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Abstract
This work presents a novel hybrid trajectory planning al-
gorithm that leverages reinforcement learning (RL) to ad-
dress the challenges of active debris removal (ADR) in
space, specifically for the combined control of a satel-
lite and its 7-axis robotic arm. The proposed approach
integrates a lightweight RL policy with correction algo-
rithms and classical trajectory planning, enabling robust
and collision-free maneuvering of the chaser satellite and
precise placement of the robotic gripper near the target
grasp point. This hybrid method is designed to handle un-
certainties in target dynamics and sensor measurements,
while remaining feasible for implementation on space-
grade hardware. The effectiveness of the algorithm is
demonstrated through comprehensive simulation studies
using Modelica/FMI, validating its capability to generate
safe and reliable trajectories in complex ADR scenarios.
Keywords: Reinforcement Learning, Trajectory Planning,
Active Debris Removal, Combined Control, Robotics,
Modelica, FMI

1 INTRODUCTION
Inactive satellites and debris, especially in the most used
Low Earth Orbits (LEO), have been known to be a po-
tential problem for a long time. The number of satel-
lites increases every year, which increases the chance of
a collision. Active Debris Removal (ADR) using satel-
lites (chaser) equipped with a robotic arm is a possible
technical solution to reduce this risk (Liou and Johnson
2006). ADR missions with robotic arms are very chal-
lenging, because they involve complex systems consisting
of a satellite with a robotic arm with many degrees of free-
dom, while the information about a debris target is not al-
ways perfect (Weiss and Sarli 2014). Recent advances in
the field of reinforcement learning (RL) could help solve
problems in the field of ADR, especially when large uncer-
tainties are involved. RL algorithms can adapt to chang-
ing environments, making them suitable for such tasks
(Arulkumaran, Deisenroth, Miles Brundage, et al. 2017).
However, the onboard hardware of satellites is usually
very limited in its computational capabilities, and ques-
tions about the robustness of RL algorithms are still not
completely solved (Kober, Bagnell, and Peters 2013; Han

et al. 2023; Arulkumaran, Deisenroth, Michael Brundage,
et al. 2017). In this paper, a hybrid trajectory planning al-
gorithm is presented, which tries to combine conventional
path planning methods and control strategies with an RL
algorithm to address uncertainties in the ADR scenario.

Reinforcement learning (RL) is particularly attractive
for ADR because it can learn adaptive strategies for colli-
sion avoidance and trajectory planning in the presence of
nonlinear dynamics and uncertainty, where classical meth-
ods often face limitations.

The field of reinforcement learning (RL) for satellite
on-orbit servicing (OOS) has witnessed notable advance-
ments, particularly in the area of robotic arms on satel-
lites. RL-based approaches have been developed to au-
tonomously detect potential collisions, rendezvous with
target satellites, and execute optimal collision avoidance
maneuvers (CAMs) (Patnala and Abdin 2024). In addi-
tion, deep reinforcement learning (DRL) has been em-
ployed for autonomous guidance of redundant space ma-
nipulators. These approaches focus on solving path plan-
ning during the motion-synchronization phase with the
mission target, using algorithms like Proximal Policy Op-
timization (PPO) to optimize the manipulator’s guidance
law (Ambrosio et al. 2024).

Furthermore, reinforcement learning algorithms with
fast convergence have been proposed for routing in Low
Earth Orbit (LEO) satellite networks. These algorithms
address the dynamic topology changes and transmission
requirements of LEO networks, enabling satellites to
quickly adapt their routing strategies based on network
link status updates (Ding et al. 2023).

Additionally, reinforcement learning techniques have
been applied to path-planning for smart imaging of un-
cooperative space objects, enhancing the precision and
efficiency of on-orbit servicing missions (Brandonisio,
Lavagna, and Guzzetti 2021).

