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Abstract
We propose a novel approach for training Physics-
enhanced Neural ODEs (PeN-ODEs) by expressing the
training process as a dynamic optimization problem. The
full model, including neural components, is discretized us-
ing a high-order implicit Runge-Kutta method with flipped
Legendre-Gauss-Radau points, resulting in a large-scale
nonlinear program (NLP) efficiently solved by state-of-
the-art NLP solvers such as Ipopt. This formulation en-
ables simultaneous optimization of network parameters
and state trajectories, addressing key limitations of ODE
solver-based training in terms of stability, runtime, and
accuracy. Extending on a recent direct collocation-based
method for Neural ODEs, we generalize to PeN-ODEs,
incorporate physical constraints, and present a custom,
parallelized, open-source implementation. Benchmarks
on a Quarter Vehicle Model and a Van-der-Pol oscillator
demonstrate superior accuracy, speed, generalization with
smaller networks compared to other training techniques.
We also outline a planned integration into OpenModelica
to enable accessible training of Neural DAEs.
Keywords: Physics-enhanced Neural ODEs, Dynamic
Optimization, Nonlinear Programming, Modelica, Neural
ODEs, Universal Differential Equations

1 Introduction
Growing access to real-world data and advances in com-
putational modeling have opened new possibilities for
combining measured data with physics-based models.
Neural Ordinary Differential Equations (NODEs) (Chen
et al. 2018) represent a significant advancement in merg-
ing data-driven machine learning with physics-based mod-
eling. By replacing the dynamics of an ODE with a neural
network

¤𝒙(𝑡) = 𝑁𝑁𝒑 (𝒙(𝑡),𝒖(𝑡), 𝑡), (1)

where 𝒙(𝑡) are states, 𝒖(𝑡) is a fixed input vector, and 𝒑 are
the neural network parameters, NODEs bridge the gap be-
tween traditional differential equations and modern deep
learning. After obtaining a NODE and given an initial
condition 𝒙(𝑡0) = 𝒙0, the state trajectory is reconstructed
by simulation with an arbitrary ODE solver

𝒙(𝑡) := ODESolve
(
𝑁𝑁𝒑 (𝒙(𝑡),𝒖(𝑡), 𝑡),𝒙0

)
. (2)

However, learning the full dynamics can be unstable,
requires a lot of data, and can suffer from poor extrapo-
lation (Kamp, Ultsch, and Brembeck 2023). As a result,
hybrid modeling is an emerging field that combines the
flexibility of neural networks with known physics and first
principle models. Extensions like Universal Differential
Equations (UDEs) (Rackauckas et al. 2020) or Physics-
enhanced Neural ODEs (PeN-ODEs) (Kamp, Ultsch, and
Brembeck 2023; Sorourifar et al. 2023) generalize this
paradigm, allowing domain-specific knowledge to be in-
corporated into the model while still learning observable
but unresolved effects. These approaches have demon-
strated great success in various fields, including vehicle
dynamics (Bruder and Mikelsons 2021; Thummerer, Stol-
jar, and Mikelsons 2022), chemistry (Thebelt et al. 2022),
climate modeling (Ramadhan et al. 2023), and process op-
timization (Misener and L. Biegler 2023).

Training neural components typically involves simulat-
ing (2) for some initial parameters 𝒑 and then propagat-
ing sensitivities of the ODE solver backward in each it-
eration. Afterward, the parameters are updated via gra-
dient descent. This process is computationally expensive
and results in long training times (Lehtimäki, Paunonen,
and Linne 2024; Roesch, Rackauckas, and Stumpf 2021;
Shapovalova and Tsay 2025), as explicit integrators are
low-order and unstable, requiring small step sizes, while
stable, implicit integrators involve solving nonlinear sys-
tems at each step, thus being computationally demanding.

To address these enormous training times several alter-
native procedures have been proposed: in (Roesch, Rack-
auckas, and Stumpf 2021) a collocation technique is in-
troduced, which approximates the right hand side (RHS)
of an ODE from data. The NN is then trained on the ap-
proximations with standard training frameworks. Further,
in (Lehtimäki, Paunonen, and Linne 2024) model order
reduction is used to accurately simulate the dynamics in
low-dimensional subspaces. Very recent work presented
in (Shapovalova and Tsay 2025) introduced global direct
collocation with Chebyshev nodes, a method originating
from dynamic optimization for optimal control and pa-
rameter optimization, for training Neural ODEs. The ap-
proach reduces the continuous training problem to a large
finite dimensional nonlinear program (NLP) and shows
fast and stable convergence, demonstrated on a typical
problem, the Van-der-Pol oscillator.
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In Modelica-based workflows, the training of Neural
ODEs is typically performed externally by exporting a
Functional Mock-Up Unit (FMU), subsequently training it
in Python or Julia using standard machine learning frame-
works and ODE solvers, and finally re-importing the hy-
brid model. While this approach introduces external de-
pendencies and additional transformation steps, the Neu-
ralFMU workflow (Thummerer, Stoljar, and Mikelsons
2022) demonstrates a practical method for integrating hy-
brid models into real-world applications.

Building on recent advances in direct collocation-based
training of Neural ODEs (Shapovalova and Tsay 2025),
we significantly extend the approach to PeN-ODEs. We
formulate the training process as a dynamic optimiza-
tion problem and discretize both neural and physical com-
ponents using a stable, high-order implicit collocation
scheme at flipped Legendre-Gauss-Radau (fLGR) points.
This results in a large but structured NLP, allowing ef-
ficient, simultaneous optimization of states and parame-
ters. Our custom, parallelized implementation leverages
second-order information and the open-source NLP solver
Ipopt (Wächter and L. T. Biegler 2006). It is designed for a
future integration into the open-source modeling and sim-
ulation environment OpenModelica (Fritzson, Pop, Ab-
delhak, et al. 2020), thus providing an accessible training
environment independent of external tools.

2 Dynamic Optimization for NODEs
In this section, we introduce a general class of dynamic
optimization problems (DOPs) and formulate training for
both NODEs and PeN-ODEs as instances of this class. We
then discuss the transcription of the continuous problem
into a large-scale nonlinear optimization problem (NLP).
Finally, necessary considerations and key challenges are
presented.

2.1 Generic Problem Formulation
Consider the DOP

min
𝒑

𝑀 (𝒙(𝑡0),𝒙(𝑡 𝑓 ), 𝒑) +
∫ 𝑡 𝑓

𝑡0

𝐿 (𝒙(𝑡), 𝒑, 𝑡) d𝑡 (3a)

s.t.

