia, machine learning

1 Introduction

1.1 Motivation

In recent years, data-driven models, i.e. machine learning
(ML) models, and hybrid models, which combine first-
principle modeling (FPM) and data-driven approaches,
have gained wide attention in the field of system simula-
tion. Data-driven models promise to eliminate efforts for
traditional modeling tasks, while additionally increasing
the fidelity of models based on real-world data. Alongside
those benefits, however, data-driven models are limited by
their high demand for data to approximate the underly-
ing physics, their black-box nature, and limited extrapola-
tion capabilities, thus restricting their application. While
early architectures recurrently mapped states from a point
in time to the next one, the more sophisticated approach
of the Neural ODE paper (Chen et al. 2018), which gained
a lot attention, confined data-driven models to the system
dynamics and combined them with well-known numerical
solvers.

Hybrid models, in contrast to their purely data-driven
counterparts, try to incorporate ML-approaches into mod-
els that are built upon laws of physics and well-established
empirical approaches. Since those models aim to only
learn unmodelled physical effects, their data requirements
are typically way more economic. Also, extrapolation ca-

pabilities and explainability of hybrid models are usually
better compared to solely data-driven models due to the
underlying FPM nature.

While the term Neural ODE is widely established in the
field of data-driven approaches, various names and archi-
tectures for hybrid models abound, such as NeuralFMU
(Thummerer, Kircher, and Mikelsons 2021), Universal
Differential Equation (Rackauckas, Ma, et al. 2021), et
cetera. Hence, since there is no common wording for
hybrid models, their application, especially in industrial
scope, is shortened. Therefore, a concise definition for
hybrid models (for system simulation) has been developed
in the the ITEA OpenSCALING project!, based on earlier
definitions by Thummerer and Mikelsons (2023), Thum-
merer, Kolesnikov, et al. (2023) and Kamp, Ultsch, and
Brembeck (2023). The definition will be presented in the
next section.

Modelica’s object-oriented nature makes it especially
well-suited for hybrid modeling, as it enables efficient
reuse of models. On one hand, integrating machine learn-
ing models into component equations introduces a high
degree of flexibility. This allows for modification of arbi-
trary mathematical relationships, like algebraic equations
and state derivative expressions. Furthermore, a trained
hybrid component can be reused across different modeling
scenarios. For example, it is often advantageous to model
an entire test rig, including both the device under test and
the dynamic behavior of the testbed components. Using
recorded data, a hybrid model of the device under test can
be trained, subsequently extracted from the testbed model,
and then embedded into a high-fidelity model of another
system. This reusability helps justify the considerable ef-
fort involved in the training phase of hybrid modeling. On
the other hand, object-oriented models retain information
about algebraic relationships, which facilitates the direct
integration of measurement data. As long as a relation-
ship between the measured and augmented quantities ex-
ists, the model can be trained. This approach is particu-
larly valuable when working with field data from systems
in operation, where typically only a limited set of dedi-
cated signals is available.

However, developing hybrid models from Modelica-
based systems and reintegrating them into a Modelica-
centered workflow presents several challenges. Key ob-
stacles include the training process — typically performed

Iproject page: https://openscaling.org/

DOI
10.3384/ecp218435

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

435

https://openscaling.org/

Towards Integration of PeN-ODEs in a Modelica-based workflow

within machine learning frameworks developed in Python
or Julia — and the integration of Neural Networks, which
are among the most commonly used machine learning
models, into the Modelica environment.

1.2 Outline

In the following section, a short overview of the PeN-ODE
architecture and a further partitioning based on training
strategies is provided. Following that, main challenges
for building and training PeN-ODEs and utilizing those
in a Modelica-based workflow are depicted. In the subse-
quent chapter, a workflow for PeN-ODEs is demonstrated,
utilizing an object-oriented model of a Scara-Robot, how-
ever starting from the Julia programming language, avoid-
ing the transfer of the model from a Modelica-based tool.
Finally, the paper closes with an outlook on further devel-
opments and challenges.

2 Definition of PeN-ODE

As mentioned before, several methods for combining first
principle models and machine learning have been avail-
able for many years. To make the concept of hybrid mod-
els accessible for wider industrial application, a common
definition for hybrid models, or at least for the distinct
class of system simulation, has been developed within
the ITEA4 OpenSCALING project under the name PeN-
ODE. Although this concise definition is limited to a
model architecture, a further distinction, based on training
strategies, can be made, which facilitates overall commu-
nication on required data, et cetera.

2.1 PeN-ODE Architecture

A PeN-ODE, short for Physics-enhanced Neural Ordinary
Differential Equation, is an ODE? model that combines
FPM and ML models, typically Neural Networks. As
illustrated in Figure 1, no particular restrictions are im-
posed on the interaction between the FPM and ML subsys-
tems, allowing maximum flexibility in tailoring the hybrid
model to individual use cases.

Figure 1. Architecture of a PeN-ODE with physical subsystem
(frpm) and machine learning part (fj;z) within the solution pro-
cess.

x(t) - system states

u(t) - inputs

¥(t) - outputs

h - solver step size

While this definition might seem arbitrary at first, it

2including DAEs and discretized PDEs

clearly differentiates the PeN-ODE from NeuralODEs and
other data-driven approaches, where the complete dy-
namic of the system is represented using Neural Networks.
Nonetheless, other common approaches for hybrid mod-
els are fully or partially incorporated: NeuralFMUs, the
combination of Functional Mockup-Units and Neural Net-
works are a subset of the PeN-ODE, where the FPM is
represented using the FMI standard. Universal Differ-
ential Equations (UDEs) describe a rich framework for
ODEs, PDEs, SDEs, etc. and allow to build and train
hybrid models but also models without any FPM (there-
fore similar to NeuralODEs). Also, training strategies
such as Physics Informed Neural Networks are featured
in the UDE framework. In this context, PeN-ODEs cover
a dedicated subset of UDEs, focusing on the relevant parts
for system simulation. There are far more approaches
that fit into the PeN-ODE definition, though not necessar-
ily from the field of technical system, such as Integrated
Neural Network(Su et al. 1992) or methods without ded-
icated names (Quaghebeur, Nopens, and De Baets 2021),
(Oliveira 2004). Sorourifar et al. (2023) also refer to their
architecture as "Physics-Enhance Neural Ordinary Differ-
ential Equation”, combining first-principle modelling and
Neural Networks in chemical reaction systems.

