
Integration of Physical and AI Models Using Open and
Interoperable Standards: A Model-Based Methodology for

Autonomous Robot Development

Sebastian Rojas-Ordoñez1, 2 Mikel Segura1 Ekaitz Zulueta2

1IKERLAN, S. COOP, Spain, {jsrojas,msegura}@ikerlan.es
2EHU/UPV, Spain, jrojas015@ikasle.ehu.eus - ekaitz.zulueta@ehu.eus

Abstract
The development of Cyber-Physical Systems, particularly
in the field of autonomous mobile robotics, often re-
lies on proprietary environments, which limit flexibility
and interoperability. This paper proposes a modular and
open-source methodology that enables the modeling and
simulation of such systems using non-proprietary tools.
The methodology integrates Functional Mock-up Inter-
face standard for model exchange, Open Neural Network
Exchange standard for Convolutional Neuronal Networks
algorithms integration, ROS2 as robotic middleware, and
Gazebo as the simulation environment. To validate the
approach, we applied it in the development of a mo-
bile robot that navigates autonomously by following traf-
fic signals. This implementation demonstrates that these
open technologies can be effectively combined, overcom-
ing common integration barriers among proprietary tools.
The proposed workflow provides a practical alternative
to proprietary solutions and demonstrates the feasibility
of integrating open standards for the development of au-
tonomous robotic systems. Keywords: Autonomous
robotic systems, FMI, ONNX, ROS2, Gazebo.

1 Introduction
Model-Based Engineering (MBE) has transformed the
way engineers and researchers design and develop com-
plex systems (Holtmann, Liebel, and Steghöfer 2024). It
is a strategy intended to reduce development time and to
improve the quality of the system. To this end, the reuse
of models and tests is promoted, thus avoiding iterative
manual work and optimising the testing phase. Today,
both industry and academia rely on MBE to predict sys-
tem behavior, reduce the need of expensive physical pro-
totypes, and drive advances in mobile robotics (Amorim
2019). At the same time, Convolutional Neural Networks
(CNNs) are being increasingly applied in these systems,
particularly for handling image processing tasks that sup-
port robot navigation and decision-making (Javaid et al.
2023).

Nowadays, many developments in robotics rely on
commercial tools and proprietary platforms. While these
tools offer powerful capabilities, their high cost and lim-

ited interoperability often restrict innovation (Haessler,
Giones, and Brem 2023), increasing the demand for open-
source alternatives that provide more flexible and accessi-
ble solutions.

In this context, the Modelica Association plays a key
role in promoting and maintaining open standards for
Cyber-Physical System (CPS) development, such as the
Modelica Language for modeling dynamic systems and
the Functional Mock-up Interface (FMI) (Modelica As-
sociation 2025) for ease the model exchange and co-
simulation between different modeling and simulation
(M&S) tools. These tools enable the development of
complex systems, allowing for predictive modeling be-
fore physical prototyping, thus, reducing costs and min-
imizing development risks (Moshood et al. 2024). The
integration of mathematical models with computer sim-
ulations has become a critical factor in ensuring the re-
liability and performance of modern systems (Idoko et al.
2024). However, applying these M&S capabilities to mod-
ern robotics frameworks is not exempt from challenges
(Ray and Ramirez-Marquez 2020).

Regarding the evolution of robotics middleware, ROS2
emerged as a leading development framework for robotic
applications. Particularly, ROS2 Humble (Open Robotics
2025b) offers enhanced features, including improved ca-
pabilities, robust security measures, and better support for
multi-robot systems. When combined with advanced sim-
ulation environments like Gazebo (Open Robotics 2025a),
it enables the validation of control algorithms and vision
systems in realistic scenarios. However, the integration
of Modelica-based models with these robotics frameworks
remains challenging (Bardaro et al. 2017).

Additionally, the use of CNNs introduces a new set
of challenges for systems based on traditional M&S ap-
proaches. As AI-based perception becomes increasingly
relevant in CPSs, developers face the need to integrate
machine learning and deep learning models into existing
robotics and control workflows. The Open Neural Net-
work Exchange (ONNX) (ONNX community 2025) stan-
dard addresses part of this challenge by offering a com-
mon, open format for representing and deploying trained
neural networks across different platforms. However, the
seamless integration of AI models in simulation tools,
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robotic middleware, and control systems remains an area
of active research. This highlights the need for flexible
and modular development methodologies that can facili-
tate the integration of AI capabilities into CPSs (Parwej
2024).