¤𝒙(𝑡) = 𝒇 (𝒙(𝑡), 𝒑, 𝑡) ∀𝑡 ∈ 𝑇 (3b)

𝒈𝐿 ≤ 𝒈(𝒙(𝑡), 𝒑, 𝑡) ≤ 𝒈𝑈 ∀𝑡 ∈ 𝑇 (3c)

𝒓𝐿 ≤ 𝒓 (𝒙(𝑡0),𝒙(𝑡 𝑓 ), 𝒑) ≤ 𝒓𝑈 (3d)

for a fixed time horizon 𝑇 = [𝑡0, 𝑡 𝑓 ] with time variable
𝑡 ∈ 𝑇 . The states of the system are given by 𝒙 : 𝑇 → R𝑑𝒙

and the goal is to find optimal time-invariant parameters
𝒑 ∈R𝑑𝒑 , such that the objective (3a) becomes minimal and
the constraints (3b)–(3d) are satisfied. These constraints
are divided into the ODE (3b) and path constraints (3c),
which both must be satisfied at all times on time horizon
𝑇 , as well as boundary constraints (3d), which must only
hold at the initial and final time points 𝑡0, 𝑡 𝑓 . The objective

is composed of a Mayer term 𝑀 , that defines a cost at the
boundary of 𝑇 , and a Lagrange term 𝐿, that penalizes an
accumulated cost over the entire time horizon. To ensure
compatibility with typical nonlinear optimizers, all model
functions must be twice continuously differentiable. This
includes neural networks, their activation functions, and
error measures. For completeness, the bounds of the
constraints are given as 𝒈𝐿 , 𝒈𝑈 ∈ (R∪ {−∞,∞})𝑑𝒈 and
𝒓𝐿 , 𝒓𝑈 ∈ (R∪ {−∞,∞})𝑑𝒓 .

2.2 Reformulation of PeN-ODE Training
PeN-ODEs embed one or more NNs with parameters 𝒑
into known, possibly equation-based, dynamics ¤𝒙(𝑡) =
𝝓(𝒙,𝒖, 𝑡). The resulting differential equation has the form

¤𝒙(𝑡) = 𝝓(𝒙,𝒖, 𝑡, 𝑁𝑁𝒑 (𝒙,𝒖, 𝑡)), (4)

where 𝒖 : 𝑇 → R𝑑𝒖 is a fixed input vector and 𝑁𝑁𝒑 are
enhancing NNs. This formalism aims to enhance systems
that already express dynamics based on first principles, by
further incorporating data-driven observables in form of
neural components. Clearly, these components need not
be NNs in general, and can be any parameter dependent
expression. With additional information about the prob-
lem, one could use a polynomial, rational function, sum
of radial basis functions or Fourier series.

The subsequent considerations also apply to the training
of NODEs, where the goal is to learn the full dynamics
without relying on a first principle model. This is evident
from the fact that NODEs are a subclass of PeN-ODEs
with

¤𝒙(𝑡) = 𝑁𝑁𝒑 (𝒙,𝒖, 𝑡) = 𝝓(𝒙,𝒖, 𝑡, 𝑁𝑁𝒑 (𝒙,𝒖, 𝑡)). (5)

In this paper, we propose a formulation for training
PeN-ODEs as a DOP (3a)–(3d), using known data trajec-
tories 𝒒̂ and the corresponding predicted quantity 𝒒. The
DOP takes the form

min
𝒑

∫ 𝑡 𝑓

𝑡0

𝐸
(
𝒒(𝒙,𝒖, 𝑡, 𝑁𝑁𝒑 (𝒙,𝒖, 𝑡)), 𝒒̂(𝑡)

)
d𝑡 (6a)

s.t.

¤𝒙(𝑡) = 𝝓(𝒙,𝒖, 𝑡, 𝑁𝑁𝒑 (𝒙,𝒖, 𝑡)) ∀𝑡 ∈ 𝑇 (6b)

for some smooth error measure 𝐸 , e.g. the squared 2-norm
𝐸 (𝒒, 𝒒̂) = ∥𝒒− 𝒒̂∥2

2. This formulation represents the mini-
mal setup.

By further incorporating the generic constraints (3c)
and (3d), it is possible to impose an initial or final condi-
tion on the states as well as enforce desired behavior. For
example, consider a NN approximation of a force element
𝑁𝑁𝐹 , with no force acting in its resting position. There-
fore, the NN should have a zero crossing, i.e. 𝑁𝑁𝐹 (0) = 0.
This can be trivially formulated as a constraint, without
introducing a penalty term that may distort the optimiza-
tion as in standard unconstrained approaches like (Kamp,
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Ultsch, and Brembeck 2023). Thus, the optimizer can
handle the constraint appropriately.

As the loss in (6a) is a continuous-time integral, it en-
ables an accurate and stable approximation using the same
discretization employed for the system dynamics. In con-
trast to MSE loss as in (Shapovalova and Tsay 2025),
which effectively corresponds to a first-order approxima-
tion of the integral, our formulation benefits from high-
order quadrature, potentially preserving the accuracy of
the underlying discretization.

2.3 Transcription with Direct Collocation
In the following, the general DOP (3a)–(3d) is reduced
to a NLP using orthogonal direct collocation. Direct col-
location approaches have proven to be highly efficient in
solving DOPs and are implemented in a variety of free
and commercial tools, such as PSOPT (Becerra 2010),
CasADi (Andersson et al. 2019) or GPOPS-II (Patterson
and A. V. Rao 2014), as well as in Modelica-based envi-
ronments like OpenModelica (Ruge et al. 2014) or JMod-
elica (Magnusson and Åkesson 2015). While OpenMod-
elica only supports optimal control problems, the other
frameworks allow for simultaneous optimization of static
parameters. Recent work in the field of NODEs (Shapo-
valova and Tsay 2025) shows that learning the right hand
side of small differential equations can be performed sta-
bly and efficiently using global collocation with Cheby-
shev nodes.

In direct collocation the states are approximated by
piecewise polynomials, that satisfy the differential equa-
tion at so-called collocation nodes, usually chosen as
roots of certain orthogonal polynomials. If the problem is
smooth and with increasing number of collocation nodes,
these methods achieve spectral, i.e. exponential, con-
vergence to the exact solution. In this paper, the collo-
cation nodes are chosen as the flipped Legendre-Gauss-
Radau points (fLGR) rescaled from [−1,1] to [0,1]. This
rescaling is performed, so that the corresponding colloca-
tion method is equivalent to the Radau IIA Runge-Kutta
method. Radau IIA has excellent properties, since it is 𝐴-,
𝐵- and 𝐿-stable and achieves order 2𝑚 − 1 for 𝑚 stages
or collocation nodes. These nodes 𝑐 𝑗 for 𝑗 = 1, . . . ,𝑚 are
given as the 𝑚 roots of the polynomial (1− 𝑡)𝑃 (1,0)

𝑚−1 (2𝑡 −
1), where 𝑃 (1,0)

𝑚−1 is the (𝑚 − 1)-th Jacobi polynomial with
𝛼 = 1 and 𝛽 = 0. A detailed explanation of the method’s
construction based on quadrature rules is given in (Lan-
genkamp 2024).

