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Abstract

Hybrid modeling – the combination of first-principle mod-

els and machine learning – offers the potential to in-

crease model accuracy while reducing modeling effort.

Although approaches for creating hybrid models from sys-

tem simulation models exist, the unique characteristics of

Modelica-based, object-oriented models – such as modu-

larity and reusability – can, as of today, not be utilized.

In this contribution, we explore approaches for bridging

this gap to enable the use of hybrid models with Model-

ica. Key challenges of architecture definition, training en-

vironment and reintegration of the trained machine learn-

ing parts into a Modelica model are addressed. To illus-

trate our approach, we present a case study involving a

SCARA robot. This example demonstrates a partially in-

tegrated workflow for hybrid modeling, intended to serve

as a foundation and motivation for further research.

Keywords: hybrid modeling, PeN-ODE, SciML, Neu-

ralFMU, Julia, machine learning

1 Introduction

1.1 Motivation

In recent years, data-driven models, i.e. machine learning

(ML) models, and hybrid models, which combine first-

principle modeling (FPM) and data-driven approaches,

have gained wide attention in the field of system simula-

tion. Data-driven models promise to eliminate efforts for

traditional modeling tasks, while additionally increasing

the fidelity of models based on real-world data. Alongside

those benefits, however, data-driven models are limited by

their high demand for data to approximate the underly-

ing physics, their black-box nature, and limited extrapola-

tion capabilities, thus restricting their application. While

early architectures recurrently mapped states from a point

in time to the next one, the more sophisticated approach

of the NeuralODE paper (Chen et al. 2018), which gained

a lot attention, confined data-driven models to the system

dynamics and combined them with well-known numerical

solvers.

Hybrid models, in contrast to their purely data-driven

counterparts, try to incorporate ML-approaches into mod-

els that are built upon laws of physics and well-established

empirical approaches. Since those models aim to only

learn unmodelled physical effects, their data requirements

are typically way more economic. Also, extrapolation ca-

pabilities and explainability of hybrid models are usually

better compared to solely data-driven models due to the

underlying FPM nature.

While the term NeuralODE is widely established in the

field of data-driven approaches, various names and archi-

tectures for hybrid models abound, such as NeuralFMU

(Thummerer, Kircher, and Mikelsons 2021), Universal

Differential Equation (Rackauckas, Ma, et al. 2021), et

cetera. Hence, since there is no common wording for

hybrid models, their application, especially in industrial

scope, is shortened. Therefore, a concise definition for

hybrid models (for system simulation) has been developed

in the the ITEA OpenSCALING project1, based on earlier

definitions by Thummerer and Mikelsons (2023), Thum-

merer, Kolesnikov, et al. (2023) and Kamp, Ultsch, and

Brembeck (2023). The definition will be presented in the

next section.

Modelica’s object-oriented nature makes it especially

well-suited for hybrid modeling, as it enables efficient

reuse of models. On one hand, integrating machine learn-

ing models into component equations introduces a high

degree of flexibility. This allows for modification of arbi-

trary mathematical relationships, like algebraic equations

and state derivative expressions. Furthermore, a trained

hybrid component can be reused across different modeling

scenarios. For example, it is often advantageous to model

an entire test rig, including both the device under test and

the dynamic behavior of the testbed components. Using

recorded data, a hybrid model of the device under test can

be trained, subsequently extracted from the testbed model,

and then embedded into a high-fidelity model of another

system. This reusability helps justify the considerable ef-

fort involved in the training phase of hybrid modeling. On

the other hand, object-oriented models retain information

about algebraic relationships, which facilitates the direct

integration of measurement data. As long as a relation-

ship between the measured and augmented quantities ex-

ists, the model can be trained. This approach is particu-

larly valuable when working with field data from systems

in operation, where typically only a limited set of dedi-

cated signals is available.

However, developing hybrid models from Modelica-

based systems and reintegrating them into a Modelica-

centered workflow presents several challenges. Key ob-

stacles include the training process – typically performed

1project page: https://openscaling.org/
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within machine learning frameworks developed in Python

or Julia – and the integration of Neural Networks, which

are among the most commonly used machine learning

models, into the Modelica environment.

1.2 Outline

In the following section, a short overview of the PeN-ODE

architecture and a further partitioning based on training

strategies is provided. Following that, main challenges

for building and training PeN-ODEs and utilizing those

in a Modelica-based workflow are depicted. In the subse-

quent chapter, a workflow for PeN-ODEs is demonstrated,

utilizing an object-oriented model of a Scara-Robot, how-

ever starting from the Julia programming language, avoid-

ing the transfer of the model from a Modelica-based tool.