In summary, our research addresses these integration
challenges by proposing an open-source methodology that
uses:

• FMI standard for exchanging validated physical
models via FMUs.

• ONNX standard for exchanging AI-validated models
for image processing.

• ROS2 Humble as robotics middleware.

• Gazebo for 3D simulation.

By focusing on the integration of these non-proprietary
components, our methodology offers a cost-effective,
modular, and interoperable solution for the development
of CPS, focusing in autonomous mobile robotics. This
approach not only ensures effective communication be-
tween control algorithms, vision processing, and physical
simulation while laying the foundation for future improve-
ments in adaptive and AI-driven robotic systems.

The paper is organized as follows: Section 2 reviews
the background and related work; Section 3 details the
methodology and its architecture; Section 4 describes the
proof of concept used to implement and demonstrate the
proposed methodology, specifically focusing on the inte-
gration of 3D simulation, control, and image processing
components; Section 5 presents the results and their im-
plications; and Section 6 concludes with final remarks and
directions for future research.

2 Background and Related Work
The integration of simulation, control, and image process-
ing has become essential in developing modern robotic
systems (Nevliudov, Tsymbal, and Bronnikov 2021). Re-
cent open-source tools and integration developments have
enabled innovative approaches for designing and validat-
ing complex systems (Santos et al. 2024; Robles, Martín,
and Díaz 2023). However, ensuring seamless integration
between the different components is still difficult. This
section examines key technologies and related work, high-
lighting current limitations and opportunities for improve-
ment in simulation in MBE, open-source tools in robotics,
model exchange using FMI, and the integration of AI
models through ONNX in robotic applications.

2.1 Simulation in Model-Based Engineering
MBE utilizes models as central tools to understand, de-
sign, and manage complex systems. This methodology
enables effective analysis, early detection of potential is-
sues, and improved efficiency through clear, structured
information exchange (Holtmann, Liebel, and Steghöfer

2024). MBE supports critical tasks such as capturing re-
quirements, system design, simulation-based validation,
code generation, and result verification, focusing on spe-
cific system components to optimize key areas and miti-
gate development risks (Khandoker et al. 2022). For in-
stance, (Sekar and Baras 2022) describe a model-based
framework for robotic grasping, demonstrating how MBE
facilitates iterative improvements and early error detec-
tion, ultimately reducing prototyping costs and risks.

Recent implementations, such as the one presented by
Matlab/Simulink (MathWorks 2024) that combine ROS2
with control systems, show the potential and limitations of
current approaches. In this use case, the system employs
Simulink models to control simulated robots and man-
age data exchange, including camera feed, odometry, and
speed commands; the focus of this use case involves an
Image Processing subsystem for sign detection and a Sign
Tracking Logic subsystem, implemented with a Stateflow
chart, that translates detected sign information into linear
and angular velocity commands.

While these implementations demonstrate MBE’s ca-
pability for robust, iterative design, it is necessary to high-
light the need for more flexible, platform-independent so-
lutions (Corallo et al. 2022).

2.2 Open-Source Tools in Robotics
Open-source platforms have transformed robotics devel-
opment by providing alternatives to traditional propri-
etary solutions. Authors of (Patel, Liarokapis, and Dol-
lar 2022) discuss this transformation through open robotic
hardware, documenting significant advances and diverse
implementation practices across a range of applications.
Similarly, (Soori, Arezoo, and Karimi Ghaleh Jough
2024) demonstrates how frameworks such as ROS2 ac-
celerate industrial integration, particularly in Industry 4.0.

These advances in hardware and systems framework
have prepared the way for the evolution of complementary
software tools that further streamline robotics develop-
ment. Market analyses by (Cornille 2024) confirm that in-
cluding visualization tools like Rviz and Rerun.io, along-
side physics simulators such as Gazebo and MuJuCo, it is
possible to reduce development cycles and improve sys-
tem reliability.

