
Automatic Modelica Package and Model Generation from
Templates and Data Files with Python, Exemplified with URDF

Antoine Pignède1 Carsten Oldemeyer1

1German Aerospace Center (DLR), Institute of Robotics and Mechatronics, 82234 Weßling, Germany
{Antoine.Pignede,Carsten.Oldemeyer}@dlr.de

Abstract
Creating correct Modelica models and packages from
templates and data files describing a multi-physics system
is useful in numerous situations. For example, in laying
out power plants, designing airplane air conditioning or
chemical reactions (Barth and Fay 2013; Santillan Mar-
tinez et al. 2018; Ramonat et al. 2025). This publication
shows two possibilities of doing this with an example from
robotics design and simulation. The URDFModelica li-
brary contains templates for links, joints and whole robots
that can be mobile or stationary. The library also has a
Python script that takes a valid URDF file as input. With
minimal manual processing of this input file, a complete
robot simulation package is created automatically. Alter-
natively, the input file, translated to a Modelica record,
can be used to set the parameters and connections of a
generic robot model. The URDFModelica library has al-
ready been successfully used for quick generation of first
Modelica simulations of existing robots or robots yet to be
fully developed. The general structure and approach can
be adapted to other application domains without much ef-
fort. URDFModelica has been released as open source
Modelica library on GitHub.
Keywords: model and package generation, Python Mod-
elica processing, URDF, robotics

1 Introduction
There are numerous examples through all domains where
Modelica is one among several tools for design, develop-
ment, modeling, simulation, analysis etc. Keeping a con-
sistent set of parameters through all tools is crucial but
can be challenging and the same also holds for model
structures and elements interaction. Ideally, there is one
data file or set of files that compiles all this informa-
tion in usable form and with consistent units. Examples
of widely accepted data formats are JavaScript Object
Notation JSON1, Extensible Markup Language XML2 and
YAML Ain’t Markup Language™YAML3.

But even if the data file fulfills these requirements, there
needs to be some function in the tools to read and possibly

1https://www.json.org/
2https://www.w3.org/XML/
3https://yaml.org/

All URLs in footnotes are accessed July 22, 2025.

write the data file. The ExternData4 Modelica library
(Beutlich and Winkler 2021) for example, does that. It
reads files at initialization to set parameters, initial values
and lookup tables. But the Modelica user still needs to
create the models.

Taking robotics as example, there are situations when
one data file can contain more information than just pa-
rameter and initial values. The Unified Robot Description
Format URDF5 6, introduced by the Robot Operating
System ROS7 (Macenski et al. 2022), describes a robot
as a set of links with appropriate attributes and joints that
connect links together, more details in subsection 2.1. As
such it can not only be used to set parameters but to create
whole packages automatically. This works well because
the model structure is fixed before initialization. URDF is
supported by many CAD software packages. Simulation
tools, e. g. CoppeliaSim8 and Isaac9, can build simulation
models starting from a URDF file. The similar capabil-
ity for Modelica is newly introduced in this work. The
new URDFModelica library developed at the German
Aerospace Center (DLR) parses a valid URDF file and au-
tomatically creates a complete robot simulation model as
a new Modelica package or as a Modelica record that con-
figures one model using variable-length arrays. For the
simulation model as Modelica package, it creates sepa-
rate models and parameter records for each link and joint
as well as the robot model, that collects all elements and
connects them to chains. It is thus possible to adapt all
elements individually whenever needed without affecting
all elements of the same kind. The separation between
parameters and models also permits an update function
that only rewrites parameter values. For the simulation
model as single Modelica record, a generic robot model
is contained in the library. This has two arrays of variable
length for links and joints. Connections between these and
for the flanges of active joints are managed by two matri-
ces generated from the URDF source by the Python script.
This way to automatically create a robot simulation needs

4https://github.com/modelica-3rdparty/
ExternData

5http://docs.ros.org/en/jazzy/Tutorials/
Intermediate/URDF/URDF-Main.html

6https://wiki.ros.org/urdf
7https://www.ros.org/
8https://coppeliarobotics.com/
9https://developer.nvidia.com/isaac

DOI Proceedings of the 16th International Modelica&FMI Conference 497
10.3384/ecp218497 September 8-10, 2025, Lucerne, Switzerland

RRR

https://www.json.org/
https://www.w3.org/XML/
https://yaml.org/
https://github.com/modelica-3rdparty/ExternData
https://github.com/modelica-3rdparty/ExternData
http://docs.ros.org/en/jazzy/Tutorials/Intermediate/URDF/URDF-Main.html
http://docs.ros.org/en/jazzy/Tutorials/Intermediate/URDF/URDF-Main.html
https://wiki.ros.org/urdf
https://www.ros.org/
https://coppeliarobotics.com/
https://developer.nvidia.com/isaac

considerably less code but one cannot change individual
elements in contrast to the simulation as new package.