Finally, the paper closes with an outlook on further devel-

opments and challenges.

2 Definition of PeN-ODE

As mentioned before, several methods for combining first

principle models and machine learning have been avail-

able for many years. To make the concept of hybrid mod-

els accessible for wider industrial application, a common

definition for hybrid models, or at least for the distinct

class of system simulation, has been developed within

the ITEA4 OpenSCALING project under the name PeN-

ODE. Although this concise definition is limited to a

model architecture, a further distinction, based on training

strategies, can be made, which facilitates overall commu-

nication on required data, et cetera.

2.1 PeN-ODE Architecture

A PeN-ODE, short for Physics-enhanced Neural Ordinary

Differential Equation, is an ODE2 model that combines

FPM and ML models, typically Neural Networks. As

illustrated in Figure 1, no particular restrictions are im-

posed on the interaction between the FPM and ML subsys-

tems, allowing maximum flexibility in tailoring the hybrid

model to individual use cases.

x(t) ẋ(t)
x(t +h)fFPM fML

∫

PeN-ODE

u(t)
y(t)

Figure 1. Architecture of a PeN-ODE with physical subsystem

( fFPM) and machine learning part ( fML) within the solution pro-

cess.

x(t) - system states

u(t) - inputs

y(t) - outputs

h - solver step size

While this definition might seem arbitrary at first, it

2including DAEs and discretized PDEs

clearly differentiates the PeN-ODE from NeuralODEs and

other data-driven approaches, where the complete dy-

namic of the system is represented using Neural Networks.

Nonetheless, other common approaches for hybrid mod-

els are fully or partially incorporated: NeuralFMUs, the

combination of Functional Mockup-Units and Neural Net-

works are a subset of the PeN-ODE, where the FPM is

represented using the FMI standard. Universal Differ-

ential Equations (UDEs) describe a rich framework for

ODEs, PDEs, SDEs, etc. and allow to build and train

hybrid models but also models without any FPM (there-

fore similar to NeuralODEs). Also, training strategies

such as Physics Informed Neural Networks are featured

in the UDE framework. In this context, PeN-ODEs cover

a dedicated subset of UDEs, focusing on the relevant parts

for system simulation. There are far more approaches

that fit into the PeN-ODE definition, though not necessar-

ily from the field of technical system, such as Integrated

Neural Network(Su et al. 1992) or methods without ded-

icated names (Quaghebeur, Nopens, and De Baets 2021),

(Oliveira 2004). Sorourifar et al. (2023) also refer to their

architecture as "Physics-Enhance Neural Ordinary Differ-

ential Equation", combining first-principle modelling and

Neural Networks in chemical reaction systems.

Please note that in the PeN-ODE definition no train-

ing strategies, i.e. the training of the Neural Network, are

explicitly defined. As a result, a pre-trained ML model

augmenting an FPM is a valid PeN-ODE model.

2.2 Partitioning of PeN-ODE by training

strategies

Although the PeN-ODE definition imposes no restrictions

on the training process itself, different training strategies

come with varying requirements for training data. Accord-

ingly, alongside the definition of the PeN-ODE architec-

ture, two distinct training strategies are delinated. It is

important to note that, following successful training and

integration, the specific training strategy used for the PeN-

ODE becomes indistinguishable in the final model.

Closed-loop trained PeN-ODE

The first training strategy involves parameter optimization

of the ML part by computing gradients through the solu-

tion of the ODE. Because this requires calculating gradi-

ents across the transient behavior of the system, aspects

such as time and state events, as well as the numerical so-

lution process itself, must be taken into account. For fur-

ther details we refer to Thummerer, Olsson, et al. (2025),

though focusing on NeuralFMUs.

In addition to the commonly used method of automatic

differentiation, mathematical techniques, such as the Con-

tinuous Adjoint method or the Forward Sensitivity analy-

sis for ODEs, have regained attention in recent years. The

first approach performs the gradient calculation by tracing

every operation on the discretized system, often referred to

as "discretize-then-optimize". In contrast, the latter con-

structs an additional set of differential equations which are
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solved alongside the original system. Since gradients are

derived from the time-discrete solution values, it is often

referred to as "optimize-then-discretize". A comprehen-

sive review covering the details of gradient computation

for ODEs can be found in (Sapienza et al. 2024).