2.3 Model Exchange Using FMI
The FMI is an open standard that enables model exchange
and co-simulation across different M&S environments, fa-
cilitating the integration of components from several do-
mains, such as mechanical, electrical, and control systems.
This capability is crucial for the development of complex
systems where multiple M&S tools may work together. It
defines a format for packaging such models, called Func-
tional Mock-up Units (FMU). A FMU represents the prac-
tical implementation of the FMI standard, thus, it is a
software component that complies with the FMI standard,
making it portable and reusable across compatible simula-
tion environments.
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Multiple studies have demonstrated the effectiveness
of the FMI standard in practical applications and system
simulations. For instance, (Oudart et al. 2020) present
a model-based toolchain that leverages the FMI standard
for CPS co-simulation. Their approach effectively sepa-
rates physical and logical models, achieving up to 40%
reduction in development time. Additionally, (Shahsavari
et al. 2021) introduce MCX, an open-source framework
for digital twins, highlighting the capability of FMUs to
encapsulate system dynamics in a reproducible manner.

Building on these results, integrating FMI with robotics
frameworks has emerged as a natural next step to bridge
the gap between simulation and control. One notable con-
tribution in this direction is the fmi_adapter pack-
age (Lange et al. 2020), which provides a concrete im-
plementation for connecting FMI with ROS and Gazebo.
This tool enables two primary approaches for incorporat-
ing FMUs into ROS-based architectures:

1. Node-Based Use: As shown in Figure 1, this ap-
proach represents how to create a ROS node con-
taining an FMU. The architecture shows subscribers
(left side) connected to the FMI adapter (middle,
blue), which interfaces with the FMI library to com-
municate with the Application FMU (right, green).
This implementation is helpful to create the neces-
sary ROS subscribers and publishers to handle all
model variables.

Figure 1. Node-Based Use
(Lange et al. 2020)

2. Library-Based Use: Figure 2 illustrates an
alternative implementation using a C++ class
(fmi_adapter::FMIAdapter). In this ap-
proach, the application node (left, green) directly in-
terfaces with the FMI adapter components (blue).
This method provides more direct control over the
FMU lifecycle by eliminating the ROS node wrap-
per layer, allowing for more precise timing control
and custom integration patterns.

Additionally, for Gazebo integration, (Lange et al.
2020) presented gazebo-fmi plugins, that enable the
incorporation of FMU within the simulation environment.
For co-simulation scenarios, gazebo-fmi components
follow a master-slave architecture where one component,
acting as the master, coordinates the execution of other
components, which act as slaves. In this context, the main

Figure 2. Library-Based Use
(Lange et al. 2020)

physics engine of Gazebo, acting as master, coordinates
the overall simulation timing, while individual FMUs, act-
ing as slaves, perform their specific calculations using
their built-in solvers. The gazebo-fmi suite includes
two key plugins:

1. gazebo-fmi-actuator plugin: For enabling the sim-
ulation of complex actuator dynamics such as re-
flected inertias, velocity/torque curves, and series
elastic actuators.

2. gazebo-fmi-single-body-fluid-dynamics plugin:
Designed to simulate fluid-body interactions, this
plugin uses FMUs to compute lift, drag, and other
fluid forces on a body.

2.4 AI Integration Using ONNX
Integrating artificial intelligence into robotic control sys-
tems presents significant opportunities in modern robotics,
such as enabling adaptive decision-making, real-time opti-
mization, and complex task automation. However, this in-
tegration also introduces technological challenges, includ-
ing platform fragmentation, implementation complexity,
and the need for reliable interoperability between AI mod-
els and robotic hardware (Patrício, Varela, and Silveira
2024). ONNX has emerged as a widely accepted stan-
dard for deploying AI models across various platforms. Its
use enables standardized implementation of deep learning
models, reducing dependence on customized and propri-
etary solutions. For instance, (El-Hussieny 2024) demon-
strate a deep learning-based model predictive control strat-
egy for a 3-DOF biped robot leg using ONNX, achieving
real-time performance. Similarly, (Yue 2024) propose a
real-time dynamic motion compensation design in vision-
guided robots, that leverages ONNX to enhance task pre-
cision and system reliability, highlighting how standard-
ized AI model deployment can improve task precision.

However, current approaches to integrating AI models
with robotic control systems often rely on proprietary so-
lutions or require complex custom implementations. This
is particularly evident in applications that combine per-
ception with dynamic control, where maintaining consis-
tent performance across multiple subsystems can be dif-
ficult (Xu et al. 2024). Indeed, the robotics community
has identified the need for more standardized, open ap-
proaches to AI integration that can reduce implementation
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complexity while maintaining system reliability (Licardo,
Domjan, and Orehovački 2024).