First, we divide the time horizon [𝑡0, 𝑡 𝑓 ] into 𝑛+1 inter-
vals [𝑡𝑖 , 𝑡𝑖+1] for 𝑖 = 0, . . . , 𝑛 with length Δ𝑡𝑖 := 𝑡𝑖+1 − 𝑡𝑖 . In
each interval [𝑡𝑖 , 𝑡𝑖+1] the collocation nodes 𝑡𝑖 𝑗 := 𝑡𝑖 +𝑐 𝑗Δ𝑡𝑖
for 𝑗 = 1, . . . ,𝑚𝑖 as well as the first grid point 𝑡𝑖0 := 𝑡𝑖 +
𝑐 𝑗Δ𝑡𝑖 with 𝑐0 = 0 are added. Since the last node 𝑐𝑚𝑖

= 1 is
contained in any Radau IIA scheme, the last grid point of
interval 𝑖−1 exactly matches the first grid point of interval
𝑖, i.e. 𝑡𝑖−1,𝑚𝑖−1 = 𝑡𝑖0. Furthermore, the states are approx-
imated as 𝒙(𝑡𝑖 𝑗) ≈ 𝒙𝑖 𝑗 and for each interval 𝑖 replaced by

a Lagrange interpolating polynomial 𝒙𝑖 (𝑡) =
∑𝑚𝑖

𝑗=0 𝒙𝑖 𝑗 𝑙 𝑗 (𝑡)
of degree 𝑚𝑖 , where

𝑙 𝑗 (𝑡) :=
𝑚𝑖∏
𝑘=0
𝑘≠ 𝑗

𝑡 − 𝑡𝑖𝑘
𝑡𝑖 𝑗 − 𝑡𝑖𝑘

∀ 𝑗 = 0, . . . ,𝑚𝑖 (7)

are the Lagrange basis polynomials. Note that the parame-
ters 𝒑 are time-invariant and thus, need not be discretized.
Each 𝒙𝑖 must satisfy the differential equation (3b) at the
collocation nodes 𝑡𝑖 𝑗 and also match the initial condition
𝒙𝑖0, which is given from the previous interval 𝑖 − 1. By
differentiating we get the collocated dynamics

0 =


𝐷 (1)

10 𝐼 . . . 𝐷 (1)
1𝑚𝑖

𝐼
...

. . .
...

𝐷 (1)
𝑚𝑖0𝐼 . . . 𝐷 (1)

𝑚𝑖𝑚𝑖
𝐼



𝒙𝑖0
...

𝒙𝑖𝑚𝑖

 −Δ𝑡𝑖


𝒇𝑖1
...

𝒇𝑖𝑚𝑖

 (8)

with identity matrix 𝐼 ∈ R𝑑𝒙×𝑑𝒙 , entries of the first differ-
entiation matrix 𝐷 (1)

𝑗𝑘
:= d𝑙𝑘

d𝜏 (𝑐 𝑗), where

𝑙𝑘 (𝜏) :=
𝑚𝑖∏
𝑟=0
𝑟≠𝑘

𝜏− 𝑐𝑟
𝑐𝑘 − 𝑐𝑟

∀𝑘 = 0, . . . ,𝑚𝑖 , (9)

and the RHS of the ODE 𝒇𝑖 𝑗 := 𝒇 (𝒙𝑖 𝑗 , 𝒑, 𝑡𝑖 𝑗). The numer-
ical values of 𝐷 (1)

𝑗𝑘
can be calculated very efficiently with

formulas provided in (Schneider and Werner 1986).
Approximating 𝐿 is analogous to discretizing the dif-

ferential equation. This is done by replacing the integral
with a Radau quadrature rule of the form∫ 𝑡 𝑓

𝑡0

𝐿 (𝒙(𝑡), 𝒑, 𝑡) d𝑡 ≈
𝑛∑︁
𝑖=0

Δ𝑡𝑖

𝑚𝑖∑︁
𝑗=1

𝑏 𝑗𝐿 (𝒙𝑖 𝑗 , 𝒑, 𝑡𝑖 𝑗), (10)

where the quadrature weights are given by

𝑏 𝑗 =
∫ 1

0

𝑚𝑖∏
𝑘=1
𝑘≠ 𝑗

𝜏− 𝑐𝑘
𝑐 𝑗 − 𝑐𝑘

d𝜏 ∀ 𝑗 = 1, . . . ,𝑚𝑖 . (11)

𝑀 and the boundary constraints (3d) are approxi-
mated by replacing the values on the boundary with
their discretized equivalents, i.e. 𝑀 (𝒙(𝑡0),𝒙(𝑡 𝑓 ), 𝒑) ≈
𝑀 (𝒙00,𝒙𝑛𝑚𝑛

, 𝒑) and 𝒓 (𝒙(𝑡0),𝒙(𝑡 𝑓 ), 𝒑) ≈ 𝒓 (𝒙00,𝒙𝑛𝑚𝑛
, 𝒑),

while the path constraints (3c) are evaluated at all nodes,
i.e. 𝒈(𝒙(𝑡𝑖 𝑗), 𝒑, 𝑡𝑖 𝑗) ≈ 𝒈(𝒙𝑖 𝑗 , 𝒑, 𝑡𝑖 𝑗).
2.4 Training with Nonlinear Programming
By flattening the collocated dynamics (8), we obtain the
discretized DOP (3a)–(3d) of the form

min
𝒙𝑖 𝑗 ,𝒑

𝑀 (𝒙00,𝒙𝑛𝑚𝑛
, 𝒑) +

𝑛∑︁
𝑖=0

Δ𝑡𝑖

𝑚𝑖∑︁
𝑗=1

𝑏 𝑗𝐿 (𝒙𝑖 𝑗 , 𝒑, 𝑡𝑖 𝑗) (12a)
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s.t.

0 =
𝑚𝑖∑︁
𝑘=0

𝐷 (1)
𝑗𝑘
𝒙𝑖𝑘 −Δ𝑡𝑖 𝒇 (𝒙𝑖 𝑗 , 𝒑, 𝑡𝑖 𝑗) ∀𝑖,∀ 𝑗 ≥ 1 (12b)

𝒈𝐿 ≤ 𝒈(𝒙𝑖 𝑗 , 𝒑, 𝑡𝑖 𝑗) ≤ 𝒈𝑈 ∀𝑖,∀ 𝑗 ≥ 1 (12c)

𝒓𝐿 ≤ 𝒓 (𝒙00,𝒙𝑛𝑚𝑛
, 𝒑) ≤ 𝒓𝑈 (12d)

This large-scale NLP (12a)–(12d) can be implemented
and solved efficiently in nonlinear optimizers such as
Ipopt (Wächter and L. T. Biegler 2006), SNOPT (P. E. Gill
et al. 2007; Philip E. Gill, Murray, and Saunders 2005) or
KNITRO (Byrd, Nocedal, and Waltz 2006). These NLP
solvers exploit the sparsity of the problem as well as the
first and second order derivatives of the constraint vector
and objective function to converge quickly to a suitable
local optimum.

The open-source interior-point method Ipopt requires
the already mentioned first derivatives and, in addition,
the Hessian of the augmented Lagrangian at every itera-
tion. Since the derivatives only need to be evaluated at
the collocation nodes, there is no need to propagate them
as in traditional ODE solver-based training. Furthermore,
training with ODE solvers usually limits itself to first or-
der derivatives and therefore, does not utilize higher order
information as in the proposed approach.

The resulting so-called primal-dual system is then
solved using a linear solver for symmetric indefinite sys-
tems, such as the open-source solver MUMPS (Amestoy
et al. 2001) or a proprietary solver from the HSL suite
(HSL 2013), after which an optimization step is per-
formed. This step updates all variables 𝒙𝑖 𝑗 , 𝒑 simultane-
ously, allowing for direct observation and adjustment of
intermediate values. In contrast, ODE solver training only
captures the final result after integrating the dynamics over
time, without the ability to directly influence intermediate
states during the optimization process. Because this lin-
ear system must be solved in every iteration anyway, high
order, stable, implicit Runge-Kutta collocation methods,
e.g. Radau IIA, can be embedded with only limited over-
head. As a result, the NLP formulation overcomes key
limitations of explicit ODE solvers in terms of order, sta-
bility, and allowable step size. Moreover, since the solver
performs primal and dual updates, the solution does not
need to remain feasible during the optimization, in con-
trast to ODE solver approaches where the dynamics (3b)
are enforced at all times through forward simulation. This
results in both advantages and disadvantages: On the one
hand, it enables more flexible and aggressive updates, po-
tentially accelerating convergence. On the other hand, it
may lead to intermediate solutions that temporarily vio-
late physical consistency or produce invalid function eval-
uations, which require careful handling.