Translation in the other direction, i. e. from Modelica to
URDF, is currently not implemented and not planned for
the near future because no application has been identified.
URDFModelica is different from ExternData, but

also different from Modelica-Builder10. It does not
manipulate arbitrary Modelica files, but only translates
from one format to Modelica syntax for the special appli-
cation type of robotics simulation. It also is different from
the supported automated design (Matei et al. 2024) whose
aim is to automatically create Modelica models, too. But,
URDFModelica only translates an existing design from
one description language to another while the supported
automated design uses optimization from basic elements
to create new models fulfilling specific tasks.

All three categories, read parameters defined exter-
nally, manipulate individual Modelica files externally, cre-
ate whole packages for special applications automatically,
have their area of applications and are useful in many
fields. The approach and structure of the new library ex-
plained here can be adapted to other application domains
without much effort. Therefore, the interest of this publi-
cation may go beyond the Modelica robotics community.

Figure 1. DLR Visualization 2 of the example mobile robot
described in URDF and simulated in Dymola.

Figure 2. Standard Library Animation of the example stationary
robot described in URDF and simulated in OpenModelica.

As appetizer, Figure 1 and Figure 2 show a mo-
bile and a stationary robot created and simulated with
URDFModelica. These are the R2D2-inspired exam-
ple robot of the official ROS 2 documentation and the
UR10e manipulator from Universal Robots11. They are
contained as examples in the library, that has been re-
leased as open source Modelica library in Summer 2025:
https://github.com/DLR-RM/urdfmodelica.

10https://github.com/urbanopt/modelica-builder
11https://www.universal-robots.com/products/

ur10e/

The purpose of this publication is twofold. The first
purpose is to generally explain how package and model
generation can be done. The methodology is adaptable to
other domains and other similar research questions.

The second purpose is to introduce the new
URDFModelica library. This is split into two sec-
tions because two approaches for simulating robots based
on URDF are implemented. The package approach and
the model structure defining record approach. Indepen-
dent of this, there are two variants for visualization, either
with multibody animation from the Standard Library or
the DLR Visualization 2 (Kümper et al. 2021).

Therefore, the text is structured along the two ap-
proaches, first the package then the record approach. Each
time, a concept is explained theoretically first and then ex-
emplified. Before this, the data source file and a general
overview of URDFModelica are explained because they
are the basis for both approaches.

2 Data Source File
Automatic package or model generation at first needs a
good data source. There are numerous formats for this that
cannot be covered entirely here, but some general guide-
lines with Modelica in mind can be given.

Ideally, one should adapt a few things before the Model-
ica package is created. For example, the export may result
in wrong data types like real-valued color triplets instead
of the integer-valued triplets required by Modelica. Most
probably, file paths to resources such as lookup tables or
CAD files for visualization must be changed in order for
Modelica to find them. The recommendation is to put
all these files in the resources directory of the Modelica
package and refer to them relatively following the pattern
filename="modelica://Package/Resources/
...". These steps are easier if the format is human-
readable, but that is not a hard requirement.

Unfortunately, users tend to stretch, go beyond or abuse
the capabilities or intentions of the data formats even if
they are standardized. For example, JSON does not in-
clude comments, although they are occasionally seen in
practice. YAML, as a second example, is not standardized.
This makes handling, especially of large files, difficult and
checking correctness is nearly impossible.

Based on experience of the authors, it often is benefi-
cial not to include absolutely everything in the data file
but rather restrict to the minimum that everybody agrees
on. The automatically created package will almost always
need post processing anyway.

2.1 Example: URDF and Modelica
«URDF (Unified Robot Description Format) is
a file format for specifying the geometry and
organization of robots in ROS.»12

12http://docs.ros.org/en/jazzy/Tutorials/
Intermediate/URDF/URDF-Main.html

Automatic Modelica Package and Model Generation from Templates and Data Files with Python, …

498 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218497

https://github.com/DLR-RM/urdfmodelica
https://github.com/urbanopt/modelica-builder
https://www.universal-robots.com/products/ur10e/
https://www.universal-robots.com/products/ur10e/
http://docs.ros.org/en/jazzy/Tutorials/Intermediate/URDF/URDF-Main.html
http://docs.ros.org/en/jazzy/Tutorials/Intermediate/URDF/URDF-Main.html

URDF is in XML style and thus human-readable. A
robot is a set of interconnected links and joints. Links have
inertial properties, and optionally visual or collision prop-
erties. Joints have a type (fixed, rotational, translational,
etc.), an axis, a parent link, a child link and a few other
optional properties. URDF reserves keywords for more
elements such as sensors and special Gazebo13 elements,
but these are not adopted by every software. For exam-
ple, the urdf_parser_py14 Python module, on which
the conversion from URDF to Modelica is based on, only
parses links and joints.