2 MODELLING AND SCENARIO
This paper focuses on a simulation study of an ADR sce-
nario that is based on the inactive (target) satellite Envisat
and a (chaser) satellite equipped with a robotic arm. The
scenario starts with the chaser already in close proximity
with variable initial conditions with respect to the starting
distance and target spinning rate to Envisat. The angular
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Figure 1. Visualization of the ADR scenario with Envisat and the chaser satellite with its 7-axis robotic arm and gripper. The four
red bounding boxes around the target and chaser satellite are used for the collision avoidance of the RL algorithm. The computed
critical closest points on the bounding boxes are shown as small pink spheres.

rates between target and chaser are assumed to be syn-
chronized at the start of the simulation.

The scenario consists of multiple phases with different
control modes. The first phase, which is the main focus
of this paper, is the collision-free approach of the chaser
satellite above Envisat’s adapter ring and placing the grip-
per (also collision free) very close to the grasping point on
the adapter ring.

This phase is handled by the hybrid RL algorithm which
will be described in section 3. After this phase classical
trajectory planning is used to stay synchronized with the
spinning target using the combined control and grasping
the adapter ring. After the gripper at the robot’s tool center
point (TCP) is closed, a detumbling mode is activated to
reduce the angular rate of the target. After the detumbling
is completed the deorbiting of the target would be started,
but these phases are not considered in this work.

The models and scenario used are based on previous
simulation studies, which were performed together with
ESA (M. Reiner 2021; M. Reiner, Fernandez, and Ortega
2017; M. Reiner 2016), but were extended by additional
uncertainty parameters for this scenario with respect to the
tumbling (spinning) rate of the target and the starting dis-
tance for the trajectory planning.

The simulation models are created using the equation-
based modeling language Modelica and dedicated
Modelica-based libraries, the DLR Space Systems Library

(M. Reiner and Bals 2014) and the DLR Environment Li-
brary (Briese, Klöckner, and M. Reiner 2017) and con-
sider the following aspects (more details are given in the
previous publications):

• Orbit dynamics for Envisat’s sun synchronous orbit
(LEO).

• First order approximation for the elasticity of En-
visat’s large solar array.

• Chaser satellite with 3D-pendulum models to ap-
proximate the fuel and oxidizer sloshing of the large
tanks.

• Detailed control thruster array with 24 individual 22
N thrusters. The thruster firing pulse sequencing is
implemented using a Pulse Width Pulse Frequency
(PWPF) control in addition to a constrained least
square (CLS) force and torque allocation.

• 7-Axis robotic arm mounted on top of the chaser with
a fourth order approximation for each of the seven
joints which approximate the flexibility of the gear-
boxes and friction as well as the internal high fre-
quency torque control.

• Coupling and reaction forces between all elements
are automatically considered by the multibody im-

Modelica FMI based hybrid reinforcement learning enhanced trajectory planning for an … 

 

490 Proceedings of the 16th International Modelica&FMI Conference DOI 
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218489 

  



plementation supported by the Modelica Standard
Library.

• The grasping of the robotic gripper of the adapter
ring of Envisat is approximated by a switchable force
and torque constraint with Baumgarte-like stabiliza-
tion (Acquatella B. and M. J. Reiner 2014)

• Approximated IMU uncertainty using randomized
simulated measuring noise and a simplified Expo-
nentially Correlated Random Variable (ECRV) based
camera performance model for the on-board camera
and Light Detection and Ranging (LIDAR) system
uncertainty.

• Robust H-infinity-based controller with outer
Quaternion feedback loop for the combined control
of the chaser and its 7-axis robotic arm.

To account for the uncertainty of the target’s spinning
rate, the initial angular velocity is allowed to vary within
the following range:

ωta,0 = (ωta,0,x,ωta,0,y,ωta,0,z)
T (1a)

with: −1◦/s <= ωta,0,x <= 1◦/s, (1b)

−1◦/s <= ωta,0,y <= 1◦/s, (1c)

−5◦/s <= ωta,0,z <= 5◦/s (1d)

Similarly, the (relative) starting distance of the chaser
to the target (with respect to the target’s CoM) is allowed
to vary within the following range:

rta,0 = (rta,0,x,rta,0,y,rta,0,z)
T (2a)

with: −2.0m ≤ rta,0,x ≤ 2.0m (2b)

−2.0m ≤ rta,0,y ≤ 2.0m,−7.0m ≤ rta,0,z ≤−3.0m (2c)