The cost function of the optimization problem can ag-

gregate any related quantity of the ODE system associated

to the equations under consideration, i.e. alongside the

states also algebraic quantities. Hence, considering the

substantial effort for gradient computation, the constraints

on available measurements from the (real-world) data are

typically low. In Figure 2 the training strategy for closed-

loop training is depicted.

x(t) ẋ(t)
x(t +h)fFPM fML

∫
u(t)

y(t)

data loss function

ODE solution

u(t),x0 zRe f

zS
im

Figure 2. Closed-loop training procedure for loss calculation

x(t) - system states

u(t) - inputs

y(t) - outputs

zSim - relevant solution values from simulation

zRe f - reference solution values from data

x0 - initial states

h - solver step size

Open-loop trained PeN-ODE

In contrast to the closed-loop training strategy, the open-

loop procedure does not consider a transient cost function

accumulating over the ODE solution. Instead, it uses state

derivative quantities and algebraic variables to train the

ML part based on the right-hand side (RHS) of the ODE,

cf. Figure 3.

xn ẋnfFPM fML

un

data loss function

RHS evaluation

un,xn ẋnRe f

ẋ
n

Figure 3. Open-loop training procedure for loss calculation,

based on evaluation of the RHS of the ODE system

xn - system states at time n

un - inputs at time n

ẋn - state derivatives at time n

ẋnRe f - reference data at time n

As a result, the computational effort for gradient cal-

culation is reduced and is typically handled via automatic

differentiation. However, this approach places higher de-

mands on the training data, as all relevant quantities must

be explicitly available. Moreover, deviations during train-

ing on derivative level typically accumulate to increasing

errors due to integration in the simulation of the trained

PeN-ODE.

Although Figure 3 illustrates a joint evaluation, it is im-

portant to note that the machine learning component can

also be trained independently. This corresponds to con-

ventional data-driven approaches, as depicted in Figure 4.

an bnfML

data loss function

ML model evaluation

an bnRe f

b
n

Figure 4. Open-loop training procedure for loss calculation,

based on solely evaluating the ML model.

an - ML input at time n

bn - ML output at time n

bnRe f - reference data at time n

3 Challenges for derivation and train-

ing of Modelica-based PeN-ODEs

As briefly mentioned in the introduction, utilizing PeN-

ODEs in Modelica poses various challenges, which will

be examined in more detail below. The primary challenges

can be summarized as follows:

• Training of the hybrid model: Bridging the gap be-

tween Modelica-based modeling and common ma-

chine learning training frameworks, such as Julia

• PeN-ODE architectures: Limiting access to avail-

able signals and defining appropriate PeN-ODE ar-

chitectures within the modular, object-oriented struc-

ture of Modelica.

• Representation of hybrid architecture in Model-

ica: Methods for incorporating trained ML compo-

nents into Modelica models in a way that preserves

their functionality and compatibility.

3.1 Training of the hybrid model

The first challenge in establishing an integrated workflow

for PeN-ODEs in Modelica is bridging the gap to the ML

training environment. Python and its extensive ecosystem

of ML frameworks and libraries are indisputably the most

common environment for machine learning tasks. Nev-

ertheless, noting that many other suitable programming

languages exist, we want to focus in the following pas-

sage on the Julia programming language. Julia offers a

wide ecosystem for scientific machine learning (SciML)

and does provide some initial approaches for bridging ML

training environment and Modelica-based tools.

Session: Modelica & AI in Track for Control & AI 
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Tinnerholm et al. (2021) present a reimplementation of

the OpenModelica compiler in Julia, called OM.jl, that

can generate models for the Julia packages DifferentialE-

quations.jl (Rackauckas and Nie 2017), which provides

methods for efficiently solving a wide range of differen-

tial equation problems, such as ODEs, DAEs, or SDEs.

Additionally OM.jl can generate models for the Julia-

specific environment for object-oriented modeling, Mod-

elingToolkit.jl (Ma et al. 2021). In an additional step,

similar to a Modelica compiler, ModelingToolkit sym-

bolically processes the system to an executable set of

differential-algebraic equations. Unfortunately, the corre-

sponding Github-repositories (OM.jl, OMBackend.jl, ...)

have not been maintained for years.

Similar to ModelingToolkit.jl, Modia (Elmqvist et al.

2021) offers capabilities of object-oriented modelling and

simulation in Julia. Being strongly embedded into the

Modelica community, the developers see Modia as an en-

vironment to test new algorithms and extensions towards

further adaptions of Modelica. A translator has been de-

veloped by Otter, Elmqvist, et al. (2019), allowing to

source-to-source translate a (subset) of the Modelica lan-

guage to Modia. Unfortunately, the repository presented

in their paper is no longer available. Bruder and Mikel-

sons (2021) utilized Modia to build an equation-based, hy-

brid non-linear single track model. However, like OM.jl,

Modia is still based on an older version of Julia, released

in Nov. 2021.