Please note that in the PeN-ODE definition no train-
ing strategies, i.e. the training of the Neural Network, are
explicitly defined. As a result, a pre-trained ML model
augmenting an FPM is a valid PeN-ODE model.

2.2 Partitioning of PeN-ODE by training
strategies

Although the PeN-ODE definition imposes no restrictions
on the training process itself, different training strategies
come with varying requirements for training data. Accord-
ingly, alongside the definition of the PeN-ODE architec-
ture, two distinct training strategies are delinated. It is
important to note that, following successful training and
integration, the specific training strategy used for the PeN-
ODE becomes indistinguishable in the final model.

Closed-loop trained PeN-ODE

The first training strategy involves parameter optimization
of the ML part by computing gradients through the solu-
tion of the ODE. Because this requires calculating gradi-
ents across the transient behavior of the system, aspects
such as time and state events, as well as the numerical so-
lution process itself, must be taken into account. For fur-
ther details we refer to Thummerer, Olsson, et al. (2025),
though focusing on NeuralFMUs.

In addition to the commonly used method of automatic
differentiation, mathematical techniques, such as the Con-
tinuous Adjoint method or the Forward Sensitivity analy-
sis for ODEs, have regained attention in recent years. The
first approach performs the gradient calculation by tracing
every operation on the discretized system, often referred to
as "discretize-then-optimize". In contrast, the latter con-
structs an additional set of differential equations which are

436

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218435

Session: Modelica & Al in Track for Control & Al

solved alongside the original system. Since gradients are
derived from the time-discrete solution values, it is often
referred to as "optimize-then-discretize". A comprehen-
sive review covering the details of gradient computation
for ODEs can be found in (Sapienza et al. 2024).

The cost function of the optimization problem can ag-
gregate any related quantity of the ODE system associated
to the equations under consideration, i.e. alongside the
states also algebraic quantities. Hence, considering the
substantial effort for gradient computation, the constraints
on available measurements from the (real-world) data are
typically low. In Figure 2 the training strategy for closed-
loop training is depicted.

ODE solution

ungz

R
data Ref

Figure 2. Closed-loop training procedure for loss calculation
x(1) - system states

u(t) - inputs

¥(t) - outputs

zSim - relevant solution values from simulation

zRef - reference solution values from data

Xo - initial states

h - solver step size

Open-loop trained PeN-ODE

In contrast to the closed-loop training strategy, the open-
loop procedure does not consider a transient cost function
accumulating over the ODE solution. Instead, it uses state
derivative quantities and algebraic variables to train the
ML part based on the right-hand side (RHS) of the ODE,
cf. Figure 3.

RHS evaluation

x

XnRe
data nRef

Figure 3. Open-loop training procedure for loss calculation,
based on evaluation of the RHS of the ODE system

X, - system states at time n

u, - inputs at time n

Xp - state derivatives at time n

XpRef - reference data at time n

As a result, the computational effort for gradient cal-
culation is reduced and is typically handled via automatic
differentiation. However, this approach places higher de-
mands on the training data, as all relevant quantities must

be explicitly available. Moreover, deviations during train-
ing on derivative level typically accumulate to increasing
errors due to integration in the simulation of the trained
PeN-ODE.

Although Figure 3 illustrates a joint evaluation, it is im-
portant to note that the machine learning component can
also be trained independently. This corresponds to con-
ventional data-driven approaches, as depicted in Figure 4.

ML model evaluation

byR
data nRef

Figure 4. Open-loop training procedure for loss calculation,
based on solely evaluating the ML model.

a, - ML input at time n

b, - ML output at time n

byRef - reference data at time n

3 Challenges for derivation and train-
ing of Modelica-based PeN-ODEs

As briefly mentioned in the introduction, utilizing PeN-
ODEs in Modelica poses various challenges, which will
be examined in more detail below. The primary challenges
can be summarized as follows:

* Training of the hybrid model: Bridging the gap be-
tween Modelica-based modeling and common ma-
chine learning training frameworks, such as Julia

* PeN-ODE architectures: Limiting access to avail-
able signals and defining appropriate PeN-ODE ar-
chitectures within the modular, object-oriented struc-
ture of Modelica.

* Representation of hybrid architecture in Model-
ica: Methods for incorporating trained ML compo-
nents into Modelica models in a way that preserves
their functionality and compatibility.

3.1 Training of the hybrid model

The first challenge in establishing an integrated workflow
for PeN-ODEs in Modelica is bridging the gap to the ML
training environment. Python and its extensive ecosystem
of ML frameworks and libraries are indisputably the most
common environment for machine learning tasks. Nev-
ertheless, noting that many other suitable programming
languages exist, we want to focus in the following pas-
sage on the Julia programming language. Julia offers a
wide ecosystem for scientific machine learning (SciML)
and does provide some initial approaches for bridging ML
training environment and Modelica-based tools.

DOI
10.3384/ecp218435

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

437

Towards Integration of PeN-ODEs in a Modelica-based workflow

Tinnerholm et al. (2021) present a reimplementation of
the OpenModelica compiler in Julia, called OM.jl, that
can generate models for the Julia packages DifferentialE-
quations.jl (Rackauckas and Nie 2017), which provides
methods for efficiently solving a wide range of differen-
tial equation problems, such as ODEs, DAEs, or SDEs.
Additionally OM.jl can generate models for the Julia-
specific environment for object-oriented modeling, Mod-
elingToolkit.jl (Ma et al. 2021). In an additional step,
similar to a Modelica compiler, ModelingToolkit sym-
bolically processes the system to an executable set of
differential-algebraic equations. Unfortunately, the corre-
sponding Github-repositories (OM.jl, OMBackend.jl, ...)
have not been maintained for years.