URDF has become one of the most popular formats in
the robotics community (Tola and Corke 2023). Tola and
Corke (2024) lists and discusses a comprehensive compi-
lation of URDF robot models through the world. A large
number of known CAD software are able to export their
models as URDF, the ROS 2 documentation export page
has a good overview with links to respective manuals.15

Thanks to the already existing Python parser for URDF,
minimal preprocessing of the data source file is needed.
Most important is that file paths point to resources that
Modelica can find. The parser does not check for con-
sistent values, e. g. whether an axis attribute is a unit
vector, and recognizes only the minimal set of elements
and attributes that everybody agrees on. For example,
the ROS 2 documentation defines contact coefficients
for the link collision model that are not recognized by
urdf_parser_py.16

3 URDFModelica Library
The URDFModelica library contains records, models
and resources to easily set up a simulation from an ex-
isting URDF file. See the library tree Figure 3. The two
approaches described here, are contained in the library.

3.1 URDFModelica Links
The link model can be any rigid robot body or represent
some other important robot part like a camera position or a
measurement point. Associated with a link model is a link
parameter record that has three records: inertial, visual
and collision. These three parameter records themselves
contain further records down the hierarchy until primitive
data types such as mass and inertia real values, integer
color vectors or strings for paths to CAD files.

A link always has an inertial component, that is a
Body from the multibody Standard Library with parame-
ters from the corresponding record, which can be zero.

Link visualization is optional. It is always included, but
only active if a Boolean parameter is true. In the “main”

13https://gazebosim.org/home
14https://github.com/ros/urdf_parser_py
15http://docs.ros.org/en/jazzy/Tutorials/

Intermediate/URDF/Exporting-an-URDF-File.html
16http://docs.ros.org/en/jazzy/

Tutorials/Intermediate/URDF/
Adding-Physical-and-Collision-Properties-to-a-URDF-Model.
html#contact-coefficients

variant, it is simulated using the visualizers from the Mod-
elica multibody visualizers. The geometry type that is
part of the link parameter record specifies which visual-
izer to conditionally include. The user may also choose
to replace the Standard Library visualizers with the corre-
sponding elements from the DLR Visualization 2 library
with a simple script option.

Figure 3.
URDFModelica
library tree.

Collision of links is optional, too.
Again, it is always included in the
template and active only if a Boolean
parameter is true. Because the focus
of URDFModelica is on the pack-
age generation and translation from
URDF but not on contact detection
and dynamics, collision is not simu-
lated but only visualized. The same
visualizers from Standard Library or
DLR Visualization 2 as for link visu-
alization are included equally in each
link that has collision information.
Color is pink for easier distinction.
Collision can be globally turned off
with a parameter that is propagated
through the whole robot.

The link model stands as is and
does not need to be processed by
the automatic package generation to
work. One can add a link to any multi-
body model of Modelica because all
parameters have default values and
optional components are conditional.
The advantage of the URDF link com-
pared to a Standard Library body is
the attached parameter record with
which it is easy to have different rigid
bodies with optional visual and colli-
sion models. Additionally, the result-
ing Modelica model uses the same pa-
rameters as defined by URDF, which
makes the backwards translation (cur-
rently not automatized) simple.

3.2 URDFModelica Joints
Joints connect links together. Differ-
ent from links, there is not one joint
with conditional components, but
different models for each type. Still,
all joint models have an instance of
the same joint parameter record. This

record has an enumerated type and nine records, e. g. for
the parent and child link names, the joint axis, limits for
effort and velocity, friction and calibration information.
Note that not all information contained in the URDF
joint description (and URDFModelica joint parameter
record) are used in Modelica simulations.

Session: Robotics in Track for Control & AI

DOI Proceedings of the 16th International Modelica&FMI Conference 499
10.3384/ecp218497 September 8-10, 2025, Lucerne, Switzerland

https://gazebosim.org/home
https://github.com/ros/urdf_parser_py
http://docs.ros.org/en/jazzy/Tutorials/Intermediate/URDF/Exporting-an-URDF-File.html
http://docs.ros.org/en/jazzy/Tutorials/Intermediate/URDF/Exporting-an-URDF-File.html
http://docs.ros.org/en/jazzy/Tutorials/Intermediate/URDF/Adding-Physical-and-Collision-Properties-to-a-URDF-Model.html#contact-coefficients
http://docs.ros.org/en/jazzy/Tutorials/Intermediate/URDF/Adding-Physical-and-Collision-Properties-to-a-URDF-Model.html#contact-coefficients
http://docs.ros.org/en/jazzy/Tutorials/Intermediate/URDF/Adding-Physical-and-Collision-Properties-to-a-URDF-Model.html#contact-coefficients
http://docs.ros.org/en/jazzy/Tutorials/Intermediate/URDF/Adding-Physical-and-Collision-Properties-to-a-URDF-Model.html#contact-coefficients

There are six types. All of them first apply a Standard
Library FixedRotation to set their origin.