3 Proposed Methodology
To address the challenges outlined in Section 2, this pa-
per proposes a development methodology for robotic sys-
tems based on open-source tools and following MBE
principles. Our approach focuses on integrating physi-
cal and control models using FMUs, and AI algorithms
via ONNX models, all within a Linux-based environment.
ROS2 is proposed as the communication middleware, and
Gazebo as the simulation platform. In this way, we aim to
facilitate the development of such a complex systems in a
cost-effective, modular, and interoperable manner.

It is important to note that our methodology assumes
these models are already developed and available; there-
fore, the focus is on their integration into a robotic frame-
work. This integration applies both to simulated environ-
ments and to deployment on physical hardware. The pro-
posed methodology is guided by the following key princi-
ples:

Interoperability and Open-Source: The use of open-
source tools and standards enables the development of a
modular and scalable system architecture. This approach
eliminates dependency on proprietary environments and
promotes collaboration between robotic system develop-
ers.

Unified Integration of Physical and AI Models: This
proposal unifies the integration of FMUs, containing phys-
ical models or control algorithms, with ONNX files, con-
taining machine learning or deep learning algorithms. The
integration is performed through ROS2, this way we ob-
tain several advantages:

• As many robotic developments incorporate ROS2,
integrating these components does not require modi-
fying previously developed systems. Instead, adding
new functionalities simply requires incorporating ad-
ditional components.

• It reduces development time and costs, as pre-
developed models can be incorporated into the sys-
tem without the need to rewrite code. In other words,
it acts as a code generation mechanism, with FMU
and ONNX serving as the final code elements.

• It provides flexibility, allowing individual modules
to be updated or replaced without affecting the entire
system.

Modular Architecture: Our design adopts a modu-
lar appoach, where independent subsystems are wrapped
within ROS2 nodes. ROS2 uses a communication model
based on the publisher-subscriber pattern, where nodes
can publish messages to topics or subscribe to them to
receive information. This communication is built on top
of Data Distribution Service (DDS), a middleware that

enables automatic discovery of nodes and message ex-
change without requiring nodes to know each other di-
rectly. Gazebo provides the virtual environment for sys-
tem simulation. This modular architecture reduces the
complexity of integrating diverse technologies. As a re-
sult, our proposal is easily adaptable to a wide range of
robotic applications.

4 Proof of Concept
To validate the effectiveness of the proposed methodol-
ogy, we applied it to a scenario in which a robot navi-
gates from point A to point B by following traffic sig-
nals that guide its path. We obtained this use case from
a Simulink example originally designed to validate com-
munication between Gazebo and Simulink. Our purpose
is to reuse some of its elements to demonstrate how FMUs
and ONNX models can be integrated for the development
of CPS, showing that the same components and tools can
be used both in virtual testing environments and in real
hardware deployment.

As our approach does not involve the development of
the models themselves, our initial intention was to reuse
the odometry and signal-tracking logic by exporting them
as FMUs, as well as exporting the image processing mod-
ule as an ONNX model. However, we encountered some
difficulties that required some adjustments. First, we were
unable to generate FMUs directly from Simulink, since
our development environment was Windows-based, while
the final application is intended to run on Linux. FMUs
generated on Windows cannot be seamlessly integrated
into a Linux environment. To address this, we replicated
these modules in OpenModelica under Linux and gener-
ated the FMUs from there.

Regarding image processing, Simulink relies on a pro-
prietary toolbox that cannot be exported. To overcome this
limitation, we recreated the functionality using a Python
implementation, using PyTorch to enable ONNX export.

On the other hand, we were able to reuse the original
Gazebo scenario. Therefore, our validation strategy is to
test whether the robot behaves in the same way in both
the original Simulink setup and our integration, now re-
lying exclusively on non proprietary tools. This way, in
this proof of concept, ROS 2 orchestrates the system, in-
tegrating FMUs for control and odometry tasks, and an
ONNX model for image processing, with Gazebo serv-
ing as the simulation platform. The following subsections
outline the processes involved in applying the proposed
methodology.

4.1 Application Scenario
Figure 3 shows the simulated environment in Gazebo,
where the map and layout of the simulation area can be
appreciated. In this scenario, the mission of the mobile
robot is to navigate from point A to point B while follow-
ing visual signals. The yellow dashed line represents the
expected path that the robot should follow based on the
traffic signs positioned throughout the environment.