For the RL algorithm, which requires many simula-
tion steps, this model is too complex, and the training
of the RL-algorithm would take an extremely long time
on the available hardware (a single laptop with an Nvidia
GeForce RTX 4090 GPU and Intel i9-13950HX CPU).
Therefore, a simplified model is derived from the com-
plex model for the training phase of the RL algorithm.
However, the full model is later used for verification and
validation (V&V). The simplified model only considers
the kinematics for the chaser satellite and robotic gripper
(at TCP). The spinning target is approximated as a rigid
body with given initial conditions in a perfect zero grav-
ity environment. The inputs to the model are direct kine-
matic translations for the chaser and robot TCP (without
controller or actuator/sensor models). The outputs of the
model are the observations and reward functions for the
RL algorithm, which will be described in detail in sec. 3.
This model can be computed very quickly, and is suitable
for the time-consuming training process of the RL algo-
rithm.

Figure 2. 3D-Visualization for the generated reference trajecto-
ries for the chaser satellite rCH,ref (in relative target coordinate
system) for the 100 random scenarios. From a random start lo-
cation the trajectories convert to the desired position close to the
grasping point on the target.
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Figure 3. Visualization of the result of 100 random scenarios for
different start values for the initial target angular velocity (vector
length ω0) and distance to target (vector length r0).

Figure 4. 3D-Visualization for the generated reference trajec-
tory for the robot TCP rTCP,ref (in local robot coordinate system)
for the 100 random scenarios. The start location for all cases
is (−0.99,−0.01,2.01)m. The limitations for the TCP position
given by rTCP,min and rTCP,max can be seen for some trajectories,
that move along the given limits.
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(a) Comparison of the commanded (ωd) and measured
(ωm) angular velocity (including correction) to the com-
bined controller in rad/s.
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(b) Comparison of the commanded (Qd) and measured
(Qm) Quaternion (including correction) to the combined
controller.
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(c) Comparison of the commanded (qm,d) and measured
(qm) robot motor position (including correction) to the
combined controller in rad.
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(d) Comparison of the commanded (rd) and measured (rm)
chaser relative distance to the target in m.

Figure 5. Simulation results for the generated command in-
puts and measured results for the combined controller for an
example simulation case with high starting target angular ve-
locities ωta,0 = (−1,−1,−5)T ◦/s and starting distance rta,0 =

(−2,−2,−7)T m.
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(a) Resulting thrust forces fc commanded by the combined
controller which are input for the force allocation to assign
them to individual thrusters.
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(b) Resulting thrust forces τc commanded by the combined
controller which are input for the force allocation.
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(c) Commanded motor torques for the 7-axis robot by the
combined controller.

1.1 24.53 47.96 71.39 94.82
-0.8

-0.6

-0.4

-0.2

0

0.2

(d) PPO reward for the simulation case. The peak in the
reward function ( 48 s) triggers the terminal condition Cter
and the classical trajectory planing takes over from the PPO
algorithm.

Figure 6. Resulting thrust forces and torques for the chaser
satellite and motor currents for the robot arm for the simulation
case from Figure 5. Also plotted is the resulting reward function
for the PPO algorithm.
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3 HYBRID REINFORCEMENT
LEARNING ENHANCED TRA-
JECTORY PLANNING

The basic idea behind the hybrid reinforcement learning
enhanced trajectory planning is to combine the advantages
of the flexibility of an RL algorithm with classical tra-
jectory planning for the chaser including an optimization-
based inverse kinematics for the robot arm and correction
terms for the simplified RL model.

Since the computational power of today’s satellites is
still limited, the algorithm is designed such that a sim-
ple RL part with relatively small neural network sizes is
sufficient. It is then combined with correction terms and
classical trajectory planning to achieve good accuracy and
robustness with respect to the initial conditions and spin-
ning behavior of the target satellite, sensor noise, as well
as actuator and control limitations.