• Fixed joints rigidly connect two links together
without any degree of freedom.

• Continuous joints connect two links around a
Revolute from the multibody Standard Library
whose axis is set by the Axis parameter record. The
joint flanges are also propagated to the outside such
that the angle can be controlled. An integer param-
eter can optionally be set to mark the flange number
for easier reference in a robot diagram.

• Revolute is the same as Continuous with the
difference that limits for angle (upper and lower
limit), angular velocity absolute value and effort
(torque) absolute value are checked against at. A
warning is output if a limit is violated.

• Prismatic is the same as Revolute for transla-
tional connection between links using Prismatic
from the multibody Standard Library. All pris-
matic joints have limits for position (upper and lower
limit), velocity absolute value and effort (force) ab-
solute value. These are zero by default as defined by
URDF. A warning is output if a limit is violated.

• Planar joints connect two links together with three
degrees of freedom around a Planar from the
multibody Standard Library. The Axis parameter
record from URDF is perpendicular to the uncon-
strained degrees of freedom. A function calculates
the simplest possible required nx parameter by ex-
changing two vector elements of which one is not
zero such that it can be negated.

• Floating joints connect two links together with all
six degrees of freedom around a FreeMotion from
the multibody Standard Library.

Revolute and Prismatic joints may have friction.
URDF reserves two parameters for this: a friction and a
damping coefficient. Therefore, simple friction models
are also contained in Joints. The friction force fr de-
pending on velocity v is

fr = Rvv+
2Rh

1+ exp(−sv)
−Rh

that is continuously differentiable. Parameters are the vis-
cous friction coefficient Rv (URDF damping), stiction co-
efficient Rh (URDF friction) and steepness s of stiction
(default is 100). Rotational friction is the same with torque
and angle replacing force and position.

The joint models stand as is and do not need to be pro-
cessed by the automatic package generation to work. One
can add any joint to any multibody model of Modelica
because all parameters have default values and optional
components are conditionally included.

3.3 URDFModelica Background Informa-
tion

URDFModelica only relies on the Modelica Standard
Library (4.0.0) and needs Python to translate from
URDF to Modelica. It has been developed and tested on
OpenModelica v1.24.017 (Fritzson et al. 2020) and Dy-
mola 2024x18. The model structure defining record ap-
proach however does not yet work with OpenModelica.
Instead of the default Standard Library visualizers, one
may also choose to do object visualization with the DLR
Visualization 2 library (Kümper et al. 2021). Both vari-
ants are provided in the library and an option on transla-
tion lets the user decide which variant to take. The “vi-
sualization 2” version has been developed and tested only
with Dymola because DLR Visualization 2 currently does
not support OpenModelica. The restricted free commu-
nity edition19 suffices to run the examples.

The Python code has been developed and tested with
Python 3.12 from the official sources20. The module
urdf_parser_py has been installed with pip.

4 Automatic Package Generation in
Modelica

Creating a Modelica package automatically is not a triv-
ial undertaking, even with well-defined data source and
templates. A general approach that is adaptable to many
domains and situations is explained in this section. This is
the first approach of this publication subsequently referred
to as package approach.

In overview terms, there is a Modelica library that con-
tains template models, parameter records definitions and
resources. Among the resources is a Python translation
script and space for necessary files for the automatically
created package to work correctly. These can be lookup
tables, CAD files, JSON initialization files, etc. The sep-
aration of parameter records and Modelica models is an
important part of the proposed automatic package gen-
eration. Counterintuitively, created records and files do
not extend form the templates but do full copies of their
content. The advantage of individual model alteration is
judged higher than the drawback that one cannot simply
change all similar models in one step. This and more as-
pects will be elaborated in the following subsections.

4.1 Modelica Records
A central part of the suggested package structure is to sep-
arate parameters from models, a general pattern that is
widely applied in modeling and simulation. Thus, the first
task is the definition of Modelica records. Here, one must
replicate the elements contained in the data source file that

17https://openmodelica.org/
18https://www.3ds.com/products/catia/dymola
19https://www.sr-scil.de/

simulationsbibliotheken/kommerziell-verfuegbar/
visualization/

20https://www.python.org/

Automatic Modelica Package and Model Generation from Templates and Data Files with Python, …

500 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218497

https://openmodelica.org/
https://www.3ds.com/products/catia/dymola
https://www.sr-scil.de/simulationsbibliotheken/kommerziell-verfuegbar/visualization/
https://www.sr-scil.de/simulationsbibliotheken/kommerziell-verfuegbar/visualization/
https://www.sr-scil.de/simulationsbibliotheken/kommerziell-verfuegbar/visualization/
https://www.python.org/

are potentially needed for the simulation model in Model-
ica syntax. A hierarchical approach and providing default
values is recommended.