The Base Modelica initiative (Kurzbach et al. 2023)

provides another approach for translating arbitrary, though

only flattened, Modelica models to Julia. A dedi-

cated package in the Julia SciML ecosystem exists,

named BaseModelica.jl3 , promising to parse and con-

vert the Base Modelica model to the previously men-

tioned object-oriented modeling environment Modeling-

Toolkit.jl. Please note that the initial Modelica change

proposal for Base Modelica is currently in development.

Once available, the pipeline could be an auspicious way of

translating Modelica models to suitable simulation mod-

els for hybrid training in Julia. However, as of today,

it remains unclear whether ModelingToolkit.jl is capable

of supporting all relevant features of Modelica. Further-

more, in our experience, many Modelica models require

specific numerical algorithms, which could cause further

challenges.

Looking at the eFMI standard (Lenord et al. 2021), a

representation reminiscent to the Algorithm Code, how-

ever without implemented solver arithmetic, could pose

as a valid mutual baseline, for code generation to various

languages and tools. From a Modelica compiler perspec-

tive, this would represent the hybrid4 DAE system after

the symbolic transformation. In contrast to Base Model-

ica, this representation would not require any additional

transformation process. However, numerical challenges,

3https://github.com/SciML/BaseModelica.jl
4in this very case of this paper hybrid refers to continuous-discrete

rather than to combination of FPM and ML

as mentioned before, would still not be resolved by this

intermediate representation.

Utilizing Julias’ SciML ecosystem, while using the

Functional Mockup Interface instead of Modelica directly,

is possible through the packages FMIFlux.jl5 and FMI.jl6,

which build the foundation of NeuralFMUs. FMI.jl al-

lows to load and simulate FMUs in Julia, while FMI-

Flux.jl manages the gradient calculation through the FMU

model. However, since all object-oriented information

from a Modelica model is removed during FMU genera-

tion, it is not feasible to unroll the ML model of the trained

NeuralFMU back to the object-oriented components.

Although we focused this section on model transfer

from Modelica to Julia, the Enzyme project offers a solu-

tion to calculate the relevant gradients directly on LLVM

level, see (Moses and Churavy 2020). LLVM supports

a wide range of languages, however, changes to existing

Modelica-based tools, that we cannot evaluate, might be

needed. Furthermore, dedicated training frameworks, pos-

sibilities to define ML models, etc., within the Modelica

tools would still be missing.

3.2 PeN-ODE architectures

Many hybrid model architectures, such as the NeuralFMU

with its FMU foundation, grant access to the complete set

of states, state derivatives, and algebraic quantities of the

FPM. Consequently, hybrid models using arbitrary FPM

signals in the ML model can be derived. Therefore, Neu-

ralFMUs can be reused within other simulation models

as a single component. However, separating the ML part

from the physical model and re-introducing it in the orig-

inal model and, therefore, also reusing partial models is

not feasible. From an object-oriented modeling perspec-

tive, the use of arbitrary model quantities contradicts the

paradigm of knowledge encapsulation, see (Cellier 1996).

Consequently, the ML part of a hybrid component in an

object-oriented model can only be supplied with internal

quantities or existing interfaces of the model or additional

signals must explicitly be exposed through model adap-

tions. Since encapsulation of knowledge enables the com-

position of hierarchical models, relying solely on available

quantities renders reusing trained individual components

possible.

As already stated in the PeN-ODE definition, arbitrary

architectures for interaction between the FPM and ML

part are applicable. Furthermore, ML models are adapted

during their training phase and often optimized via hyper-

parameter optimization. Therefore, it is useful to only de-

fine the minimum necessary architectural parts, typically

input and output features, within Modelica and shift all

other architecture considerations to the ML side, where

their optimization can take place. However, a Model-

ica compiler needs to know the relations of quantities to

perform the symbolic transformation. The Modelica lan-

5https://github.com/ThummeTo/FMIFlux.jl
6https://github.com/ThummeTo/FMI.jl
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guage specification (Modelica Association 2023) provides

the constructs of function inlining, which enables a place-

holder functionality sufficient for the previously described

considerations. Still, different types of augmenting the

FPM equations exist.

The easiest way for setting up a hybrid architecture by

place holder in a Modelica models is parallel execution

on equation level, see Listing 1. Missing information in

the equation is compensated by adding the function fun_1,

which will later be replaced by some ML architecture.