Integration of Physical and AI Models Using Open and Interoperable Standards: A Model-Based … 
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Figure 3. Simulated Gazebo environment showing the naviga-
tion path with traffic signs to guide the navigation of the robot.

The robot’s navigation is guided by a set of traffic sig-
nals strategically placed throughout the environment, as
shown in Figure 4. These signals provide the instructions
for the robot’s navigation behavior:

Figure 4. Traffic signals for robot navigation: Left arrow (blue)
robot to turn left, right arrow (green) robot to turn right, and stop
sign (red) robot to Stop.

4.2 Robot Pose Estimation (Odometry) FMU
The odometry management is handled via a two-stage pro-
cess:

1. Odometry Processing: The system subscribes to the
/odom topic in ROS2 to receive position and orien-
tation data from the simulator. As shown in Figure 5,
the FMU block ReadOdometry processes six in-
put parameters: quaternion orientation (qw, qx, qy,
qz) and cartesian position (x, y). The position co-
ordinates (x, y) are directly mapped to the outputs
(posX , posY ), while the quaternion components are
transformed into a 2D orientation angle (theta) using
Euler angle conversion. This results in three output
parameters (posX , posY , theta) that completely de-
scribe the robot’s pose in 2D space.

2. ROS2 Integration: After understanding the func-
tionality of the odometry FMU, we integrated it into
a ROS2 node. This integration was performed by
creating a node named (fmu_odometry_node)
that subscribes to the robot’s default /odom topic.

ODOMET
RY

qw
qx
qy
qz
x
y

posX

posY

theta

Figure 5. I/O port configuration of the odometry FMU block
showing six inputs (four quaternion components and two posi-
tion coordinates) and three outputs (2D position and orientation
angle).

The node processes the odometry data and publishes
the resulting pose information to a custom topic
named /fmu_odom_out, as illustrated in Figure 6
the integration of the system is verified using rqt a
ROS2’s native introspection and visualization tool.

Figure 6. ROS2 node structure for the odometry FMU
input subscription to /odom and output publication to
/fmu_odom_out.

4.3 Traffic Sign Detection ONNX
The image processing subsystem employs a two-stage
process:

1. Vision System: The ONNX model shown in
Figure 7, processes RGB images with dimen-
sions of 480×640×3 pixels received from the
/camera/image_raw topic. The model takes
this input tensor [1 480 640 3] and outputs two key
parameters: blobX for the sign’s horizontal position
and blobSize for its dimensions.

CNN

[1 480 640 3]

blobX

blobSize

Figure 7. ONNX model structure showing the CNN architec-
ture with its input tensor [1 480 640 3] (representing batch size,
height, width, and RGB channels) and its two output parame-
ters: blobX and blobSize.

2. ROS2 Integration: After understanding the func-
tionality of the ONNX model, we integrated it into
a ROS2 node. This integration was performed by
creating a node that processes the camera input data
and publishes the processed information through two
custom topics: /onnx_blobSize, which provides
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continuous updates of the traffic sign dimensions,
and /onnx_blobX, which delivers the sign’s hori-
zontal position in the frame, as illustrated in Figure 8
the integration of the system is verified using rqt a
ROS2’s native introspection and visualization tool.

Figure 8. ROS2 node architecture for ONNX integration, il-
lustrating input from the camera feed and output topics for sign
detection parameters.

4.4 Autonomous Navigation Control FMU
The control system integrates the data from the FMU
odometry model and the ONNX model subsystems
through an FMU that manages the robot’s control logic:

1. Controller Design: The SignTrackingLogic FMU
incorporates decision-making logic to process visual
inputs from the ONNX node and pose information
from the odometry FMU. This FMU calculates the
relative position of detected traffic signs and gener-
ates corresponding movement commands. Figure 9
shows the I/O configuration, where inputs include
blobSize, blobX, and pose (i.e., posX , posY ,
theta), and outputs include linear velocity (v), angu-
lar velocity (w), and a stop command (stopRobot).

v

w

stopRobot

blobSize

blobX

pose

Figure 9. I/O port configuration of the SignTrackingLogic FMU
block.