The RL base algorithm is a Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017) as implemented in
DLR’s Stable Baseline 3 (SB3) Python software pack-
age (Raffin, Hill, et al. 2021). PPO is widely used and
has proven its capabilities in many applications, espe-
cially in the field of robotics (Arulkumaran, Deisenroth,
Miles Brundage, et al. 2017; Kober, Bagnell, and Peters
2013; Han et al. 2023; Arulkumaran, Deisenroth, Michael
Brundage, et al. 2017).

LCLIP(θ) = Et

[
min

(
πθ (at |st)

πθold(at |st)
Ât ,

clip
(

πθ (at |st)

πθold(at |st)
,1− ε,1+ ε

)
Ât

)] (3)

The objective function for the Proximal Policy Opti-
mization (PPO) algorithm can be expressed by Equation 3,
were θ represents the parameters of the current policy,
πθ (at |st) is the probability of taking action at given state
st under the current policy, πθold(at |st) is the probability
of taking action at given state st under the old policy, Ât
is the estimated advantage at time t and ε is a hyperpa-
rameter that controls the extent of clipping (which limits
extreme changes). The policies are implemented as neural
networks.

CATIA-Systems FMPy Python software package is
used to simulate Functional Mockup Units (FMUs) in
Python, which are generated by Dymola from Modelica
Code for the models described in sec. 2. SB3 allows many
models (environments) to be computed in parallel. This
feature was extended to use FMPy and underlying Model-
ica models. For a fast and efficient implementation, Mod-
elica/Dymola’s feature of inline integration (Elmqvist, Ot-
ter, and Cellier 1995) is used, so that the numerical solver
is directly part of the Modelica model inside the FMU. As
a result, from the outside (SB3), the model can be used as
a model with discrete step size and no additional integrator
in SB3 is needed.

The basic idea for the RL part of the hybrid algorithm is
to train a network to find a collision free trajectory for both
the chaser satellite and the gripper, mounted at the TCP of
the 7-axis robot arm, from a varying initial distance to the
target, which can spin with different rates as defined in
Equation 1 and Equation 2.

To simplify the collision avoidance problem, the tar-
get satellite is approximated by bounding boxes for the
collision algorithm. For the target three different colli-
sion boxes are used. One for the main satellite bus and
two for the solar arrays. Figure 1 shows the bounding
boxes in transparent red. It is assumed, that the onboard
cameras can accurately (with the modeled measurement
noise) track these boxes for the target. The chaser itself is
approximated by using an additional safety offset for the
distance calculation (with respect to the chaser’s CoM) ac-
cording to its largest dimension, in addition, for the TCP a
smaller offset is used to account for the size of the gripper.

For both the chaser and the robot’s TCP the closest
points on these collision boxes are computed (some are
visible as small pink spheres in Figure 1) as well as the
distance of these critical points to the TCP and chaser in-
cluding the safety offsets for chaser and TCP.

Since the rotation of the chaser is controlled such that
it tries to stay synchronized to the spinning target, only
the translational part is of interest for the PPO algorithm
(a correction described later will handle occurring devia-
tions).

As observation inputs for the PPO algorithm, a series
of normalized vectors are used. All are given as relative
vectors with respect to the robot’s mounting frame.

• The actual position of the TCP.

• The vector between the TCP and the target grasp
point (with safety offset) shown in Figure 1 as small
visual coordinate system (cosys) above the grasp
point on the adapter ring.

• The vector between the chaser CoM and the chaser
goal position close to the grasp point shown in Fig-
ure 1 as a local coordinate system above the central
solar array.

• A set of nvec = 6 vectors dvec,i describes the distance
between the computed closest critical points for the
three bounding boxes relative to the TCP and chaser
center (with safety offsets).

The termination condition Cter is achieved when both
the TCP and the chaser CoM are within a given distance
limit to the target positions as given in Equation 5, where
ksafe < 1 is just a safety factor to ensure the TCP is not very
close to a bounding box and kcol,TCP is a scaling factor, to
ensure the TCP is allowed to be closer to a bounding box
than the chaser itself. dTCP,Gr is the distance between the
TCP and the grasping end position (with safety offset),
dTCP,max is the maximum allowed deviation, dCH,Gr and
dCH,max are similar terms for the chaser. Ccol is a criterion
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for collision avoidance as defined in Equation 4. The re-
ward rPPO

t for the PPO is computed by Equation 6 if the
termination is not reached yet. If the termination crite-
rion is reached it is set to a constant high termination re-
ward rPPO

t = RPPO,ter, which helps the PPO optimization
to quickly find and keep the termination condition Cter.