Similar to ModelingToolkit.jl, Modia (Elmgqyvist et al.
2021) offers capabilities of object-oriented modelling and
simulation in Julia. Being strongly embedded into the
Modelica community, the developers see Modia as an en-
vironment to test new algorithms and extensions towards
further adaptions of Modelica. A translator has been de-
veloped by Otter, Elmqvist, et al. (2019), allowing to
source-to-source translate a (subset) of the Modelica lan-
guage to Modia. Unfortunately, the repository presented
in their paper is no longer available. Bruder and Mikel-
sons (2021) utilized Modia to build an equation-based, hy-
brid non-linear single track model. However, like OM.jl,
Modia is still based on an older version of Julia, released
in Nov. 2021.

The Base Modelica initiative (Kurzbach et al. 2023)
provides another approach for translating arbitrary, though
only flattened, Modelica models to Julia. A dedi-
cated package in the Julia SciML ecosystem exists,
named BaseModelica.jl’ , promising to parse and con-
vert the Base Modelica model to the previously men-
tioned object-oriented modeling environment Modeling-
Toolkit.jl. Please note that the initial Modelica change
proposal for Base Modelica is currently in development.
Once available, the pipeline could be an auspicious way of
translating Modelica models to suitable simulation mod-
els for hybrid training in Julia. However, as of today,
it remains unclear whether ModelingToolkit.jl is capable
of supporting all relevant features of Modelica. Further-
more, in our experience, many Modelica models require
specific numerical algorithms, which could cause further
challenges.

Looking at the eFMI standard (Lenord et al. 2021), a
representation reminiscent to the Algorithm Code, how-
ever without implemented solver arithmetic, could pose
as a valid mutual baseline, for code generation to various
languages and tools. From a Modelica compiler perspec-
tive, this would represent the hybrid* DAE system after
the symbolic transformation. In contrast to Base Model-
ica, this representation would not require any additional
transformation process. However, numerical challenges,

3https://github.com/SciML/BaseModelica. jl
“in this very case of this paper hybrid refers to continuous-discrete
rather than to combination of FPM and ML

as mentioned before, would still not be resolved by this
intermediate representation.

Utilizing Julias’ SciML ecosystem, while using the
Functional Mockup Interface instead of Modelica directly,
is possible through the packages FMIFlux.jl° and FMLjl®,
which build the foundation of NeuralFMUs. FMILjl al-
lows to load and simulate FMUs in Julia, while FMI-
Flux.jl manages the gradient calculation through the FMU
model. However, since all object-oriented information
from a Modelica model is removed during FMU genera-
tion, it is not feasible to unroll the ML model of the trained
NeuralFMU back to the object-oriented components.

Although we focused this section on model transfer
from Modelica to Julia, the Enzyme project offers a solu-
tion to calculate the relevant gradients directly on LLVM
level, see (Moses and Churavy 2020). LLVM supports
a wide range of languages, however, changes to existing
Modelica-based tools, that we cannot evaluate, might be
needed. Furthermore, dedicated training frameworks, pos-
sibilities to define ML models, etc., within the Modelica
tools would still be missing.

3.2 PeN-ODE architectures

Many hybrid model architectures, such as the NeuralFMU
with its FMU foundation, grant access to the complete set
of states, state derivatives, and algebraic quantities of the
FPM. Consequently, hybrid models using arbitrary FPM
signals in the ML model can be derived. Therefore, Neu-
ralFMUs can be reused within other simulation models
as a single component. However, separating the ML part
from the physical model and re-introducing it in the orig-
inal model and, therefore, also reusing partial models is
not feasible. From an object-oriented modeling perspec-
tive, the use of arbitrary model quantities contradicts the
paradigm of knowledge encapsulation, see (Cellier 1996).
Consequently, the ML part of a hybrid component in an
object-oriented model can only be supplied with internal
quantities or existing interfaces of the model or additional
signals must explicitly be exposed through model adap-
tions. Since encapsulation of knowledge enables the com-
position of hierarchical models, relying solely on available
quantities renders reusing trained individual components
possible.

As already stated in the PeN-ODE definition, arbitrary
architectures for interaction between the FPM and ML
part are applicable. Furthermore, ML models are adapted
during their training phase and often optimized via hyper-
parameter optimization. Therefore, it is useful to only de-
fine the minimum necessary architectural parts, typically
input and output features, within Modelica and shift all
other architecture considerations to the ML side, where
their optimization can take place. However, a Model-
ica compiler needs to know the relations of quantities to
perform the symbolic transformation. The Modelica lan-

Shttps://github.com/ThummeTo/FMIFlux. j1
6https ://github.com/ThummeTo/FMI. jl

438

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218435

https://github.com/SciML/BaseModelica.jl
https://github.com/ThummeTo/FMIFlux.jl
https://github.com/ThummeTo/FMI.jl

Session: Modelica & Al in Track for Control & Al

guage specification (Modelica Association 2023) provides
the constructs of function inlining, which enables a place-
holder functionality sufficient for the previously described
considerations. Still, different types of augmenting the
FPM equations exist.

The easiest way for setting up a hybrid architecture by
place holder in a Modelica models is parallel execution
on equation level, see Listing 1. Missing information in
the equation is compensated by adding the function fun_1,
which will later be replaced by some ML architecture.
Only relevant inputs and outputs are provided in the Mod-
elica model. Through the annotation "Inline=false" the
function is not symbolically processed in the compiler and
can be replaced during code generation.