2. ROS2 Integration: After understanding the func-
tionality of the SignTrackingLogic FMU, we in-
tegrated it into a ROS2 node. This integra-
tion was performed by creating a node named
(fmu_sign_tracking_node) that subscribes to
three topics: /onnx_blobSize, /onnx_blobX,
and /fmu_odom_out. The node processes this in-
formation and publishes the resulting control com-
mands to the /cmd_vel topic, as illustrated in Fig-
ure 10 the integration of the system is verified using
rqt a ROS2’s native introspection and visualization
tool.

4.5 Integration of FMUs and ONNX
The final integration phase unifies the FMU-based control
components and the ONNX-based image processing mod-
ule within ROS2. This is accomplished through a layered

Figure 10. ROS2 node architecture for the SignTrackingLogic
FMU, showing input subscriptions from image processing and
odometry nodes, and output publication to robot control.

architecture that ensures communication and synchroniza-
tion between nodes while maintaining system modularity
and scalability. The overall integration is validated using
Gazebo as the simulation environment.

4.5.1 System Architecture in Linux

Figure 11 illustrates the complete system architecture,
which comprises FMU Nodes for odometry processing
and sign tracking logic, an ONNX Node for image pro-
cessing and Gazebo Plugins for simulation interfacing
through ROS2 as middleware.

LINUX

G
a
z
e
b
oROS2 Humble

Nodes / Applications

FMU1
Odometry

FMU2
Sign

Tracking
Logic

ONNX
Image

Processing

PLUGINS
gazebo_ros

Figure 11. System architecture in a Linux environment.

4.5.2 Integration Implementation

The integrated system is deployed as follows:

1. Component Deployment: FMUs are executed
within dedicated ROS2 nodes, the ONNX model
is deployed within a computer vision node, and
Gazebo interfaces with these components via the
ROS2 bridge.

2. Data Flow Management: As shown in Figure 12,
the system maintains synchronized communication
through topic-based message passing between nodes,
enabling coordinated execution of FMUs and ONNX
models.

This integration setup shows the practical feasibility of
combining ROS2, FMUs, ONNX models, and Gazebo
within a Linux-based open-source environment. The re-
sulting system supports modular development, clear sep-
aration of concerns, and synchronized communication
across components, aligning with the principles outlined
in our proposed methodology.
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Figure 12. Data flow diagram inter-node communication.

5 Results and Discussion
This section presents and analyzes the results from our im-
plementation, evaluating both the performance of individ-
ual components and the overall system integration. In ad-
dition to the standard performance metrics, we compare
the original outputs of the FMU and ONNX models with
those obtained after integration within the ROS2 nodes,
thereby validating that our integration preserves the model
characteristics and enhances system’s interoperability.

5.1 Odometry FMU Performance Analysis
To validate the accuracy of our solution, we compared the
roll angle output from the original model with that of our
integrated FMU-ROS2 implementation. The roll angle
was chosen because it requires quaternion-to-Euler con-
version, while x and y coordinates pass directly through
the system without transformation. This comparison is es-
sential for verifying that the mathematical operations and
coordinate transformations are preserved after integration.
Figure 13 shows the comparison of roll angle signals.
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Figure 13. Comparison of roll angle evolution between the orig-
inal model and FMU-ROS2 implementation.

From this comparison, we can conclude that the
quaternion-to-Euler conversion accuracy is maintained.
The signals exhibit slight variations, specifically on the
order of 0.002 rad. These variations are acceptable, as
the operational range goes from -0.4 rad to 1.8 rad. They
are likely caused by differences in floating-point computa-
tions or by the overhead introduced during ROS 2 message
passing.

5.2 ONNX Vision Processing Performance
To validate the accuracy of our ONNX implementation for
sign detection, we compared the blobSize(3) output of the
original ONNX model with our ONNX-ROS2 solution.
This output was chosen as a representative measure since
similar detection patterns are observed in other compo-
nents of the blobSize and blobX vectors. Figure 14 shows
the blob size signals.
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Figure 14. Comparison of blob detection between the original
model and the ONNX-ROS2 implementation.

The comparison reveals that the detection accuracy is
preserved. Similar to previous comparison, the signals
also exhibit slight variations, specifically on the order of 1
pixel. These variations are acceptable, as the operational
range goes from 0 to 215 pixels. They are likely caused by
differences in floating-point computations or by the over-
head introduced during ROS 2 message passing.

5.2.1 ROS2-Based System Integration

The overall system integration was verified using rqt,
ROS2’s native introspection and visualization tool. Fig-
ure 15 displays the runtime communication graph gener-
ated by rqt, validating the proposed system architecture as
depicted in Figure 12.