For a comprehensive overview of nonlinear program-
ming, interior-point methods, and their application to
collocation-based dynamic optimization, we refer inter-
ested readers to (L. T. Biegler 2010) and the Ipopt imple-
mentation paper (Wächter and L. T. Biegler 2006).

2.5 Challenges and Practical Aspects
We identify four main challenges in training PeN-ODEs
using the proposed direct collocation and nonlinear pro-
gramming approach. These challenges are closely related
to those encountered in conventional PeN-ODE or general
NN training.

2.5.1 Grid Selection

The choice of time grid {𝑡0, . . . , 𝑡𝑛+1} and the number
of collocation nodes per interval 𝑚𝑖 are crucial for both
the accuracy and efficiency of the training process. In
practice, the grid can either be chosen equidistant or tai-
lored to the specific problem. While equidistant grids
are straightforward to implement and often sufficient for
well-behaved systems, non-equidistant grids may reduce
computational costs while capturing the dynamics more
efficiently. Placing more intervals with low degree col-
location polynomials in regions of rapid state change can
improve approximation quality without unnecessarily in-
creasing the problem size. Similarly, in well-behaved re-
gions, it is feasible to perform larger steps with more
collocation nodes. Because the collocation scheme and
grid are embedded into the NLP, these must be given a-
priori. This leaves room for future developments of adap-
tive mesh refinement methods with effective mesh size re-
duction, which have already shown great success for opti-
mal control problems (Zhao and Shang 2018; Liu, Hager,
and A. Rao 2015).

2.5.2 Initial Guesses

Due to the size and possible nonlinearity of the result-
ing NLP, the choice of initial guesses has a strong in-
fluence on convergence behavior. Unlike classical NN
training, where poor initialization primarily affects con-
vergence speed, the constrained nature of the transcribed
dynamic optimization problem can lead to poor local op-
tima or even solver failure. It is therefore of high impor-
tance to perform informed initializations for the states 𝒙𝑖 𝑗
and, if possible, for the NN parameters 𝒑.

One practical approach to obtain the required param-
eter guesses is to first train the network on a small, rep-
resentative subset of the full dataset using constant ini-
tial values for both the states and parameters. The op-
timized parameters resulting from this reduced problem
then serve as informed initial guesses for the full training
problem. Consequently, the states are obtained by simu-
lation, i.e. 𝒙(𝑡) := ODESolve

(
𝝓(𝒙,𝒖, 𝑡, 𝑁𝑁𝒑 (𝒙,𝒖, 𝑡),𝒙0)

)
and 𝒙𝑖 𝑗 := 𝒙(𝑡𝑖 𝑗) for a given initial condition 𝒙(𝑡0) = 𝒙0.
By construction, the collocated dynamic constraints (12b)
are satisfied, leading to improved convergence and stabil-
ity in the full NLP.

Clearly, this strategy does not work in general. How-
ever, in simple cases where the model can be decom-
posed and the NN’s input-output behavior is observable,
e.g. if model components should be replaced by a neu-
ral surrogate, the NN can be pre-trained using standard
gradient descent. This yields reasonable initial guesses
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for the parameters and states by simulation, which can
then be integrated into the constrained optimization prob-
lem. Another pre-training strategy could be the collo-
cation technique proposed in (Roesch, Rackauckas, and
Stumpf 2021). Still, developing general, effective strate-
gies to obtain reasonable initial guesses is one of the key
challenges and limiting factors we identify for the general
application of this approach.

2.5.3 Batch-wise Training

Standard ML frameworks employ batch learning to effi-
ciently split up data. This is not as straightforward when
training with the approach described here. One might as-
sume that the entire dataset must be included in a single
discretized DOP. However, recent work (Shapovalova and
Tsay 2025) demonstrates that batch-wise training is pos-
sible and promises significant potential. The Alternating
Direction Method of Multipliers (ADMM) (Boyd et al.
2011) allows decomposing the optimization problem into
smaller subproblems that can be trained independently,
while enforcing consensus between them. This allows for
memory-efficient training and opens up the possibility of
handling larger models or learning from multiple data tra-
jectories simultaneously.

2.5.4 Training of Larger Networks

While computing Hessians of NNs is generally expensive,
it is tractable for small networks. To reduce computational
effort for larger networks, it might be reasonable to use
partial Quasi-Newton approximations such as SR1, BFGS
or DFP (L. T. Biegler 2010) to approximate the dense parts
of the augmented Lagrangian Hessian 𝐻, e.g. the blocks
𝐻𝒙𝑖 𝑗 ,𝒑 and 𝐻𝒑𝒑, or solely 𝐻𝒑𝒑. These blocks, which
contain derivatives with respect to the NN parameters,
are computationally expensive, while the block 𝐻𝒙𝑖 𝑗 ,𝒙𝑖 𝑗 ,
which contains second derivatives with respect to the col-
located states, is extremely sparse and comparably cheap.
A Quasi-Newton approximation of the block 𝐻𝒙𝑖 𝑗 ,𝒙𝑖 𝑗 is
therefore disadvantageous. The sparsity can be exploited
by computing this block analytically and using it directly
in the Quasi-Newton update. An implementation of this
partial update using the SR1 Quasi-Newton method is
straightforward. Instead of one expensive symmetric rank-
one update for the entire Hessian 𝐻, one cheap symmetric
rank-one update for 𝐻𝒑𝒑 and one general rank-one update
for 𝐻𝒙𝑖 𝑗 ,𝒑 are needed.

This procedure significantly reduces the cost of the
Hessian, while still providing fairly detailed derivative in-
formation. SR1 is particularly advantageous here, as it
can represent indefinite Hessians, which is favorable when
dealing with highly nonlinear functions.

Since our current examples perform well with small
NNs, we do not explore larger networks in this paper.
However, we anticipate that such Quasi-Newton strate-
gies will be necessary in future work with larger networks.
Very recent work (Lueg et al. 2025) independently ex-
presses similar ideas, highlighting the potential of the ap-

proach.

3 Implementation
The generic DOP (3a)–(3d) and its corresponding NLP
formulation (12a)–(12d) are implemented in the custom
open-source framework GDOPT (Langenkamp 2024),
which is publicly available.1 For neural network training
the code has been extended, including predefined para-
metric blocks such as neural networks, support for data
trajectories and parallelized optimizations. This extended,
experimental version is also publicly available.2

3.1 GDOPT
GDOPT (General Dynamic Optimizer) consists of two
main components: an expressive Python-based package
gdopt and an efficient C++ library libgdopt. The Python
interface provides an user-friendly modeling environment
and performs symbolic differentiation and code genera-
tion. Symbolic expressions are optimized using common
subexpression elimination via SymEngine3, and the re-
sulting expressions together with first and second deriva-
tives are translated into efficient C++ callback functions
for runtime evaluation. In the present implementation,
all expressions are flattened, resulting in large code, espe-
cially for the Hessian. Note that keeping NNs vectorized
and employing symbolic differentiation rules with prede-
fined NN functions offers significant advantages.