Listing 1. parallel architecture on equation level

model SimpleParallelArchitecture
function fun_1 "dummy function"
input Real b, c, d;
output Real dx;

algorithm
dx = bxc+d; // some operations that
// will be replaced

annotation(Inline=false);
end fun_1;

Real x "state variable";
Real a,b,c,d;

equation

// adding missing parts of the equation
// by a Neural Network
der(x) = a * x + fun_1(b,c,d);

end SimpleParallelArchitecture;

The parallel architecture offers a coherent augmentation
of a physical equation. However, to enable arbitrary archi-
tectures on ML side, further adaptions to existing model
equations are required. This is done by splitting the rela-
tion of interest into two parts, as shown in Listing 2.

Listing 2. universal architecture on equation level

model UniversalArchitecture

Real a "some algebraic goi";
Real a_fpm "the known relation of the
qoi";
Real b,c,d,x; // some additional
variables
equation
// a = bxx; // original equation

a_fpm = bx*x;
a = fun_2(a_fpm, c,d);
a = sin(time);

end UniversalArchitecture;

A detailed discussion on combination of FPM and ML,

though in the context of NeuralFMUs, can be found in
(Thummerer and Mikelsons 2025).

The relation between the algebraic variable a and the
quantities b and x in Listing 2 shall be enhanced by some
data-driven approach. Therefore, the first principle knowl-
edge is rearranged into a new variable a_fpm. The original
equation is replaced by the place holder function fun_2,
that utilizes the existing knowledge of a_fpm and fur-
ther employs the information from variables ¢ and d. On
ML side arbitrary combinations for interaction of the vari-
ables are possible, including the parallel architecture de-
scribed before. Since the augmentation takes place on
equation level rather than variable level, non-linear sys-
tems can arise from the function inline annotation during
the symbolic transformation of the model. This is depicted
in Listing 2 by explicitly providing a value to variable
a, since time is the independent variable of a Modelica
model. Solving the nonlinear system introduces additional
evaluations during simulation. This is necessary because
the placeholders used at this stage do not yet contain the
actual relationships, which are only incorporated at a later
point in the workflow. Obviously, on the machine learn-
ing side, the training framework must be capable of solv-
ing the nonlinear system and computing the correspond-
ing gradients. To our current understanding, there are no
further limitations imposed by Modelica itself, since the
language specification has a rich extensiveness, like pro-
viding derivative annotations for the place holder function,
et cetera.

If the architecture of the ML model is known before
training, an implementation in Modelica could be possi-
ble. Some approaches will be discussed in the next sec-
tion. However, since all equations from the ML model
are processed by a Modelica compiler, additional effort is
added to the symbolic transformation. Furthermore, the
benefit of the symbolic representation of the ML model
within Modelica remains unclear.

With experience, at least with ModelingToolkit.jl, we
would recommend to only define the minimum required
interfaces in Modelica and process all other parts in the
ML environment. Having trainable parameters available
as arrays, contrary to current Modelica compiler imple-
mentations, provides a convenient workflow in combina-
tion with hyperparameter optimization.

3.3 Representation of hybrid architecture in
Modelica

As stated before, the final ML model is typically de-
rived throughout the training in a hyperparameter opti-
mization. Once the final structure has been established,
the ML model and parameters must be reintegrated to the
Modelica environment. Since Neural Network are today’s
dominating approach, we will limit approaches to this ML
model type.

The most naive approach is implementing the corre-
sponding tensor operations directly as a Modelica model,
since the Modelica language provides features for mul-
tidimensional arrays. However, this is typically limited
to simple architectures such as multilayer perceptions

DOI
10.3384/ecp218435

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

439

Towards Integration of PeN-ODEs in a Modelica-based workflow

(MLPs). A more sophisticated approach, while keeping
Modelica language features, is provided in the NeuralNet-
work Library” developed at Hochschule Bielefeld , that al-
lows to automatically generate a model from Tensorflow.
However, since array equations are, as of today, scalarized
throughout the model transformation in a Modelica com-
piler, large Neural Networks might cause high compilation
times or even overstrain available computer memory. Cer-
tainly, algorithms for keeping array structures throughout
the symbolic pipeline of a Modelica compiler have been
developed and will mitigate those issues, e.g. (Abdelhak,
Casella, and Bachmann 2023), (Otter and Elmqvist 2017),
(Fioravanti et al. 2023). Nonetheless, as stated before,
the benefit of symbolic neural network representation in
a Modelica model remains unclear.

Alternatively, standardized formats for exchanging
deep learning models among tools, such as the Open Neu-
ral Network Exchange (ONNX) or the Neural Network
Exchange Format (NNEF), could be utilized, for exam-
ple the SmartInt Library® , which provides ONNX support
using Modelica’s "external C" feature. Therefore, Neural
Networks with high number of parameters are be applica-
ble, without any impact on a Modelica compiler.

3.4 Summary on Findings

There exist a wide range of different solution approaches
which, in combination, help to prepare, create, and im-
plement PeN-ODEs in Modelica. Modelica language fea-
tures can be used to define interfaces in a convenient way
and libraries and tools are available to embed ML mod-
els in Modelica. Nonetheless, the transfer of the (pro-
cessed) Modelica model to a training environment such
as Julia, poses an unsolved challenge. Once Base Mod-
elica, is available, its application with ModelingToolkit.jl
should be further investigated. Having a new implemen-
tation, positioned between Base Modelica (flattened) and
the Algorithm Code from eFMI (including solver arith-
metic) could pose a useful new representation, also for
other applications. Further experiments with Modia or
OM.jl might enable a first integrated workflow bridging
the gap between Modelica and Julia, at the cost of limita-
tions from the machine learning environment, due to their
dependency on an old version of the Julia language.