Only relevant inputs and outputs are provided in the Mod-

elica model. Through the annotation "Inline=false" the

function is not symbolically processed in the compiler and

can be replaced during code generation.

Listing 1. parallel architecture on equation level

model SimpleParallelArchitecture

function fun_1 "dummy function"

input Real b, c, d;

output Real dx;

algorithm

dx = b*c+d; // some ope r a t i o n s that
// w i l l be r ep l a c ed

annotation(Inline=false);

end fun_1;

Real x "state variable";

Real a,b,c,d;

...

equation

...

// adding mi s s i ng pa r t s o f the equat ion
// by a Neura l Network
der(x) = a * x + fun_1(b,c,d);

...

end SimpleParallelArchitecture;

The parallel architecture offers a coherent augmentation

of a physical equation. However, to enable arbitrary archi-

tectures on ML side, further adaptions to existing model

equations are required. This is done by splitting the rela-

tion of interest into two parts, as shown in Listing 2.

Listing 2. universal architecture on equation level

model UniversalArchitecture

Real a "some algebraic qoi";

Real a_fpm "the known relation of the

qoi";

Real b,c,d,x; // some a d d i t i o n a l
v a r i a b l e s

...

equation

...

// a = b∗x ; // o r i g i n a l equat ion
a_fpm = b*x;

a = fun_2(a_fpm, c,d);

a = sin(time);

end UniversalArchitecture;

A detailed discussion on combination of FPM and ML,

though in the context of NeuralFMUs, can be found in

(Thummerer and Mikelsons 2025).

The relation between the algebraic variable a and the

quantities b and x in Listing 2 shall be enhanced by some

data-driven approach. Therefore, the first principle knowl-

edge is rearranged into a new variable a_fpm. The original

equation is replaced by the place holder function fun_2,

that utilizes the existing knowledge of a_fpm and fur-

ther employs the information from variables c and d. On

ML side arbitrary combinations for interaction of the vari-

ables are possible, including the parallel architecture de-

scribed before. Since the augmentation takes place on

equation level rather than variable level, non-linear sys-

tems can arise from the function inline annotation during

the symbolic transformation of the model. This is depicted

in Listing 2 by explicitly providing a value to variable

a, since time is the independent variable of a Modelica

model. Solving the nonlinear system introduces additional

evaluations during simulation. This is necessary because

the placeholders used at this stage do not yet contain the

actual relationships, which are only incorporated at a later

point in the workflow. Obviously, on the machine learn-

ing side, the training framework must be capable of solv-

ing the nonlinear system and computing the correspond-

ing gradients. To our current understanding, there are no

further limitations imposed by Modelica itself, since the

language specification has a rich extensiveness, like pro-

viding derivative annotations for the place holder function,

et cetera.

If the architecture of the ML model is known before

training, an implementation in Modelica could be possi-

ble. Some approaches will be discussed in the next sec-

tion. However, since all equations from the ML model

are processed by a Modelica compiler, additional effort is

added to the symbolic transformation. Furthermore, the

benefit of the symbolic representation of the ML model

within Modelica remains unclear.

With experience, at least with ModelingToolkit.jl, we

would recommend to only define the minimum required

interfaces in Modelica and process all other parts in the

ML environment. Having trainable parameters available

as arrays, contrary to current Modelica compiler imple-

mentations, provides a convenient workflow in combina-

tion with hyperparameter optimization.

3.3 Representation of hybrid architecture in

Modelica

As stated before, the final ML model is typically de-

rived throughout the training in a hyperparameter opti-

mization. Once the final structure has been established,

the ML model and parameters must be reintegrated to the

Modelica environment. Since Neural Network are today’s

dominating approach, we will limit approaches to this ML

model type.

The most naive approach is implementing the corre-

sponding tensor operations directly as a Modelica model,

since the Modelica language provides features for mul-

tidimensional arrays. However, this is typically limited

to simple architectures such as multilayer perceptions
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(MLPs). A more sophisticated approach, while keeping

Modelica language features, is provided in the NeuralNet-

work Library7 developed at Hochschule Bielefeld , that al-

lows to automatically generate a model from Tensorflow.

However, since array equations are, as of today, scalarized

throughout the model transformation in a Modelica com-

piler, large Neural Networks might cause high compilation

times or even overstrain available computer memory. Cer-

tainly, algorithms for keeping array structures throughout

the symbolic pipeline of a Modelica compiler have been

developed and will mitigate those issues, e.g. (Abdelhak,

Casella, and Bachmann 2023), (Otter and Elmqvist 2017),

(Fioravanti et al. 2023). Nonetheless, as stated before,

the benefit of symbolic neural network representation in

a Modelica model remains unclear.