When the automatic package generation is run, in-
stances of the parameter records are created and given the
values of the data source file. These copies are given the
same name as the model they refer to, with “Parameters”
as suffix and saved as single files in the new package.

4.1.1 URDFModelica Records

A URDF-described robot is a set of links and joints. Thus,
there is not one but two records on the top of the hierarchy.

4.2 Modelica Template Models
Having template Modelica models helps to automatically
create useful Modelica packages. One could create partial
templates and then extend the concrete instances. How-
ever, a different approach is put forward here. Having
copies of the templates allows to change individual mod-
els after generation. The drawback that changes cannot be
applied to all models at once, is deemed less important. If
needed, packages can be recreated at any moment, but this
comes at the cost of losing individual modifications.

A design choice concerns the number of template mod-
els and enumerated types. One can decide to have one
template model that fits all purposes and selects its con-
ditional components based on the variant. Otherwise,
one can choose to define one, generally simpler, template
model for each variant. The decision which approach to
use, depends on preference, data source, and mainly on
the interface to other parts of the model. Less important
for the decision are the icons and number of components
in each template. Both approaches are implemented in
the example of this publication. There is one template for
all links, regardless whether they are boxes or cylinders,
and six templates for joints, one for each joint type de-
fined by the data source standard. All joint types have
their own template because some of them have flanges
in addition to the two multibody frames needed by all
joints. All links use the same template because they all
only have one multibody frame to attach them to joints or
other links. Conditional components inside a link do not
introduce much complexity. On the contrary, adaptation
to other link types, e. g. converting a CAD defined wheel
to a cylinder, is made easy.

A model always needs the corresponding parameter
record. The template itself has its parameter record as re-
placeable component. This permits instances of the tem-
plate model to stand for themselves and be added manu-
ally to any Modelica model. Then, one can select exist-
ing records, possibly overwrite the defaults and instantiate
new models. When the automatic package generation is
run, the replaceable parameter record is not copied. In-
stead, the correct record, that is the one with the same
name plus “Parameters” suffix, is added without the “re-
placeable” keyword because one should not need to re-
place the parameter record with another one in post pro-

cessing. The instance name is always “parameters” for
easy reference.

Other contents of templates can be divided in required
and optional components. Required components, e. g. in-
terface, are simply copied when automatically created.
Optional components are declared conditional. This is a
second requirement so that instances of a template can
stand for themselves. When the automatic package gen-
eration is run, one could copy all optional components re-
lying on Modelica conditional components. However, the
Python script only copies the needed optional components
to make the new model smaller.

4.2.1 URDFModelica Templates

Because a URDF-described robot is a set of links and
joints, there are two packages with templates. Thus, the
automatic package generation will create two subpack-
ages for links and their parameters as well as for joints
and their parameters.

Link Template
The link model described in subsection 3.1 serves as tem-
plate for links described by URDF.

When a new package is created, copies of the link tem-
plate and record are put in a new Links subpackage for
each link. Thus, the link models can be adapted indepen-
dently of the parameter definitions. Similarly, parameter
values can be updated without modifying the link models.

The correct visualization and collision components
(box, cylinder, sphere, CAD file), if any, are selected from
all components contained in the template based on the
geometry type that is part of the link parameter record.

Joint Templates
The joint models described in subsection 3.2 serve as tem-
plate for joints described by URDF.

When a new robot package is created, copies of joints
of appropriate type are put in the new Joints subpack-
age for each joint. A joint parameter record copy is added
for each joint, too. Thus, the joint models can be adapted
independently of the parameter definitions, parameters
which can be updated at any time without modifying the
joint models.

Different from links, joints have no conditional compo-
nents because there is not one general joint template, but
six more specialized joint templates.

4.3 Aggregate Modelica Template Model
The last required template is the one that combines all el-
ements together to the whole system. This template is
mostly empty apart from the interface. When the auto-
matic package generation is run, the previously created
models of the subsystems are added to a new system
model and connected together based on the data source
file. This is done in the Python script with string manipu-
lation functions that create correct Modelica syntax before
and after the “equation” keyword.

Session: Robotics in Track for Control & AI

DOI Proceedings of the 16th International Modelica&FMI Conference 501
10.3384/ecp218497 September 8-10, 2025, Lucerne, Switzerland

4.3.1 URDFModelica Robot Template

Figure 4. Graphics view of the example mobile robot.

The Robotname model puts all links and joints to-
gether and connects them according to the parent and child
link string contained in each joint record. The graphics
view of the R2D2-inspired example (Figure 1) is shown in
Figure 4. The first link is connected to a frame_a on the
left. All links that are leaves of chains are connected to
a vector of frame_b on the right of the model to allow
for interaction with external components. Additionally,
rotational and translational flanges are propagated to the
outside for every continuous, revolute and prismatic joint.
The correct array sizes are calculated automatically. For
easier reference in the joint icons, the flange number is
also given as parameter to the concerned joints. The robot
model diagram size is automatically adjusted to show all
elements. This is the last model relying on the URDF
source description, the further two Modelica models are
suggestions for usage.