We are confident, once PeN-ODEs have proven their
usefulness, even against the current issues, a joint solution
for bridging the gap can be achieved, suitable for users and
tool vendors at the same time.

4 Scara-Robot Example

Based on the previously described solution approaches
for integration PeN-ODEs in a Modelica workflow, we
implemented an example application featuring a SCARA
robot. However, since there exists no up-to-date solution
for bridging the gap from Modelica to Julia while preserv-

"https://github.com/AMIT-HSBI/NeuralNetwork
8https://github.com/xrg-simulation/SMArtInt

ing the object-oriented structure of the model, we bypass
this step in that we start from an object-oriented model
within ModelingToolkit.jl. We hope that this example will
encourage people to approach the findings from the previ-
ous chapter and to apply the idea of Modelica-based PeN-
ODE:s.

4.1 Overview on the SCARA Robot Example

The example is a modification of the NeuralFMU work-
shop (Thummerer and Mikelsons 2024) adapted for
object-oriented application. A SCARA robot is used to
write text on a sheet of paper by actuating its two revo-
lute joints. A marker pen is mounted at the end effec-
tor, which can be pressed against the paper for writing or
lifted for non-writing movements. The joints are actuated
by DC motors and controlled using simple proportional
controllers. An inverse kinematics model converts tabular
end-effector position data — linearly interpolated between
setpoints — into the corresponding joint angles.

The SCARA robot is modeled as 2D mechanical system
and the writing process is modeled by applying a defined
normal force, rather than implementing actual pen move-
ment and collision considerations. Most importantly, no
friction between the paper and the pen is model, but is
supposed to be learned within the PeN-ODE. An equiv-
alent Modelica model is illustrated in Figure 5. As ref-
erence data, simulation results from the robot containing
Stribeck friction between end effector and paper, writing
the words "train" and "validate" are available. To render
a realistic scenario, we will only use motor currents as
the available measurement outputs, since those signals are
commonly available quantities and most importantly con-
tain the friction force resp. acceleration information.

4.2 Model generation

As already mentioned at the beginning of this section,
we employ ModelingToolkit.jl, to actually start from an
object-oriented simulation model of the SCARA robot.
Apart from own model implementations, models from
the Modeling Toolkit Standard Library’ were employed.
Utilizing the Modelica PlanarMechanics library (Zimmer
2012) as a blueprint, necessary components for the me-
chanical system were implemented in ModelingToolkit.jl.
All files reproducing the example can be found in the cor-
responding github repository'?

As proposed previously, we insert a place holder func-
tion in the end effector model and consider only the known
quantities within the component, i.e. end effector veloc-
ity in x- and y-direction and the normal force to the pa-
per plane, to allow for the reuse of the trained subsystem,
see Listing 3. Please note that "~" is used as the equal-
ity sign in ModelingToolkit.jl and the Modelica "der()"-
operator corresponds to the "D()"-operator in the listing.
NN_dummy refers to the place holder function that will
be replaced after code generation. Its implementation is

https://github.com/SciML/ModelingToolkit. 31

Onttps://github.com/AndreasHofmann217/ScaraRobotExample

440

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218435

https://github.com/AMIT-HSBI/NeuralNetwork
https://github.com/xrg-simulation/SMArtInt
https://github.com/SciML/ModelingToolkit.jl
https://github.com/AndreasHofmann217/ScaraRobotExample

Session: Modelica & Al in Track for Control & Al

limiter1 signaldemotor2

SR

anglesensor2

gaint idealgear2

feedback

planarworld

2dim

1Ly

9-(0-981)

@

,,,,,,,,,,,,,,,,,,,,,,

gain limiter signaldemotort jgealgeart

feedback

fixed1

revolute &

fixedTranslation fixedTranslationt
b

1

p_x
tCcP

revolutel

fixedTranslation2 Al A2

- R - Ak

anglesensor1
AR
N \es/

> |

Figure 5. Illustration of the SCARA robot as Modelica model

similar to the previously mentioned workflow with anno-
tation "Inline=false" from the Modelica specification.

ModelingToolkit.jl does generate an ODE system for
models that can be represented by a structure incidence
matrix with lower triangular form after transformation and
a DAE system in mass matrix form otherwise. For the
SCARA robot model a DAE system is generated, whose
code is further adapted by us. The mass matrix, parameter
information, and modified right-hand side functions are
exported to a new Julia file, that will later be used within
our training pipeline.

Listing 3. trainable end effector model

@mtkmodel TrainableTCP begin
@variables begin
x(t)
y(t)
vx(t)
vy (t)
f(t)[1:2]
end
@components begin
frame_a = Frame ()
zForceIn = Blocks.RealInput ()
posXOut = Blocks.RealOutput ()
posYOut = Blocks.RealOutput ()
end
@equations begin
frame_a.tau ~ 0.0
frame_a.fx ~ f[1]
frame_a.fy ~ £f[2]
frame_a.x ~ posXOut.u
frame_a.y ~ posYOut.u
frame_a.x ~ x
frame_a.y ~ vy
D(x) ~ vx
D(y) ~ vy
f ~ NN_dummy (1.0,vx,vy,zForceIn.u)
end
end

4.3 ML model and PeN-ODE training

For learning the friction forces from the applied normal
force and the velocities at the end effector, a Neural Net-

work is employed as ML model. It is built using an MLP
with three hidden layers, 32 neurons and tanh as the ac-
tivation function. To scale input features (velocity in x-
and y-direction, normal force onto the paper) as well as
the output features (friction forces in x- and y-direction),
a layer adding z-score standardization resp. another layer
providing inverse transformation for the output features
are added. However, those layers do not contain fixed val-
ues for means and standard deviations but are rather train-
able parameters as well. As a last measure, a trainable
gate, initialized with start value of zero is added. This
guarantees that the randomly initialized network does pro-
vide stable output during the first training steps. The com-
plete architecture is depicted in Figure 6.