The library libgdopt implements a generalized ver-
sion of the NLP (12a)–(12d) using Radau IIA collocation
schemes, while also supporting optimal control problems.
It is interfaced with Ipopt to solve the resulting nonlin-
ear programs. Both symbolic Jacobian and Hessian rely
on exact sparsity patterns discovered in the Python inter-
face. Additional functionality includes support for nom-
inal values, initial guesses, runtime parameters, mesh re-
finements, plotting utilities, and special functions. A de-
tailed overview of features and modeling is provided in
the GDOPT User’s Guide4.

Nevertheless, GDOPT lacks important capabilities that
established modeling languages and tools offer, such as
object-oriented, component-based modeling and support
for differential-algebraic equation (DAE) systems. It is
possible to model DAEs by introducing control variables
for algebraic variables. However, this approach increases
the workload and size of the NLP and may lead to insta-
bilities.

3.2 Parallel Callback Evaluations
Since in every optimization step, the function evaluations
as well as first and second derivatives of all NLP compo-
nents (12a)–(12d) must be provided to Ipopt, an efficient
callback evaluation is crucial to accelerate the training.

1https://github.com/linuslangenkamp/GDOPT
2https://github.com/linuslangenkamp/GDOPT_DEV
3https://github.com/symengine/symengine
4https://github.com/linuslangenkamp/GDOPT/

blob/master/usersguide/usersguide.pdf

Session: Modelica & AI in Track for Control & AI 

DOI Proceedings of the 16th International Modelica&FMI Conference  449 
10.3384/ecp218445 September 8-10, 2025, Lucerne, Switzerland   

https://github.com/linuslangenkamp/GDOPT
https://github.com/linuslangenkamp/GDOPT_DEV
https://github.com/symengine/symengine
https://github.com/linuslangenkamp/GDOPT/blob/master/usersguide/usersguide.pdf
https://github.com/linuslangenkamp/GDOPT/blob/master/usersguide/usersguide.pdf


Note that these callbacks themselves consist of the con-
tinuous functions evaluated at all collocation nodes. For
simplicity we write 𝒛𝑖 𝑗 := [𝒙𝑖 𝑗 , 𝒑]𝑇 for the variables at a
given collocation node and, in addition,

𝝍(𝒙, 𝒑, 𝑡) := [𝐿 (·), 𝒇 (·), 𝒈(·)]𝑇 (13)

for the vector of functions that are evaluated at all nodes.
Clearly, the required callbacks

𝝍
��
𝑧𝑖 𝑗

∇𝝍
��
𝑧𝑖 𝑗

∇2𝝍
��
𝑧𝑖 𝑗

∀𝑖 ∀ 𝑗 ≥ 1

are independent with respect to the given collocation
nodes 𝑡𝑖 𝑗 and thus, allow for a straightforward paralleliza-
tion. In the extension of GDOPT, we use OpenMP (Chan-
dra et al. 2001) to parallelize the callback evaluations re-
quired by Ipopt. Depending on the specific callback, i.e.
objective function, constraint violation, gradient, Jaco-
bian, or Hessian of the augmented Lagrangian, a separate
omp parallel for loop is used to evaluate the corre-
sponding components at all collocation nodes. This design
results in a significant reduction in computation time, es-
pecially for the comparably expensive dense derivatives of
neural components.

4 Performance
In order to test the proposed training method and paral-
lel implementation, two example problems are considered.
The first example is the Quarter Vehicle Model (QVM)
from (Kamp, Ultsch, and Brembeck 2023), where an
equation-based model is enhanced with small neural com-
ponents, such that physical behavior is represented more
accurately. The second example is a standard NODE,
where the dynamics of a Van-der-Pol oscillator (Roesch,
Rackauckas, and Stumpf 2021) are learned purely from
data. In both cases, the experimental setup closely follows
the configurations used in the respective paper. Training
is performed on a laptop running Ubuntu 24.04.2 with In-
tel Core i7-12800H (20 threads), 32 GB RAM and using
GCC v13.3.0 with flags -O3 -ffast-math for com-
pilation, while MUMPS (Amestoy et al. 2001) is used to
solve linear systems arising from Ipopt (Wächter and L. T.
Biegler 2006). All dependencies are free to use and open-
source.

4.1 Quarter Vehicle Model
We follow the presentation in (Kamp, Ultsch, and Brem-
beck 2023) for an overview of the model and the data
generation process. The Quarter Vehicle Model (QVM)
captures the vertical dynamics of a road vehicle by mod-
eling one wheel and the corresponding quarter of the ve-
hicle body. It consists of two masses connected by spring-
damper elements representing the suspension and tire dy-
namics. The linear base model is described by the differ-
ential equations ¤𝑧𝑟 = 𝑢, ¤𝑧𝑏 = 𝑣𝑏, ¤𝑧𝑤 = 𝑣𝑤 , and

¤𝑣𝑏 := 𝑎𝑏 = 𝑚−1
𝑏 (𝑐𝑠Δ𝑧𝑠 + 𝑑𝑠Δ𝑣𝑠) (14a)

¤𝑣𝑤 := 𝑎𝑤 = 𝑚−1
𝑤 (𝑐𝑡Δ𝑧𝑡 + 𝑑𝑡Δ𝑣𝑡 − 𝑐𝑠Δ𝑧𝑠 − 𝑑𝑠Δ𝑣𝑠) (14b)

where Δ𝑧𝑠 = 𝑧𝑤 − 𝑧𝑏, Δ𝑣𝑠 = 𝑣𝑤 − 𝑣𝑏, Δ𝑧𝑡 = 𝑧𝑟 − 𝑧𝑤 , Δ𝑣𝑡 =
𝑢 − 𝑣𝑤 . In addition, 𝑚𝑤 is the mass of the wheel, 𝑚𝑏

is mass of the quarter body, and 𝑐𝑠 and 𝑑𝑠 are the co-
efficients of the linear spring-damper pair between these
masses, modeling the suspension. Furthermore, 𝑐𝑡 and 𝑑𝑡
define an additional linear spring-damper pair between the
tire and ground. The state vector 𝒙 = [𝑧𝑏, 𝑧𝑤 , 𝑣𝑏, 𝑣𝑤 , 𝑧𝑟 ]𝑇
contains the positions of the body 𝑧𝑏 and wheel 𝑧𝑤 , their
velocities 𝑣𝑏 and 𝑣𝑤 , and the road height 𝑧𝑟 . The dif-
ferential road height ¤𝑧𝑟 = 𝑢 is given as an input and the
observable outputs 𝑦 = [𝑎𝑤 , 𝑎𝑏] measure the wheel and
body accelerations. A corresponding Modelica model of
the linear QVM is depicted in Figure 1. (Kamp, Ultsch,
and Brembeck 2023)

Figure 1. Modelica Models of the Linear (without boxes) and
Neural (with boxes) QVM. Modified from T. Kamp.