Ccol =
nvec

∑
i=1

1
max(εd ,∥dvec,i∥)

(4)

Cter =⇒ dTCP,Gr < dTCP,max

∧ dCH,Gr < dCH,max

∧ Ccol kcol,TCP <Cmax,col ksafe

(5)

rPPO
t =

−(dTCP,Gr +dCH,Gr +min(Cmax,col,Ccolkcol,TCP))
(6)

Since the optimization of the neural networks inside the
PPO algorithm works better with scaled values, the reward
and the observation vectors are normalized element-wise
between zero and one using a scaling function fs() with
predefined minimum and maximum values which scales
an input vector using a combination of linear and sig-
moid functions (near the limits), with adjustable bounds
and smoothing.

The PPO neural networks consist of two networks (ac-
tor and critic value-function), each with two layers and
128 neurons per layer. The hyper-parameters for the PPO
tuning were found using a hyper-parameter optimization
implemented in Optuna (Akiba et al. 2019). In addition,
generalized State Dependent Exploration (gSDE) (Raffin,
Kober, and Stulp 2022) is used instead of action noise ex-
ploration.

The resulting action at of the PPO algorithm (Equa-
tion 7) is also a normalized vector with six elements (with
each element between −1 and 1). The first three elements
are the translation command for the gripper at the robot’s
TCP. The last three elements are the translation vector for
the chaser satellite for the next time step. Both vectors are
given with respect to the robot’s mounting frame. A pre-
defined scaling vector ks is used to account for the faster
dynamics of the robot arm compared to the chaser satellite
(Equation 8). ks is chosen such, that the robot and chaser
should be able to handle the resulting translation move-
ment in most cases. The actual agility depends on the cur-
rent pose of the robot arm and the satellite, and is limited
by the required thrust to achieve rotational synchroniza-
tion, so ks is an approximation. In addition, at,s,rob is set
to zero if the sum over all actions would move the rela-
tive TCP location outside the allowed bounds rTCP,min =
(−1.5,−1.0,1.0)m and rTCP,max = (1.5,1.0,2.7)m. These
bounds ensure that the robot arm is able to reach the loca-
tion and that no self-collision with the chaser can occur.

at = (at,rob,at,ch)
T (7)

at,s = at ◦ ks = (at,s,rob,at,s,ch)
T (8)

For the PPO algorithm, the only measured sensor inputs
are the target rotation matrix in each time step relative to
the chaser, which is assumed to be measurable with the on-
board sensors. Also available for the PPO algorithm is the
relative distance vector between chaser and target at the
start of the first phase. With this information and the geo-
metric data for the bounding boxes, the PPO algorithm can
compute a trajectory (and internally also the required ob-
servations and reward). The actual states of the chaser and
robot arm are not fed back to the PPO algorithm. This has
the advantage that the PPO algorithm works much more
stably, since no instability due to feedback can occur; in
some sense, it works as a feed-forward control for trajec-
tory planning.

Since the actual states of the chaser and the robot arm
can deviate from the internal state of the PPO (mainly
because of actuation limitations and sensor noise and
disturbance effects), a correction is needed. Thus, us-
ing the measured relative orientation Rrob,base,m and mea-
sured (relative) position of the chaser robot mounting
frame rbase,0,m, a corrected action at,cor,rob is computed and
transformed in the actual measured robot mounting frame
Equation 9.

at,cor,rob = Rrob,base,m (at,s,rob − rbase,0,m) (9)

For the position of the chaser, no such correction is
made, since the TCP can be moved faster and errors in the
rotation have only a small effect on the actual CoM posi-
tion. The chaser directly follows the trajectory given by
at,s,ch. Since at,cor,rob is a Cartesian translation, an inverse
kinematics algorithm is used to transform the trajectory in
the robot joint space. As desired orientation for the TCP
the orientation of the target grip point is used. A discrete
implementation using a least squares algorithm, instead of
the original constrained least squares (CLS) implementa-
tion from (Bellmann 2014), with additional limitations is
used for performance reasons.