4.4 Modelica Usage Models
Further templates for how to create example models or
FMUs may also be convenient for users.

4.4.1 URDFModelica Usage Models

For example, RobotnameRun builds an environment
around Robotname. There is a multibody World,
and outside inputs for position and angle of joints.
RobotnameRun is one possible model to compile as
FMU21 (Blochwitz et al. 2012).
RobotnameTest is a model to quickly check that

the package has been created correctly by providing some
simple inputs to all needed signals.

21https://fmi-standard.org/

4.5 Python Script
The actual generation of the Modelica package is done
with a Python script. Modelica also has text and file ma-
nipulation functions, but lacks the versatility and ease of
Python. For example, there are parser modules for XML
or JSON files that make the translation from these formats
to Modelica syntax a lot easier.

Inputs to the Python script are the data source file and
the location where to save the new package. The latter
must be divided into two inputs, the path to the direc-
tory where the Modelica package structure begins, and the
Modelica package inside this package structure. This is
needed because each Modelica file begins with the key-
word “within” and the Modelica package structure.

4.5.1 Package Generation

The Python script in general performs the following tasks.

1. Parse the input file. This is one of the main reasons
to use Python because there already are modules for
many data formats such as JSON, XML or YAML.

2. For each element

(a) Create a new parameter record by translat-
ing the parsed information to Modelica syntax.
Save the parameter record in the given package
structure, possibly in further subpackages, with
element name plus “Parameters” suffix.

(b) Create a new model by copying only the
needed contents of the template. Add the pa-
rameter record as “parameters” instance. Save
the model in the given package structure, possi-
bly in further subpackages, with element name.

3. Create the model that combines all elements to the
system. Add all elements and connect them based
on the actual source. Save this model in the given
package structure with system name.

4. Optionally create and save a model that shows how
to use the system.

5. Create the package order file of the new package.

6. Create the package definition file of the new package.

7. Update the package order one hierarchy level higher.

Note also that it is recommended to convert all names to
title case, i. e. first letter upper case and the rest lower case,
and that they should not contain "-" (minus) signs or be
reserved keywords.

4.5.2 Parameter Update

One main reason for the division between parameters and
models is to be able to update parameters without rewrit-
ing the whole package. This is possible if only numerical
parameter values change in the data source file. In that

Automatic Modelica Package and Model Generation from Templates and Data Files with Python, …

502 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218497

https://fmi-standard.org/

case, the same Python script as above only recreates the
parameter record files and skips all the rest.

Because the models of elements and the overall system
model remain unchanged, it is not possible to change el-
ement types or connections in update mode. If the data
source has such changes, one must completely rewrite the
whole package or create a new one.

4.5.3 URDFModelica Python Script for Package
Approach

The Python script urdf_to_package.py in the re-
sources does the translation from URDF to Modelica syn-
tax and creates or updates the Modelica package. It relies
on the existing Python URDF parser but does not need fur-
ther information or other non-standard modules otherwise.

Given a URDF file it first translates all information into
one Modelica record exactly replicating the URDF con-
tents. Then it writes, or rewrites, the parameter records
of links and joints in the specified package. If the user
chooses the update mode, the script terminates. Other-
wise the entire package structure, with joints models, link
models, robot model and example files, is recreated. De-
tails about specific steps in this process are given in the re-
spective paragraphs about links, joints, etc. further above.

5 Simulation Based on Modelica
Record

Instead of generating new packages for every source file,
an alternative way is a model that adapts to the structure
during translation. While Modelica is not capable of han-
dling systems with variable structure during simulation,
it supports component arrays with varying sizes as long
as those are known during translation. This is the second
approach of this publication subsequently referred to as
model structure defining record approach.

While retrieving the connection information from the
data source file with a Modelica function is theoretically
possible, it does not work with the Dymola version used
by the authors. The tool must be able to expand the
subscripts of connected variables into literals. Hence,
a connectionMatrix containing that information is
written into the single, complete record by the Python
script as a workaround and used as shown in Listing 1.
Each connection corresponds to a matrix row containing
the indices of connected elements in its columns. Note
that Listing 1 is adapted to the URDF and Modelica ex-
ample and thus has two arrays of different elements (links
and joints) and one connection matrix, because URDF de-
fines parent links and child links to each joint.

Similarly, matrices for outside connections must be re-
trieved from the data source file and added to the model.
In the robotics example of this text, it is the flanges of ro-
tational or translational joints.