4.1.1 Data Generation
The linear model is extended by introducing two addi-
tional nonlinear forces between both masses, a transla-
tional friction force 𝐹 𝑓 𝑟 and a progressive spring charac-
teristic 𝐹𝑝𝑟 . These nonlinear components are introduced
only for data generation, creating a more complicated,
nonlinear model whose behavior deviates from the known
base dynamics. Therefore, the differential equations (14a)
and (14b) become

¤𝑣𝑏 = 𝑚−1
𝑏

(
𝑐𝑠Δ𝑧𝑠 + 𝑑𝑠Δ𝑣𝑠 +𝐹𝑝𝑟 (Δ𝑧𝑠) +𝐹 𝑓 𝑟 (Δ𝑣𝑠)

)
(15a)

¤𝑣𝑤 = 𝑚−1
𝑤 (𝑐𝑡Δ𝑧𝑡 + 𝑑𝑡Δ𝑣𝑡 − 𝑐𝑠Δ𝑧𝑠 − 𝑑𝑠Δ𝑣𝑠

−𝐹𝑝𝑟 (Δ𝑧𝑠) −𝐹 𝑓 𝑟 (Δ𝑣𝑠)) (15b)

To generate data, a simulation of the nonlinear model for
an imitation of a realistic, rough road (ISO8608, Type D
(Múčka, Peter 2018)) is performed. The observables 𝑎𝑏
and 𝑎𝑤 as well as the states are disturbed by random Gaus-
sian noise and sampled with 1000 Hz for a 42 s trajectory
as in (Kamp, Ultsch, and Brembeck 2023).

4.1.2 Training Setup
The nonlinear components 𝐹 𝑓 𝑟 (Δ𝑣𝑠) and 𝐹𝑝𝑟 (Δ𝑧𝑠) intro-
duced for data generation are replaced by two neural net-
work surrogates 𝐹𝑁𝑁

𝑓 𝑟
(Δ𝑣𝑠) and 𝐹𝑁𝑁

𝑝𝑟 (Δ𝑧𝑠), illustrated in
Figure 1. The goal is to find suitable replacements that
minimize the mismatch between the simulated, disturbed
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outputs 𝑎̂𝑏 and 𝑎̂𝑤 of the nonlinear model and the ob-
served data during the optimization. As discussed before,
we write this objective as an integral over the entire time
horizon, i.e.

min
∫ 𝑡 𝑓

𝑡0

(
𝑎̂𝑏 − 𝑎𝑏
𝜎𝑎̂𝑏

)2
+
(
𝑎̂𝑤 − 𝑎𝑤
𝜎𝑎̂𝑤

)2
d𝑡, (16)

where 𝜎𝑎̂𝑏 and 𝜎𝑎̂𝑤 are corresponding standard deviations
of the data, ensuring that both accelerations contribute
equally to the objective. Furthermore, it is known that
both force elements have a zero crossing and therefore,
the additional constraints

𝐹𝑁𝑁
𝑓 𝑟 (0) = 0 and 𝐹𝑁𝑁

𝑝𝑟 (0) = 0 (17)

are simply added to the optimization problem.
We employ three different training strategies. At first,

both feedforward neural networks are trained directly on
the full trajectory using randomly initialized parameters,
while the initial state guesses are obtained from a simula-
tion of the linear model (I). Each network has the structure
1×5 → 5×5 → 5×1 and therefore, both nets contain just
92 parameters in total. We use the smooth squareplus ac-
tivation function

squareplus(𝑥) :=
𝑥 +

√
1+ 𝑥2

2
(18)

to ensure a twice continuously differentiable NN as re-
quired for Ipopt. In the second strategy (II), described in
Section 2.5.2, first an acceleration scheme is employed,
where the same networks are trained on a short segment
one eighth of the entire trajectory. After that, a simula-
tion of the neural QVM with the obtained parameters is
performed. The resulting states are used as initial guesses
in the subsequent optimization with full data. To show
that the surrogates need not be NNs and training can be
performed efficiently with other parameter-dependent ex-
pressions, the third strategy (III) uses rational functions
to model the unknown behavior. For instance, 𝐹 𝑓 𝑟 is re-
placed by

𝐹𝑅𝐶
𝑓 𝑟 (Δ𝑣𝑠) :=

∑𝑁
𝑘=0𝜔𝑘𝑇𝑘 (Δ𝑣𝑠)∑𝐷
𝑘=0 𝜃𝑘𝑇𝑘 (Δ𝑣𝑠)

, (19)

where 𝑇𝑘 is the 𝑘-th Chebyshev polynomial, 𝜔𝑘 and 𝜃𝑘 are
parameters to be optimized, and 𝑁 and 𝐷 are the numer-
ator and denominator degrees. For both rational functions
we choose 𝑁 = 𝐷 = 7, resulting in a total of merely 32
learnable parameters.

Since the QVM contains very fast dynamics due to
high-frequency excitations, in all cases the time horizon
is divided into a tightly spaced, equidistant grid of 2500
intervals and using a constant 5-step Radau IIA colloca-
tion scheme of order 9. This leads to a total of 12500
collocation nodes and more than 2.7×106 nonzeros in the
Jacobian and roughly 4.73× 106 nonzeros in the Hessian
of the large-scale NLP.

4.1.3 Results
Table 1 presents the training times for all strategies. Each
optimization was run for a maximum of 150 NLP itera-
tions and was automatically terminated early if no further
significant improvement in objective could be achieved.
We want to stress that all trainings, performed on a laptop,
are executed in under 7 minutes, compared to 4.5 hours
for the fastest optimization in (Kamp, Ultsch, and Brem-
beck 2023) using ODE solver-based training. Clearly, this
is also due to the fact that smaller neural components are
used. Furthermore, Figure 2 depicts the objective value
with respect to training time, where both the first and sec-
ond optimizations of (II) are concatenated.

Strategy Total Ipopt Callbacks

(I) 394.43 284.18 110.25

(II) - initial 26.75 15.08 11.67
(II) - final 173.06 124.65 48.41
(II) 199.81 139.73 60.07

(III) 34.96 27.10 7.85

Table 1. Training Times in Seconds
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Figure 2. Objective History with Respect to Training Time

Even though a poor initialization has been used and thus
the optimization required more time, the naive strategy (I)
converged stably to a suitable optimum with a similar ob-
jective as strategies (II) and (III). For this example, the
acceleration scheme (II) proves effective, since the initial
optimization for a shorter data trajectory takes just 26.75
s in total, and the subsequent initial guesses for states and
parameters become very good approximations of the real
solution. This can be observed in Figure 3 and Figure 4,
where the resulting neural surrogates are depicted. By per-
forming the second optimization, (II) effectively halves
the time required by strategy (I), i.e. less than 3.5 min-
utes, and furthermore results in indistinguishable neural
components.

Moreover, as seen in Figure 3 and Figure 4, the result-
ing very small NNs match the reference in almost perfect
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Figure 3. Neural and Reference Damper Characteristics
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Figure 4. Neural and Reference Spring Characteristics

accordance, correctly representing highly nonlinear parts
of the damper. These also generalize in a very natural way,
as can be seen from the behavior outside the vertical dotted
lines, which represent the first and second standard devia-
tions of the inputs to the nets. Performing simulations on
a new, unknown input road shows that the obtained PeN-
ODE from (II) matches the nonlinear reference model per-
fectly, as illustrated in Figure 5. Note that, our character-
istics of the damper and spring serve as even better sur-
rogates than those reported in (Kamp, Ultsch, and Brem-
beck 2023), despite using significantly smaller networks
and requiring considerably shorter training times. While
(Kamp, Ultsch, and Brembeck 2023) relied on larger mod-
els with longer ODE solver-based training, our approach
yields more accurate and better-generalizing results.