The comparison between the proposed architecture and
the actual implementation shows successful architecture
validation, including the establishment of all intended
communication pathways, correct node relationships, and
proper topic naming and message routing. In terms of sys-
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Figure 15. Runtime communication graph generated by rqt,
showing node interactions and topic connections in the ROS2
environment.

tem integration, the data flow between the ONNX vision
processing and FMU nodes is effective, and synchroniza-
tion between odometry and control components is main-
tained, ensuring reliable message passing across the sys-
tem.

5.2.2 Trajectory Analysis and Navigation Perfor-
mance

To evaluate the effectiveness of the integrated system, we
first analyzed the robot’s trajectory through its X-Y posi-
tion data. Figure 16 shows the complete path, where we
can identify the navigation phases.

Figure 16. X-Y position plot showing the robot’s trajectory.

When this recorded trajectory (orange line) is overlaid
onto the simulation environment, as shown in Figure 17,
we can verify the robot’s successful navigation from point
A to point B while following the traffic signs.

The comparison between the expected path (yellow
dashed line in Figure 3) and the actual trajectory demon-
strates that the robot successfully executed all required
turns and maintained proper alignment during straight seg-
ments. The transitions observed in both representations
validate the effectiveness of the SignTrackingLogic FMU
in interpreting visual signals and generating appropriate
control commands.

6 Conclusions and Future Work
In this work, we propose a cost-effective, modular, and in-
teroperable methodology for developing CPSs using FMI

AA

BB

Figure 17. Actual trajectory (orange line) overlaid on the sim-
ulation environment, demonstrating precise path following and
successful navigation through the course.

2.0 standard. We tested our solution with an autonomous
robot navigation use case, integrating FMUs and ONNX
models to establish the robot’s behavior. The experimen-
tal results demonstrate that the system maintains preci-
sion while ensuring component independence. Specifi-
cally, our tests show accurate odometry tracking, reliable
vision-based detection, and control behavior evidenced by
consistent velocity patterns and effective trajectory adjust-
ments.

The modular design, which wrappers FMUs and
ONNX models as independent ROS2 nodes, offers signif-
icant benefits in terms of scalability, maintainability, and
interoperability. The implementation demonstrates robust
performance in both simulation and real-world environ-
ments, with the FMU-based control loop and ONNX in-
ference running effectively within the computational con-
straints of the embedded platform. The ROS2 middleware
proves efficient in handling the communication between
components, maintaining system stability and responsive-
ness throughout operation.

The successful transition from simulation to physical
implementation validates the practical applicability of our
approach. As shown in Figure 18, while the real envi-
ronment didn’t exactly match the virtual scenario’s mea-
surements, the system demonstrated robust adaptability.
This flexibility stems from the algorithm’s fundamental re-
liance on traffic sign recognition and following, enabling
effective operation in any environment where the stan-
dardized signs are present.

By relying on open and interoperable standards, our
approach allows easy module replacement and simplifies
system updates. This openness not only removes depen-
dencies on proprietary tools but also fosters collaboration
among robotic system developers. Moreover, our method-
ology significantly reduces development time and costs by
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Figure 18. Implementation in physical robot demonstrating sys-
tem adaptability in real-world conditions

allowing seamless code reuse between the simulation en-
vironment and the final hardware deployment. The same
ROS2-based modules used for testing and validation in
simulation can be directly integrated into the target robotic
platform, eliminating the need for reimplementation.

Regarding future research, we identified the following
aspects:

• Advanced AI algorithms: Development of efficient
convolutional neural networks through dynamic neu-
ral architecture search and adaptive pruning tech-
niques, focusing on minimizing computational over-
head while preserving detection accuracy in vision-
based navigation tasks.

• Use of Zenoh as communication middleware: In-
tegration of the Zenoh protocol to enhance real-time
data distribution in distributed CPS deployments.
Zenoh’s inherent support for time-sensitive network-
ing and decentralized pub/sub patterns could reduce
end-to-end latency while improving interoperability
across heterogeneous hardware.

Overall, the current results suggest that our architec-
ture is well-suited to accommodate such extensions while
maintaining its core reliability and performance. This
work opens new paths for integrating simulation, control,
and AI-driven perception, contributing to the advancement
of autonomous robotic systems.
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