Finally, knowing the base and end elements of chains
is usually necessary for interfacing with the environment.
Roots and leaves can be determined relatively easily from

the connectionMatrix.
Compared to the package generation approach of sec-

tion 4, the simulation based on a single record reduces
the amount of generated code and therefore maintenance
effort considerably. In fact, the same few lines of Model-
ica code are enough to simulate all translated data source
files. This implementation lends itself to use-cases where
the system is frequently changed and used without modi-
fications, e. g. when choosing the right system for a given
task based on a simulation study.

A drawback is the lack of accessible presentation of the
mapping from component name to index in the component
vector that is more user-friendly with the package gener-
ation approach, see Figure 4. Changes in individual com-
ponents are not possible either. As of writing model trans-
lation fails with OpenModelica with preliminary analysis
indicating an error in component array handling.

5.1 URDFModelica: Simulation Based on
Modelica Record

The URDFModelica library also does simulation from
URDF source in a generic form following the model struc-
ture defining record approach. The source file rigidly de-
fines the number of joints and links as well as their con-
nections. A literal URDF robot implementation consists
of two variable size arrays of links and joints whose size is
the same as their respective records in the Robot record.
The DLR Robots library (Bellmann et al. 2020) frequently
uses this alternative way to create robots from URDF.

Listing 1. Simplified Excerpt of Robot Model.

model GenericRobot
(...)
Records.Robot data;
Integer nJ = size(data.joint, 1);
Integer nL = size(data.link , 1);
Integer cM[nJ, 2] = data.connectionMatrix;
Joint joint[nJ](jointParams = data.joint);
Link link [nL](linkParams = data.link);

equation
for iJ in 1:nJ loop
connect(link[cM[iJ, 1]].frame_a,
joint[iJ].frame_a);

connect(joint[iJ].frame_b,
link[cM[iJ, 2]].frame_a);

end for;
(...)

end GenericRobot;

The Python script of subsubsection 4.5.3 also creates
a parameter record Robot, that contains the complete
translation in one file. The translated links and joints that
are used individually in the package approach, first are
compiled to two arrays. Then, two additional matrices are
generated from the joint information.

• connectionMatrix[numJoints,2], theoret-
ically explained in section 5, in practice becomes
an array where each joint corresponds to a matrix
row containing parent and child link indices in its
columns. Usage is shown in Listing 1.

Session: Robotics in Track for Control & AI

DOI Proceedings of the 16th International Modelica&FMI Conference 503
10.3384/ecp218497 September 8-10, 2025, Lucerne, Switzerland

• moveableJoints[numAxes,2] has the joint
number and movable axis number for every
Continuous, Revolute and Prismatic joint.
This sets connection of joint flanges to outside com-
ponents at model translation.

Another part of the interface is a base frame that is
used to place the robot in its environment. Which link
to connect to the base frame is determined based on
the connectionMatrix with a Modelica function that
searches for the single root of the connection tree.

Higher level components need to provide the URDF
robot record to the robot model via modifier.

6 Conclusion and Further Work
Automatic package generation or parameterization of
generic models can be very useful, especially to keep con-
sistent parameters and structures of models. It simplifies
the initial setup and encourages good modeling practices,
such as separating parameters from models.

This text explains two approaches, package and model
structure defining record, that are adaptable to many do-
mains and applications without much effort. The new
URDFModelica library implements both approaches. It
exemplifies the approaches and shows their practicality.
The library has been released open source under BSD li-
cense on GitHub in Summer 2025. First users report quick
translation, even of large robots (> 25 joints), and in gen-
eral stable execution.

Further work can go in different directions. While there
is not much to add to the general and more theoretical
terms, URDFModelica can be expanded for example
for proper collision models (Buse et al. 2023) or include
more advanced drives or expand the range of robot ele-
ments. Although the Python parser does not recognize
sensors, the URDF documentation reserves keywords for
IMUs, cameras etc. An in-house extension to the library
that also considers this, is already in use at DLR. Once
URDFModelica has been released as open source Mod-
elica library, efforts for extending urdf_parser_py
will be undertaken. More examples of how to use the
created Modelica models is another possibility for further
work. For example, calculation of Jacobian or Coriolis
matrices are important in robotics research.

Finally, the claim that the approach can be adapted to
other domains, remains to be proven.

Acknowledgements
The authors would like to thank Robert Reiser for being
the first person to test the library and Bernhard Thiele for
proof reading the manuscript.

This work was supported by the Helmholtz Association
project iFOODis (contract no. KA-HSC-06 iFOODis).

References
Barth, M. and A. Fay (2013). “Automated generation of simula-

tion models for control code tests”. In: Control Engineering
Practice 21.2, pp. 218–230. DOI: 10.1016/j.conengprac.2012.
09.022.

Bellmann, T. et al. (2020). “The DLR Robots library – Using
replaceable packages to simulate various serial robots”. In:
Asian Modelica Conference 2020, 8-9 October 2020, Tokyo,
Japan. Linköping University Electronic Press, pp. 153–161.
DOI: 10.3384/ecp2020174153.