By having principal knowledge of the underlying char-
acteristics shown in Figure 3 and Figure 4, it is possible to
model observed behavior with minimal parameters. Since
the number of Hessian nonzeros grows quadratically with
the number of parameters, such knowledge of the proce-
dure can greatly benefit both training time and surrogate
quality. Therefore, consider simple rational functions as
an educated guess for both missing components. This
optimization, with 32 instead of 92 free parameters, is
performed in under 35 seconds without any acceleration
strategy. Moreover, the obtained surrogates are of mostly
equal quality to the NN components from (II), although
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Figure 5. Body Accelerations 𝑎𝑏 for Simulations of PeNODE
and Standard Models on a Type C Road (Múčka, Peter 2018)

Figure 4 shows that the rational function does not gener-
alize as well. Nevertheless, these results demonstrate that
unknown behavior may be expressed with fewer parame-
ters and yield equivalent quality.

4.1.4 Parallel Implementation
Finally, it is stressed that the parallel implementation, de-
scribed in Section 3.2, leads to 5.44 times less time taken
in the generated function callbacks. This yields a total
training time that is more than halved and clearly shows
that the implementation efficiently exploits the indepen-
dence of collocation nodes.

Method Total Ipopt Callbacks

GDOPT (default) 385.90 122.52 263.38
GDOPT (parallel) 173.06 124.65 48.41

Table 2. Comparison of Parallel and Sequential Optimization
Times in Seconds of (II) - final

4.2 Van-der-Pol Oscillator
To illustrate the ability of learning a full NODE, we fol-
low an example from (Roesch, Rackauckas, and Stumpf
2021), where a different kind of collocation method was
proposed. This method approximates the RHS of the
ODE with data, thus enabling faster, unconstrained train-
ing without the need for ODE solvers. Consider the Van-
der-Pol (VdP) oscillator

¤𝑥 = 𝑦 (20a)

¤𝑦 = 𝜇𝑦
(
1− 𝑥2

)
− 𝑥 (20b)

with 𝜇 = 1 and initial conditions 𝑥(𝑡0) = 2 and 𝑦(𝑡0) = 0.
Data generation is performed by simulating the dynamics
with OpenModelica (Fritzson, Pop, Abdelhak, et al. 2020)
on an equidistant grid with 200 intervals and artificially
perturbing the observed states by additive Gaussian noise.
To test sensitivities of the approach, we use 3 different
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levels of noise N(0,𝜎) to disturb the observable states,
i.e. no noise (𝜎 = 0), low noise (𝜎 = 0.1) and high noise
(𝜎 = 0.5).

The continuous DOP has the form

min
𝒑𝑥 ,𝒑𝑦

∫ 𝑡 𝑓

𝑡0

(𝑥𝜎 − 𝑥)2 + ( 𝑦̂𝜎 − 𝑦)2 d𝑡 +𝜆∥ 𝒑∥2
2 (21a)

s.t.
¤𝑥 = 𝑁𝑁 𝑥

𝒑𝑥
(𝑥, 𝑦) (21b)

¤𝑦 = 𝑁𝑁
𝑦
𝒑𝑦
(𝑥, 𝑦) (21c)

𝑥(𝑡0) = 2, 𝑦(𝑡0) = 0, (21d)

where 𝑥𝜎 , 𝑦̂𝜎 is the disturbed state data, 𝑁𝑁 𝑥
𝒑𝑥
(𝑥, 𝑦),

𝑁𝑁
𝑦
𝒑𝑦
(𝑥, 𝑦) are neural networks of the architecture 2 ×

5 → 5× 5 → 5× 1 with sigmoid activation function, 𝒑 =
[ 𝒑𝑥 , 𝒑𝑦]𝑇 are 102 learnable parameters, while 𝜆 > 0 is a
regularization factor to enhance stability.

As in (Roesch, Rackauckas, and Stumpf 2021), the
training is performed on a 7 second time horizon, thus
including a little over one period of the oscillator. Fur-
thermore, 500 intervals and the 5-step Radau IIA method
of order 9 are used. The initial guesses for the state vari-
ables are trivially chosen as the constant initial condition
and the NN parameters are initialized randomly. No accel-
eration strategy or simulation is used for educated initial
guesses. We set a maximum number of Ipopt iterations /
epochs of 200 and an optimality tolerance of 10−7.

4.2.1 Results

In almost all cases, the optimization terminates prema-
turely, since the optimality tolerance is fulfilled and thus,
a local optimum was found. The corresponding training
times are displayed in Table 3. Note that, because the high
noise (𝜎 = 0.5) leads to larger objective values, the regu-
larization 𝜆 is increased in this case. Nevertheless, the op-
timization with a total of 2500 discrete nodes is very rapid
and terminates in several seconds from an extremely poor
initial guess, while in some instances runs settle in poor
local optima. Clearly, more reasonable initial guesses and
sophisticated initialization strategies will further enhance
these times and stability.

𝜎 𝜆 Total Ipopt Callbacks #Epochs

0 10−4 8.17 5.95 2.22 80
0.1 10−4 7.69 5.60 2.09 76
0.5 10−3 13.49 9.79 3.70 134

Table 3. Training Times (in seconds) and Number of Ipopt Iter-
ations / Epochs of the Van-der-Pol Oscillator NNs

Figure 6 presents the simulation results and training
data for various levels of noise. It is evident that for no or
low noise, the solution obtained is virtually indistinguish-
able from the reference, which is quite impressive. Even
with high noise (𝜎 = 0.5), the Neural ODE remains close

to the true solution, showing significantly better perfor-
mance compared to the results reported in (Roesch, Rack-
auckas, and Stumpf 2021), where NODE and reference do
not align for 𝜎 ≥ 0.2. While smaller neural networks are
employed here, these compact models still demonstrate
exemplary performance and fast training, highlighting the
effectiveness of the approach under severe noise.
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Figure 6. Simulation Results of the Neural and Reference Mod-
els as well as the Data for 𝑦(𝑡)

To verify the robustness of the training procedure,
a comprehensive sensitivity analysis, consisting of 100
training runs for each noise level, was conducted. The re-
sults, detailed in the Appendix and Figure 10, demonstrate
that while all runs converge perfectly for the no-noise case
(𝜎 = 0) and approximately 95% show excellent agreement
under low noise (𝜎 = 0.1), as expected the robustness di-
minishes with high noise (𝜎 = 0.5). In these cases, sev-
eral runs converge to poor local optima or fail to converge,
leading to solutions with noticeable period and amplitude
mismatches or an outright collapse of the trajectory.

To further illustrate the obtained NODEs, we compare
the learned and true vector fields of the ODE[

𝑥
𝑦

]
↦→

[
𝑁𝑁 𝑥

𝒑𝑥
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]
,
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]
. (22)
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Figure 7. Neural (𝜎 = 0.5) and Reference Vector Fields of the
ODE and the Exact VdP Trajectory (dashed)

In Figure 7, we show the high-noise NODE, its train-
ing data, and the true vector field. Despite the heavily
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scattered observable states, the NODE still manages to re-
cover a vector field that aligns well with the true dynamics
in the vicinity of the solution trajectory.