The model is trained using a single trajectory, with the
word "train" written by the SCARA robot, cf. Figure 7

VXVY];

6 parameters

1250 parameters

4 parameters

Gate

1

Figure 6. Employed ML model for the SCARA robot and the in-
dividual number of trainable parameters for the individual parts

1 parameter

DOI
10.3384/ecp218435

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

441

Towards Integration of PeN-ODEs in a Modelica-based workflow

Currently, only single-step solvers can be employed for
the hybrid DAE of the SCARA during gradient calcula-
tion'!. Therefore, we use Rodas5P, a fifth order Rosen-
brock method from within DifferentialEquations.jl, as nu-
merical method.

The trajectory is split into samples of 50 ms length and
gradients are calculated over the solution of randomly se-
lected single samples. The sampling is done for various
reasons. On the one side, it helps to increase training
speed, since gradients over a short elapsed time can be cal-
culated faster and have lower requirements for computer
hardware. Additionally, using stochastic examples helps
to better progress in the beginning of the optimization,
while calculating only gradients for a few examples, cf.
(Goodfellow, Bengio, and Courville 2016). On the other
side, since the calculated gradients combine all deviations
across the simulated period, shorter time spans support
capturing highly dynamic details. The Adam optimizer
(Kingma and Ba 2015) with default settings was used for
updating parameters. For loss accumulating Mean Ab-
solute Error (MAE) aggregation was chosen, considering
motor currents as quantities as available signals, as stated
above. As algorithm for deriving the gradients of the DAE
ReverseDiffAdjoint from the package SciMLSensitivity.jl
(Rackauckas, Ma, et al. 2021) was selected.

The system was trained for 5000 steps on a laptop with
i7-11850H CPU, 32 GB RAM and Winl1 as OS, which
took about two hours. Details on the used Julia packages
can be found in the corresponding GitHub repository.

1072

—— Reference

position y [m]

0.1 0.15 0.2 0.25 0.3

position x [m]

Figure 7. Training trajectory (end effector) for the SCARA
robot (without distinguishing actually applied forces for writ-

ing)

4.4 Training results

Please note that no extensive effort, e.g. through hyper-
parameter analysis, was spent on the model. The results
are purely derived to motivate and validate a PeN-ODE
workflow, rather than to provide the best possible model
outcome. Nonetheless, to anticipate some results of the
trained model, the MAE for the combined model states is
reduced by a factor greater than 4, while the Mean Squared

this is due to the discontinuous setpoint data and a bug during ini-
tialization of the DAE

Error (MSE) is reduced by a factor larger than 11, each for
the chosen test trajectory.

As test data for the SCARA robot application, the word
"validate" has been selected. In Figure 8, the model with
and without training are compared to the reference data for
the end effector position. The further the SCARA arms is
extended, the more impact from friction is visible. The
common error metrics MAE and MSE show a significant
reduction in deviations. An overview for the aggregated
model and individual states is collected in Table 1.

Table 1. Error metrics of the trained PeN-ODE compared to the
original model (in brackets) for the test data trajectory.

state | MAE | MSE
complete model | 7.76e-03 4.47e-04
-] (3.61e-02) | (5.19¢-03)
motorl.Q 1.69e-04 1.17e-07
[rad] (1.26e-03) | (2.87e-06)
motorl.i 1.40e-02 1.04e-03
[A] (9.39¢-02) | (1.61e-02)
motorl.® 5.59¢-03 2.34e-04
[rad/s] (1.62e-02) | (1.27e-03)
motor2.¢ 3.40e-04 3.92e-07
[rad] (1.67e-03) | (5.31e-06)
motor2.i 1.63e-02 9.58e-04
[A] (7.60e-02) | (1.11e-02)
motor2.m 1.01e-02 4.55e-04
[rad/s) (2.76e-02) | (2.70e-03)

A more detailed insight on the expressiveness of the
PeN-ODE can be gained from the plots of the motor cur-
rents, see Figure 9 and Figure 10, as well as from the
applied friction forces in the model, cf. Figure 11 and
Figure 12. The model still holds some limitation w.r.t.
force in x-direction, probably limited by the scalar gate.
Furthermore, the friction forces during the start of the sim-
ulation, although no normal force is present, would re-
quire some further investigation on the training. Also, no
further study on the impact of partly implementing physi-
cal effects, such as explicitly providing Coloumb friction,
was conducted. This remains to be investigated in detail
in the future. Yet, a first study on partially modelling fric-
tion, based on NeuralFMUs, was executed by Thummerer,
Kolesnikov, et al. (2023).

From an object-oriented modeling perspective, the ma-
chine learning component can be seamlessly reintegrated
into the end effector by replacing the placeholder func-
tion with the actual implementation containing the trained
parameters. As previously noted, keeping these parame-
ters independent of the compiler contributes to maintain-
ing fast compilation times. Since only internal variables
and inputs of the end effector component were utilized
within the hybrid architecture, the component remains
fully reusable in other applications — such as robots with
different mechanical structures — without requiring further
modifications.

442

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218435

Session: Modelica & Al in Track for Control & Al

1072

2 —— Reference
/ / | --- PeN-ODE
FPM

position y [m]

0.1 0.15 0.2 0.25 0.3

position x [m)]

Figure 8. Comparison of the trained and untrained model writ-
ing the word validate (without distinguishing actually applied
force)

—— Reference
—— PeN-ODE
FPM

w3 M (i “¢U il

o

motor 1 current [A]

—0.5

0 5 10 15 20
time [s]

Figure 9. Comparison of Motor currents at Motor 1

‘ —— Reference

e
i

motor 2 current [A
=)
/
/
5
S m——

H ‘W

Figure 10. Comparison of Motor currents at Motor 2

time [s]

S Summary and Outlook

Although Modelica and the corresponding tools are na-
tively incompatible with ML training environments such
as the Julia programming language, many solution ap-
proaches for bridging the gap towards creating, training
and applying of PeN-ODEs exist. Once a model is made
available in Julia, all necessary steps can be applied, which
was shown for the SCARA robot.