Beutlich, T. and D. Winkler (2021). “Efficient Parameterization
of Modelica Models”. In: 14th International Modelica Con-
ference, 20-24 September 2021. Linköping University Elec-
tronic Press, pp. 141–146. DOI: 10.3384/ecp21181141.

Blochwitz, T. et al. (2012). “Functional Mockup Interface 2.0:
The Standard for Tool independent Exchange of Simula-
tion Models”. In: 9th International Modelica Conference, 3-
5 September 2012, Munich, Germany. Linköping University
Electronic Press, pp. 173–184. DOI: 10.3384/ecp12076173.

Buse, F. et al. (2023). “A Modelica Library to Add Contact Dy-
namics and Terramechanics to Multi-Body Mechanics”. In:
15th International Modelica Conference, 9-11 October 2023,
Aachen, Germany. Linköping University Electronic Press,
pp. 433–442. DOI: 10.3384/ecp204433.

Fritzson, P. et al. (2020). “The OpenModelica Integrated En-
vironment for Modeling, Simulation, and Model-Based De-
velopment”. In: Modeling, Identification and Control 41.4,
pp. 241–285. DOI: 10.4173/mic.2020.4.1.

Kümper, S. et al. (2021). “DLR Visualization 2 Library - Graph-
ical Environments for Virtual Commissioning”. In: 14th In-
ternational Modelica Conference, 20-24 September 2021.
Linköping University Electronic Press, pp. 197–204. DOI: 10.
3384/ecp21181197.

Macenski, S. et al. (2022). “Robot Operating System 2: Design,
architecture, and uses in the wild”. In: Science robotics 7.66,
eabm6074. DOI: 10.1126/scirobotics.abm6074.

Matei, I. et al. (2024). “Modelica supported automated de-
sign”. In: American Modelica Conference 2024, 14-16 Octo-
ber 2025, Storrs, CT, USA. Linköping University Electronic
Press, pp. 43–52. DOI: 10.3384/ECP20743.

Ramonat, M. et al. (2025). “Automated Generation of Simula-
tion Models Based on Plant Engineering Data”. In: Workshop
der ASIM Fachgruppen GMMS – Grundlagen und Methoden
in Modellbildung und Simulation und STS – Simulation Tech-
nischer Systeme, 10-11 April 2025, Oberpfaffenhofen, Ger-
many. ARGESIM Reports. ASIM and ARGESIM, pp. 79–
86. ISBN: 978-3-903347-66-3.

Santillan Martinez, G. et al. (2018). “Automatic Generation of
a High-Fidelity Dynamic Thermal-Hydraulic Process Simu-
lation Model From a 3D Plant Model”. In: IEEE Access 6,
pp. 45217–45232. DOI: 10.1109/ACCESS.2018.2865206.

Tola, D. and P. Corke (2023). “Understanding URDF: A Survey
Based on User Experience”. In: 2023 IEEE 19th International
Conference on Automation Science and Engineering (CASE),
26-30 August 2023, Auckland, New Zealand. IEEE. DOI: 10.
1109/CASE56687.2023.10260660.

Tola, D. and P. Corke (2024). “Understanding URDF: A Dataset
and Analysis”. In: IEEE Robotics and Automation Letters 9.5,
pp. 4479–4486. DOI: 10.1109/LRA.2024.3381482.

Automatic Modelica Package and Model Generation from Templates and Data Files with Python, …

504 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218497

https://doi.org/10.1016/j.conengprac.2012.09.022
https://doi.org/10.1016/j.conengprac.2012.09.022
https://doi.org/10.3384/ecp2020174153
https://doi.org/10.3384/ecp21181141
https://doi.org/10.3384/ecp12076173
https://doi.org/10.3384/ecp204433
https://doi.org/10.4173/mic.2020.4.1
https://doi.org/10.3384/ecp21181197
https://doi.org/10.3384/ecp21181197
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.3384/ECP20743
https://doi.org/10.1109/ACCESS.2018.2865206
https://doi.org/10.1109/CASE56687.2023.10260660
https://doi.org/10.1109/CASE56687.2023.10260660
https://doi.org/10.1109/LRA.2024.3381482

	Introduction
	Data Source File
	Example: URDF and Modelica

	URDFModelica Library
	URDFModelica Links
	URDFModelica Joints
	URDFModelica Background Information

	Automatic Package Generation in Modelica
	Modelica Records
	URDFModelica Records

	Modelica Template Models
	URDFModelica Templates

	Aggregate Modelica Template Model
	URDFModelica Robot Template

	Modelica Usage Models
	URDFModelica Usage Models

	Python Script
	Package Generation
	Parameter Update
	URDFModelica Python Script for Package Approach

	Simulation Based on Modelica Record
	URDFModelica: Simulation Based on Modelica Record

	Conclusion and Further Work