The PPO trajectory is followed until the condition Cter
is true. In this state the gripper is very close to the grasp
point and the chaser close at a defined location near the
grasp point.

From there classical trajectory panning algorithms are
used for the grasping, detumbling and de-orbiting, as de-
scribed in (M. Reiner 2021; M. Reiner, Fernandez, and
Ortega 2017; M. Reiner 2016).

4 SIMULATION EXPERIMENT RE-
SULTS

To test the proposed hybrid algorithm, a series of 100 sim-
ulations of the ADR scenario were performed, using the
full complex model (instead of the simplified model used
for training the PPO algorithm) as described in sec. 2.

Figure 2 shows the trajectories for the chaser satellite
generated by at,s,rob. For the 100 simulations, the start
values for the initial target angular velocity and distance
to target were randomized within their respective bounds
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as defined in Equation 1 and Equation 2. For all 100 sim-
ulation the algorithm was successful and collision free.

Figure 3 shows the results for the mean achieved reward
which is normalized with the minimal reward achieved
(meanReward in the bar plot). The plot also shows the
vector length of the initial target angular velocity and dis-
tance to target (normalized to the maximal values). The
last bar shows the time it took for the termination, normal-
ized to the longest time. The mean time for a termination
was 40.99s. The large visible outlier was a case were the
algorithm was able to move both gripper and chaser very
close to the target, but not close enough to achieve the
terminal condition Cter, only after 404.35s the condition
Cter was achieved. For such cases the algorithm could be
improved in the future with a more adaptive terminal con-
dition Cter or an abort criterion if the phase takes too long.

Figure 4 shows the trajectory for the gripper at the TCP,
which result from at,s,rob for the 100 simulations.

Figure 5 and Figure 6 show some detailed results for
one simulation case which is at the limit for the allowed
initial target angular velocity. The trajectory, generated by
the hybrid algorithm, is used as input for the combined
controller which is used to control the chaser satellite and
robot arm. The plots show the approach with the PPO
algorithm and the transition to the grasping (using a clas-
sical approach). The de-tumbling and de-orbiting is not
shown. The combined controller and classical trajectory
planning used are described in more detail in the previous
publications (M. Reiner 2021; M. Reiner, Fernandez, and
Ortega 2017; M. Reiner 2016).

5 CONCLUSION AND OUTLOOK
This work describes a novel hybrid reinforcement learn-
ing enhanced trajectory planning for an ADR scenario for
combined control of a satellite with a 7-axis robotic arm.
A PPO algorithm is combined with a correction algorithm
and classical trajectory planning to handle the collision
free approach of a chaser satellite to a target and plac-
ing the gripper at the robots TCP near the grasping point
for use with a combined controller, which commands the
satellite and its robotic arm simultaneously.

The algorithm was tested in a complex simulation ADR
scenario with 100 randomized initial conditions, and was
able to generate collision free trajectories for all cases.

The PPO part of the algorithm is trained using a sim-
plified model of the scenario, which allows fast training
times and leads to small neural networks, which could be
run on weaker space computing hardware. It acts as a
feed-forward component to a correction algorithm, which
helps to reduce instability caused by uncertain measure-
ment feed-back and model mismatch.

In the future the algorithm could be extended to use a
more complex model for the training if more computing
power would be available and larger neural networks on
board of the satellite.

The space industry is very restrictive in regards to use

neural networks as part of the control but a hybrid algo-
rithm, as presented here, which can be more easily super-
vised and extended with a fall-back solution could help the
acceptance.

As potential directions for further work, systematic
comparisons with other RL algorithms and classical con-
trol baselines could be explored, along with more detailed
statistical analyses and ablation studies. It may also be
valuable to investigate advanced domain adaptation and
sim-to-real transfer techniques, as well as formal safety
and stability guarantees, to further broaden the applicabil-
ity of the proposed approach.
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