Alternatively, standardized formats for exchanging

deep learning models among tools, such as the Open Neu-

ral Network Exchange (ONNX) or the Neural Network

Exchange Format (NNEF), could be utilized, for exam-

ple the SmartInt Library8 , which provides ONNX support

using Modelica’s "external C" feature. Therefore, Neural

Networks with high number of parameters are be applica-

ble, without any impact on a Modelica compiler.

3.4 Summary on Findings

There exist a wide range of different solution approaches

which, in combination, help to prepare, create, and im-

plement PeN-ODEs in Modelica. Modelica language fea-

tures can be used to define interfaces in a convenient way

and libraries and tools are available to embed ML mod-

els in Modelica. Nonetheless, the transfer of the (pro-

cessed) Modelica model to a training environment such

as Julia, poses an unsolved challenge. Once Base Mod-

elica, is available, its application with ModelingToolkit.jl

should be further investigated. Having a new implemen-

tation, positioned between Base Modelica (flattened) and

the Algorithm Code from eFMI (including solver arith-

metic) could pose a useful new representation, also for

other applications. Further experiments with Modia or

OM.jl might enable a first integrated workflow bridging

the gap between Modelica and Julia, at the cost of limita-

tions from the machine learning environment, due to their

dependency on an old version of the Julia language.

We are confident, once PeN-ODEs have proven their

usefulness, even against the current issues, a joint solution

for bridging the gap can be achieved, suitable for users and

tool vendors at the same time.

4 Scara-Robot Example

Based on the previously described solution approaches

for integration PeN-ODEs in a Modelica workflow, we

implemented an example application featuring a SCARA

robot. However, since there exists no up-to-date solution

for bridging the gap from Modelica to Julia while preserv-

7https://github.com/AMIT-HSBI/NeuralNetwork
8https://github.com/xrg-simulation/SMArtInt

ing the object-oriented structure of the model, we bypass

this step in that we start from an object-oriented model

within ModelingToolkit.jl. We hope that this example will

encourage people to approach the findings from the previ-

ous chapter and to apply the idea of Modelica-based PeN-

ODEs.

4.1 Overview on the SCARA Robot Example

The example is a modification of the NeuralFMU work-

shop (Thummerer and Mikelsons 2024) adapted for

object-oriented application. A SCARA robot is used to

write text on a sheet of paper by actuating its two revo-

lute joints. A marker pen is mounted at the end effec-

tor, which can be pressed against the paper for writing or

lifted for non-writing movements. The joints are actuated

by DC motors and controlled using simple proportional

controllers. An inverse kinematics model converts tabular

end-effector position data – linearly interpolated between

setpoints – into the corresponding joint angles.

The SCARA robot is modeled as 2D mechanical system

and the writing process is modeled by applying a defined

normal force, rather than implementing actual pen move-

ment and collision considerations. Most importantly, no

friction between the paper and the pen is model, but is

supposed to be learned within the PeN-ODE. An equiv-

alent Modelica model is illustrated in Figure 5. As ref-

erence data, simulation results from the robot containing

Stribeck friction between end effector and paper, writing

the words "train" and "validate" are available. To render

a realistic scenario, we will only use motor currents as

the available measurement outputs, since those signals are

commonly available quantities and most importantly con-

tain the friction force resp. acceleration information.

4.2 Model generation

As already mentioned at the beginning of this section,

we employ ModelingToolkit.jl, to actually start from an

object-oriented simulation model of the SCARA robot.

Apart from own model implementations, models from

the Modeling Toolkit Standard Library9 were employed.

Utilizing the Modelica PlanarMechanics library (Zimmer

2012) as a blueprint, necessary components for the me-

chanical system were implemented in ModelingToolkit.jl.

All files reproducing the example can be found in the cor-

responding github repository10

As proposed previously, we insert a place holder func-

tion in the end effector model and consider only the known

quantities within the component, i.e. end effector veloc-

ity in x- and y-direction and the normal force to the pa-

per plane, to allow for the reuse of the trained subsystem,

see Listing 3. Please note that "∼" is used as the equal-

ity sign in ModelingToolkit.jl and the Modelica "der()"-

operator corresponds to the "D()"-operator in the listing.