From the interfacing point of view, having an interme-
diate representation of the derived DAE system from a
Modelica compiler, reminiscent of Base Modelica, would
allow a universal starting point for arbitrary ML environ-
ments in Julia, Python or other languages but also for other
applications. Furthermore, Base Modelica, once avail-
able, could offer a convenient way from Modelica to Julia,
though it needs to be investigated if ModelingToolkit.jl is

capable of supporting all relevant Modelica language fea-
tures. Nonetheless, also tool vendor-specific implemen-
tations of Modelica compilers and simulation capabilities
and particularities of their individual simulation runtimes
might still pose challenges.

—— Reference
0.1

: —— PeN-ODE
FPM
5-1072 h
0 hH LR IR ;h. m‘ L‘

~5-1072

Fx N]

—-0.1

time [s]

Figure 11. Comparison of friction force in x-direction

— Reference
—— PeN-ODE
FPM

:

5-1072

—5-1072 q

—0.1

Fy [N]
-
L
-
T
=
=

0 5 10 15 20
time [s]

Figure 12. Comparison of friction force in y-direction

Apart from interfacing, new challenges, such as ap-
propriate training strategies and best suitable ML models
arise. While the example model was trained on a random
selection of data samples, more sophisticated approaches
such as dedicated scheduling algorithms for picking worst
elements from the training set or different strategies, such
as multiple shooting, growing horizon, et cetera, might ac-
celerate and improve training.

In particular, the aspects of reusability of PeN-ODE
components can facilitate the object-oriented approach
from methods such as NeuralFMU, which in contrast does
benefit from tool independence and bypasses the interfac-
ing issues. A Modelica-based approach would allow to
easily compose hierarchical systems of high fidelity PeN-
ODE:s.

Furthermore, the appropriate ratio of embedded
physically-based white box models, such as known parts
of friction, is an open research question for all hybrid mod-
els. Further studies are required to provide some indica-
tion, especially based on real-world problems.

Acknowledgements

This work has been partially funded through the ITEA4-
project OpenSCALING (www . openscaling.org) by
the German Federal Ministry of Education and Research
(BMBF) under the grant number FKZ 011S23062H.

DOI
10.3384/ecp218435

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

443

www.openscaling.org

Towards Integration of PeN-ODEs in a Modelica-based workflow

References

Abdelhak, Karim, Francesco Casella, and Bernhard Bachmann
(2023). “Pseudo Array Causalization”. In: Proceedings of
the 15th International Modelica Conference 2023. DOIL:
10.3384/ecp204177.

Bruder, Frederic and Lars Mikelsons (2021). “Modia and
Julia for Grey Box Modeling”. In: Proceedings of
the 14th International Modelica Conference 2021. DOIL:
10.3384/ecp2118187.

Cellier, Francois (1996). “Object-Oriented Modeling: Means
For Dealing With System Complexity”. In: Proceedings of
the 15th Benelux Meeting on Systems and Control.

Chen, Ricky T. Q. et al. (2018). “Neural Ordinary Differ-
ential Equations”. In: Proceedings in Advances in Neural
Information Processing Systems 31 (NeurIPS 2018). DOI:
10.48550/arXiv.1806.07366.

Elmgqvist, Hilding et al. (2021). “Modia — Equation Based Mod-
eling and Domain Specific Algorithms”. In: Proceedings
of the 14th International Modelica Conference 2021. DOI:
10.3384/ecp2118173.

Fioravanti, Massimo et al. (2023-07). “Array-Aware Matching:
Taming the Complexity of Large-Scale Simulation Models”.
In: ACM Trans. Math. Softw. DOI: 10.1145/3611661.

Goodfellow, lan, Yoshua Bengio, and Aaron Courville
(2016). Deep Learning. http://[www.deeplearningbook.org.
MIT Press.

Kamp, Tobias, Johannes Ultsch, and Jonathan Brembeck (2023).
“Closing the Sim-to-Real Gap with Physics-Enhanced Neu-
ral ODEs”. In: Proceedings of the 20th International Con-
ference on Informatics in Control, Automation and Robotics.
DoI: 10.5220/0012160100003543.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method
for Stochastic Optimization.” In: ICLR (Poster). URL:
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#KingmaB 14.

Kurzbach, Gerd et al. (2023). “Design proposal of a stan-
dardized Base Modelica language”. In: Proceedings of
the 15th International Modelica Conference 2023. DOI:
10.3384/ecp204469.

Lenord, Oliver et al. (2021). “eFMI: An open stan-
dard for physical models in embedded software”. In:
Proceedings of 14th Modelica Conference 2021. DOI:
doi.org/10.3384/ecp2118157.

Ma, Yingbo et al. (2021). ModelingToolkit: A Composable
Graph Transformation System For Equation-Based Model-
ing. arXiv: 2103.05244 [cs.MS].

Modelica Association (2023). Modelica — A Unified Object-
Oriented Language for Systems Modeling. Language Speci-
fication Version 3.6. Tech. rep. Linkoping: Modelica Associ-
ation.

Moses, William and Valentin Churavy (2020). “Instead of
Rewriting Foreign Code for Machine Learning, Auto-
matically Synthesize Fast Gradients”. In: Advances in
Neural Information Processing Systems. Vol. 33. DOI:
10.48550/arXiv.2010.017009.

Oliveira, R. (2004). “Combining first principles mod-
elling and artificial neural networks: a general frame-
work”. In: Computers Chemical Engineering 28.5. DOI:
10.1016/j.compchemeng.2004.02.014.

Otter, Martin and Hilding Elmqvist (2017). “Transformation of
Differential Algebraic Array Equations to Index One Form”.
In: Proceedings of the 12th International Modelica Confer-
ence 2017. DOI: 10.3384/ecp17132565.