Further comparison is given in Figure 8, where the
scalar fields visualize the 2-norm error between the neu-
ral and reference vector fields. The low-noise NODE
(𝜎 = 0.1) yields way smaller error values along the tra-
jectory, but even the high-noise model produces a fairly
accurate vector field in regions close to available training
data. As expected, generalization outside this domain re-
mains limited, but within the training region, the results
demonstrate strong consistency.
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Figure 8. Scalar Fields Representing the 2-Norm Error Between
the Neural (𝜎 = 0.5, 𝜎 = 0.1) and Reference Vector Fields (Val-
ues > 6 are white)

In addition to the local collocation approach with 500
intervals, we also reproduce the results in (Shapoval-
ova and Tsay 2025) using a global, spectral collocation
method. We employ a single interval with 70 fLGR nodes,
corresponding to Radau IIA of order 139. This high-order
global formulation yields an approximation of equal qual-
ity to the figures above, even under high noise (𝜎 = 0.5).
Furthermore, the optimization terminates in outstandingly
fast time, i.e. under 1.2 seconds. This demonstrates the re-
markable efficiency and accuracy of spectral methods for
such smooth problems.

5 Future Work
Although OpenModelica currently includes an optimiza-
tion runtime implementing direct collocation (Ruge et al.
2014), it remains limited to basic features: it supports only
1- or 3-step Radau IIA collocation, does not allow pa-
rameter optimization, lacks analytic Hessians, and does
not perform parallel callbacks. To overcome these limi-
tations, work is underway to embed an extended version
of libgdopt into OpenModelica. This integration com-
bines recent developments from GDOPT with the existing
strengths of OpenModelica, particularly its native ability
to handle DAEs. The extended framework enables expres-
sive Modelica-based modeling, native support of neural
components via the NeuralNetwork Modelica library and
incorporates recent advancements in mesh refinement for
optimal control problems (Langenkamp 2024).

5.1 NeuralNetwork Modelica Library
The NeuralNetwork library, originally developed in
(Codecà and Casella 2006), is an open-source Model-
ica library5 modeling ML architectures with pure Mod-
elica. Neural components can be constructed by connect-
ing dense feedforward layers of arbitrary size with lay-
ers for PCA, standardizing, or scaling. These blocks con-
tain all equations and parameters as pure Modelica code,
which makes seamless integration of neural components
into existing Modelica models straightforward. Together
with this library, OpenModelica will enable modeling and
training of PeN-ODEs within a single development envi-
ronment.

5.2 Workflow
The workflow presented in Figure 9 illustrates the in-
tended process for native Modelica-based modeling and
training of PeN-ODEs. While some components of the
workflow are operational, the full integration is still un-
der active development. Users model physical systems
and NN components with free parameters directly in Mod-
elica and provide corresponding data. Both the model

5https://github.com/AMIT-HSBI/NeuralNetwork

Data Optimal
Parameters

Modelica Model with
free Parameters

OpenModelica Pipeline

OMCompiler Simulation
Code

NeuralNetwork
Modelica Library

Neural Network
Component

Automatic Export

Optimization
Runtime

Include

Figure 9. OpenModelica Workflow for PeN-ODE Training (under development)
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and data are processed by the standard OpenModelica
pipeline, while the OpenModelica Compiler (OMC) gen-
erates fast C code. The new backend of OMC intro-
duces efficient array-size-independent symbolic manipu-
lation (Abdelhak, Casella, and Bachmann 2023). Ongoing
work further targets resizability of components after com-
pilation (Abdelhak and Bachmann 2025), offering signifi-
cant benefits for array-based components such as NNs.

Furthermore, current work focuses on leveraging the
generated simulation code to enable fast callback func-
tions for a new optimization runtime. After training, the
optimal parameters are directly inserted into a NN block,
enabling immediate simulations by swapping connectors.

This workflow removes the need for export and import
steps for neural components and models, e.g. in the form
of a Functional Mock-up Unit (FMU). It also eliminates
reliance on external training routines in Julia or Python
and avoids external C functions in the model, since the
neural components are pure Modelica blocks. This inte-
grated workflow unifies modeling, training, and simula-
tion within a single toolchain, enabling free and accessible
optimizations.

5.3 Neural DAEs
One of the main advantages of the integration into Open-
Modelica is the native ability to handle DAEs. Modelica
compilers such as OpenModelica systematically apply in-
dex reduction and block-lower triangular (BLT) transfor-
mations to restructure DAEs into semi-explicit ODE form
with index 1 (Ruge et al. 2014; Åkesson et al. 2012). As
the simulation code already resolves algebraic variables
during evaluations, no additional handling, e.g. inclusion
of algebraic variables in the NLP, is needed on the op-
timization side. This allows the new training workflow to
seamlessly extend from ODEs to DAEs, far surpassing the
current range of applications.

6 Conclusion
This paper proposes a formulation of PeN-ODE training
as a collocation-based NLP, simultaneously optimizing
states and NN parameters. The approach overcomes key
limitations of ODE solver-based training in terms of order,
stability, accuracy, and allowable step size. The NLP uses
high order quadrature for the NN loss, potentially preserv-
ing the accuracy of the discretization. We demonstrate that
known physical behavior can be trivially enforced.

We provide an open-source parallelized extension to
GDOPT and on two example problems demonstrate ex-
emplary accuracy, training times, and generalization with
smaller NNs compared to other training techniques, even
under significant noise. Furthermore, we show that the ap-
proach allows for efficient optimization of other parameter
dependent surrogates.

Key limitations and challenges of the proposed method,
including grid selection and general initialization strate-
gies to increase stability, as well as training with larger
datasets and networks are identified. Addressing and eval-

uating these issues in future work is essential to support
broader applicability. To enable accessible training of
Neural DAEs, without relying on external tools, work is
underway to implement the method in OpenModelica.
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Appendix: Sensitivity Analysis and Robustness of VdP Neural ODEs
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(c) High noise: 𝜎 = 0.5

Figure 10. Sensitivity analysis of the learned Van-der-Pol (VdP) Neural ODEs to different levels of Gaussian noise. For each noise
level, 100 training sessions were performed with random initial guesses for the neural network parameters and a random seed for the
data perturbation. The plots show the simulation results for the observable state y(t) over an extended time horizon of 32 seconds.
Each subplot consists of two panels: The top panel visualizes the reference solution (dashed black line), the median of the 100
learned solutions, and the 25-75% and 10-90% percentile bands. The bottom panel shows all 100 individual learned trajectories
(faint lines). (a) No noise (𝜎 = 0): The method demonstrates full robustness and perfect convergence, with all 100 solutions
converging to the exact reference solution. (b) Low noise (𝜎 = 0.1): The method remains highly robust. A vast majority of the
solutions (approximately 95%) form a tight band around the reference, showing excellent agreement. (c) High noise (𝜎 = 0.5):
As expected under severe noise, the robustness is reduced. While many solutions remain relatively close to the reference, some
diverge significantly, indicating a failure to find a good local optimum during training. The solutions that do converge often show a
period mismatch or diverge after a few periods, but still capture the general oscillatory behavior. The combined effects of reduced
solution quality and an inaccurate period are reflected in the median and percentile bands, which exhibit a noticeable deviation in
amplitude and phase after three periods compared to the true trajectory.
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