NN_dummy refers to the place holder function that will

be replaced after code generation. Its implementation is

9https://github.com/SciML/ModelingToolkit.jl
10https://github.com/AndreasHofmann217/ScaraRobotExample
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Figure 5. Illustration of the SCARA robot as Modelica model

similar to the previously mentioned workflow with anno-

tation "Inline=false" from the Modelica specification.

ModelingToolkit.jl does generate an ODE system for

models that can be represented by a structure incidence

matrix with lower triangular form after transformation and

a DAE system in mass matrix form otherwise. For the

SCARA robot model a DAE system is generated, whose

code is further adapted by us. The mass matrix, parameter

information, and modified right-hand side functions are

exported to a new Julia file, that will later be used within

our training pipeline.

Listing 3. trainable end effector model

@mtkmodel TrainableTCP begin

@variables begin

x(t)

y(t)

vx(t)

vy(t)

f(t)[1:2]

end

@components begin

frame_a = Frame()

zForceIn = Blocks.RealInput()

posXOut = Blocks.RealOutput()

posYOut = Blocks.RealOutput()

end

@equations begin

frame_a.tau ~ 0.0

frame_a.fx ~ f[1]

frame_a.fy ~ f[2]

frame_a.x ~ posXOut.u

frame_a.y ~ posYOut.u

frame_a.x ~ x

frame_a.y ~ y

D(x) ~ vx

D(y) ~ vy

f ~ NN_dummy(1.0,vx,vy,zForceIn.u)

end

end

4.3 ML model and PeN-ODE training

For learning the friction forces from the applied normal

force and the velocities at the end effector, a Neural Net-

work is employed as ML model. It is built using an MLP

with three hidden layers, 32 neurons and tanh as the ac-

tivation function. To scale input features (velocity in x-

and y-direction, normal force onto the paper) as well as

the output features (friction forces in x- and y-direction),

a layer adding z-score standardization resp. another layer

providing inverse transformation for the output features

are added. However, those layers do not contain fixed val-

ues for means and standard deviations but are rather train-

able parameters as well. As a last measure, a trainable

gate, initialized with start value of zero is added. This

guarantees that the randomly initialized network does pro-

vide stable output during the first training steps. The com-

plete architecture is depicted in Figure 6.

The model is trained using a single trajectory, with the

word "train" written by the SCARA robot, cf. Figure 7

vxvy fz

z-Score

6 parameters

1250 parameters

z-1-Score

4 parameters

Gate

1 parameter

fx fy

Figure 6. Employed ML model for the SCARA robot and the in-

dividual number of trainable parameters for the individual parts
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Currently, only single-step solvers can be employed for

the hybrid DAE of the SCARA during gradient calcula-

tion11. Therefore, we use Rodas5P, a fifth order Rosen-

brock method from within DifferentialEquations.jl, as nu-

merical method.

The trajectory is split into samples of 50 ms length and

gradients are calculated over the solution of randomly se-

lected single samples. The sampling is done for various

reasons. On the one side, it helps to increase training

speed, since gradients over a short elapsed time can be cal-

culated faster and have lower requirements for computer

hardware. Additionally, using stochastic examples helps

to better progress in the beginning of the optimization,

while calculating only gradients for a few examples, cf.

(Goodfellow, Bengio, and Courville 2016). On the other

side, since the calculated gradients combine all deviations

across the simulated period, shorter time spans support

capturing highly dynamic details. The Adam optimizer

(Kingma and Ba 2015) with default settings was used for

updating parameters. For loss accumulating Mean Ab-

solute Error (MAE) aggregation was chosen, considering

motor currents as quantities as available signals, as stated

above. As algorithm for deriving the gradients of the DAE

ReverseDiffAdjoint from the package SciMLSensitivity.jl

(Rackauckas, Ma, et al. 2021) was selected.

The system was trained for 5000 steps on a laptop with

i7-11850H CPU, 32 GB RAM and Win11 as OS, which

took about two hours. Details on the used Julia packages

can be found in the corresponding GitHub repository.

Figure 7. Training trajectory (end effector) for the SCARA

robot (without distinguishing actually applied forces for writ-

ing)

4.4 Training results

Please note that no extensive effort, e.g. through hyper-

parameter analysis, was spent on the model. The results

are purely derived to motivate and validate a PeN-ODE

workflow, rather than to provide the best possible model

outcome. Nonetheless, to anticipate some results of the

trained model, the MAE for the combined model states is

reduced by a factor greater than 4, while the Mean Squared

11this is due to the discontinuous setpoint data and a bug during ini-

tialization of the DAE

Error (MSE) is reduced by a factor larger than 11, each for

the chosen test trajectory.