Otter, Martin, Hilding Elmgqvist, et al. (2019). “Thermo-
dynamic Property and Fluid Modeling with Modern
Programming Language Constructs”. In: Proceedings of
the 13th International Modelica Conference 2021. DOLI:
10.3384/ecp19157589.

Quaghebeur, Ward, Ingmar Nopens, and Bernard De Baets
(2021). “Incorporating Unmodeled Dynamics Into First-
Principles Models Through Machine Learning”. In: I[EEE Ac-
cess 9. DOL: 10.1109/ACCESS.2021.3055353.

Rackauckas, Christopher, Yingbo Ma, et al. (2021).
Universal Differential Equations for Scientific Ma-
chine Learning. arXiv: 2001.04385 [cs.LG]. URL:
https://arxiv.org/abs/2001.04385.

Rackauckas, Christopher and Qing Nie (2017).

“DifferentialEquations.jl-a performant and feature-rich
ecosystem for solving differential equations in Julia”. In:
Journal of Open Research Software 5.1.

Sapienza, Facundo et al. (2024). Differentiable Pro-
gramming for Differential ~ Equations: A Re-
view. arXiv: 2406.09699 [math.NA]J. URL:

https://arxiv.org/abs/2406.09699.

Sorourifar, Farshud et al. (2023). “Physics-Enhanced Neural
Ordinary Differential Equations: Application to Industrial
Chemical Reaction Systems”. In: Industrial & Engineering
Chemistry Research 62.38. DOI: 10.1021/acs.iecr.3c01471.

Su, Hong-Te et al. (1992). “Integrating Neural Networks with
First Principles Models for Dynamic Modeling”. In: IFAC
Proceedings Volumes 25.5. 3rd IFAC Symposium on Dynam-
ics and Control of Chemical Reactors, Distillation Columns
and Batch Processes (DYCORD+ ’92), Maryland, USA, 26-
29 April. DOI: 10.1016/S1474-6670(17)51013-7.

Thummerer, Tobias, Josef Kircher, and Lars Mikelsons (2021).
“NeuralFMU: Towards Structural Integration of FMUs into
Neural Networks”. In: Proceedings of 14th Modelica Confer-
ence 2021. DOI: 10.3384/ecp21181297.

Thummerer, Tobias, Artem Kolesnikov, et al. (2023). “Paving
the way for Hybrid Twins using Neural Functional Mock-Up
Units”. In: Proceedings of the 15th International Modelica
Conference 2023. DOI: 10.3384/ecp204141.

Thummerer, Tobias and Lars Mikelsons (2023).
Using NeuralODEs in real life applications.
https://pretalx.com/juliacon2023/talk/EWL3LC/. Accessed:
2025-04-08.

Thummerer, Tobias and Lars Mikelsons (2024-08). Sci-
entific Machine Learning using Functional Mock-
Up Units | Thummerer, Mikelsons | JuliaCon 2024.
https://www.youtube.com/watch?v=sQ2MXSswrSo.

Thummerer, Tobias and Lars Mikelsons (2025). Learnable In-
terpretable Model Combination in Dynamical Systems Mod-
eling. URL: https://arxiv.org/abs/2406.08093.

Thummerer, Tobias, Hans Olsson, et al. (2025). “LS-SA: Devel-
oping an FMI layered standard for holistic efficient sensitiv-
ity analysis of FMUSs”. In: Proceedings of the 16th Interna-
tional Modelica Conference 2025.

Tinnerholm, John et al. (2021). “OpenModelica.jl: A modular
and extensible Modelica compiler framework in Julia tar-
geting ModelingTookit.jl”. In: Proceedings of 14th Modelica
Conference 2021. DOI: 10.3384/ecp21181109.

Zimmer, Dirk (2012). “A Planar Mechanical Library for Teach-
ing Modelica”. In: Proceedings of the 9th International Mod-
elica Conference. DOI: 10.3384/ecp12076681.

444

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218435

https://doi.org/10.3384/ecp204177
https://doi.org/10.3384/ecp2118187
https://doi.org/10.48550/arXiv.1806.07366
https://doi.org/10.3384/ecp2118173
https://doi.org/10.1145/3611661
http://www.deeplearningbook.org
https://doi.org/10.5220/0012160100003543
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#KingmaB14
https://doi.org/10.3384/ecp204469
https://doi.org/doi.org/10.3384/ecp2118157
https://arxiv.org/abs/2103.05244
https://doi.org/10.48550/arXiv.2010.01709
https://doi.org/10.1016/j.compchemeng.2004.02.014
https://doi.org/10.3384/ecp17132565
https://doi.org/10.3384/ecp19157589
https://doi.org/10.1109/ACCESS.2021.3055353
https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/2406.09699
https://arxiv.org/abs/2406.09699
https://doi.org/10.1021/acs.iecr.3c01471
https://doi.org/10.1016/S1474-6670(17)51013-7
https://doi.org/10.3384/ecp21181297
https://doi.org/10.3384/ecp204141
https://pretalx.com/juliacon2023/talk/EWL3LC/
https://www.youtube.com/watch?v=sQ2MXSswrSo
https://arxiv.org/abs/2406.08093
https://doi.org/10.3384/ecp21181109
https://doi.org/10.3384/ecp12076681

	Introduction
	Motivation
	Outline

	Definition of PeN-ODE
	PeN-ODE Architecture
	Partitioning of PeN-ODE by training strategies

	Challenges for derivation and training of Modelica-based PeN-ODEs
	Training of the hybrid model
	PeN-ODE architectures
	Representation of hybrid architecture in Modelica
	Summary on Findings

	Scara-Robot Example
	Overview on the SCARA Robot Example
	Model generation
	ML model and PeN-ODE training
	Training results

	Summary and Outlook