As test data for the SCARA robot application, the word

"validate" has been selected. In Figure 8, the model with

and without training are compared to the reference data for

the end effector position. The further the SCARA arms is

extended, the more impact from friction is visible. The

common error metrics MAE and MSE show a significant

reduction in deviations. An overview for the aggregated

model and individual states is collected in Table 1.

Table 1. Error metrics of the trained PeN-ODE compared to the

original model (in brackets) for the test data trajectory.

state MAE MSE

complete model 7.76e-03 4.47e-04

[−] (3.61e-02) (5.19e-03)

motor1.ϕ 1.69e-04 1.17e-07

[rad] (1.26e-03) (2.87e-06)

motor1.i 1.40e-02 1.04e-03

[A] (9.39e-02) (1.61e-02)

motor1.ω 5.59e-03 2.34e-04

[rad/s] (1.62e-02) (1.27e-03)

motor2.ϕ 3.40e-04 3.92e-07

[rad] (1.67e-03) (5.31e-06)

motor2.i 1.63e-02 9.58e-04

[A] (7.60e-02) (1.11e-02)

motor2.ω 1.01e-02 4.55e-04

[rad/s] (2.76e-02) (2.70e-03)

A more detailed insight on the expressiveness of the

PeN-ODE can be gained from the plots of the motor cur-

rents, see Figure 9 and Figure 10, as well as from the

applied friction forces in the model, cf. Figure 11 and

Figure 12. The model still holds some limitation w.r.t.

force in x-direction, probably limited by the scalar gate.

Furthermore, the friction forces during the start of the sim-

ulation, although no normal force is present, would re-

quire some further investigation on the training. Also, no

further study on the impact of partly implementing physi-

cal effects, such as explicitly providing Coloumb friction,

was conducted. This remains to be investigated in detail

in the future. Yet, a first study on partially modelling fric-

tion, based on NeuralFMUs, was executed by Thummerer,

Kolesnikov, et al. (2023).

From an object-oriented modeling perspective, the ma-

chine learning component can be seamlessly reintegrated

into the end effector by replacing the placeholder func-

tion with the actual implementation containing the trained

parameters. As previously noted, keeping these parame-

ters independent of the compiler contributes to maintain-

ing fast compilation times. Since only internal variables

and inputs of the end effector component were utilized

within the hybrid architecture, the component remains

fully reusable in other applications – such as robots with

different mechanical structures – without requiring further

modifications.
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Figure 8. Comparison of the trained and untrained model writ-

ing the word validate (without distinguishing actually applied

force)

Figure 9. Comparison of Motor currents at Motor 1

Figure 10. Comparison of Motor currents at Motor 2

5 Summary and Outlook

Although Modelica and the corresponding tools are na-

tively incompatible with ML training environments such

as the Julia programming language, many solution ap-

proaches for bridging the gap towards creating, training

and applying of PeN-ODEs exist. Once a model is made

available in Julia, all necessary steps can be applied, which

was shown for the SCARA robot.

From the interfacing point of view, having an interme-

diate representation of the derived DAE system from a

Modelica compiler, reminiscent of Base Modelica, would

allow a universal starting point for arbitrary ML environ-

ments in Julia, Python or other languages but also for other

applications. Furthermore, Base Modelica, once avail-

able, could offer a convenient way from Modelica to Julia,

though it needs to be investigated if ModelingToolkit.jl is

capable of supporting all relevant Modelica language fea-

tures. Nonetheless, also tool vendor-specific implemen-

tations of Modelica compilers and simulation capabilities

and particularities of their individual simulation runtimes

might still pose challenges.

Figure 11. Comparison of friction force in x-direction

Figure 12. Comparison of friction force in y-direction

Apart from interfacing, new challenges, such as ap-

propriate training strategies and best suitable ML models

arise. While the example model was trained on a random

selection of data samples, more sophisticated approaches

such as dedicated scheduling algorithms for picking worst

elements from the training set or different strategies, such

as multiple shooting, growing horizon, et cetera, might ac-

celerate and improve training.

In particular, the aspects of reusability of PeN-ODE

components can facilitate the object-oriented approach

from methods such as NeuralFMU, which in contrast does

benefit from tool independence and bypasses the interfac-

ing issues. A Modelica-based approach would allow to

easily compose hierarchical systems of high fidelity PeN-

ODEs.

Furthermore, the appropriate ratio of embedded

physically-based white box models, such as known parts

of friction, is an open research question for all hybrid mod-

els. Further studies are required to provide some indica-

tion, especially based on real-world problems.
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