
Yet Another Residential District Simulator: yards for Controller
Development in the Residential Built Environment

Lucas Bex1,3,* Muhammad Hafeez Saeed1,3 Lucas Verleyen2,3 Lieve Helsen2,3 Geert
Deconinck1,3

1Department of Electrical Engineering, KU Leuven, Belgium,
2Department of Mechanical Engineering, KU Leuven, Belgium

3EnergyVille, Belgium
*cas.bex@kuleuven.be

Abstract
Innovation in residential energy systems drives research
efforts towards novel building and district control strate-
gies. Development and testing of such strategies re-
quires advanced, interactive building and district simula-
tors. This paper presents yards, an interactive simulator
that combines the modelling capabilities of Modelica with
a language-agnostic and cross-platform interface for con-
troller development. yards offers modelling flexibility be-
yond that of existing tools, as any custom, user-provided
building or district model can be implemented easily. A
case study demonstrates how yards can be used to simu-
late a tiny cluster of buildings.
Keywords: BOPTEST, Control Benchmarking, Functional
Mock-Up Interface, Residential Energy Systems, yards

1 Introduction
Driven by climate targets, energy systems in the residen-
tial built environment are transforming. Fossil fuel-based
technologies are being replaced by a combination of dis-
tributed renewable energy-based technologies e.g. pho-
tovoltaics (PV), heat pumps, batteries, thermal storage. . .
To ensure an affordable, reliable and secure energy sup-
ply, hybrid configurations including different energy tech-
nologies at community level, rather than individual build-
ing level, have been gaining interest. Additionally, several
energy services, such as heating, cooling and transport,
are electrified, leading to the interconnection of the en-
tire energy system via the electrical energy carrier. The
increase in degrees of freedom, the interactions between
the energy vectors and the wide range in time constants
(sub-second-scale for electricity, minute-scale for thermal
systems, daily-scale for short-term storage and seasonal-
scale for long-term storage) lead to increasingly complex,
but simultaneously increasingly flexible energy systems.
Hence, to operate such energy systems and to use the
full flexibility potential, advanced control strategies, cus-
tomised to the specific energy system design, are neces-
sary. Software-based emulators are essential for prototyp-
ing and validating such control strategies, as real-world
experiments are often costly and time-consuming.

Emulators and controllers differ fundamentally in how
they model and interact with physical systems, and as such
tooling requirements for both are incompatible. Emulators
describe acausal relationships between physical quantities
in the form of equations. As emulators do not have fixed
input-output relationships, they benefit from a declara-
tive programming style that mimics the equation-based
format. Since correctness is of major importance, emu-
lators benefit from features such as static type and unit
checking. In contrast, controllers inherently represent an
input/output relation between sensor measurements and
control signals sent to actuators. These relationships are
more conveniently described through algorithms, in an im-
perative style, as opposed to equations. A focus on rapid
prototyping and performance metrics rather than correct-
ness favours dynamically typed programming languages
for controller development, especially in research contexts
where robustness and real-time requirements are typically
less emphasised. For these reasons, software tools which
focus on emulator development, such as Modelica, tend
to be a poor fit for implementing some types of advanced
controllers, such as data-driven model predictive control
(MPC) or reinforcement learning. Indeed, while Modelica
can be used to, for example, describe the system model
within an MPC implementation, it is ill-suited to tasks
such as training a neural network or tuning a gray-box
model, which are essential in data-driven control strate-
gies. Likewise, high-level programming languages that
are suitable for controller development, such as Python
or Julia, are often not ideal for creating an emulator. In
these languages, tools for emulator development do ex-
ist, e.g. ModelingToolkit (Ma et al. 2021), but their syn-
tax often bears little resemblance to that of the program-
ming language they are used with. As such, control re-
search for the residential built environment benefits from
a multiple-tool approach: on the one hand, a declarative
and statically typed programming language for the emula-
tor; on the other hand, an imperative, dynamically typed
programming language for the controller.

Various frameworks have been previously developed to
interface building and district emulator models with con-
trollers. The BOPTEST (Blum et al. 2021) and related

DOI Proceedings of the 16th International Modelica&FMI Conference 525
10.3384/ecp218525 September 8-10, 2025, Lucerne, Switzerland

RRR

DOPTEST (Arroyo et al. 2023) frameworks have emerged
as benchmarks for building and district controllers, re-
spectively. Whereas the emulators in these frameworks
have been implemented in Modelica, the simulation1 in-
terface is web-based and, as such, is controller-agnostic.
This simulator-as-a-server approach allows complete free-
dom for control development. Both BOPTEST and
DOPTEST support a curated set of emulators which serve
as a global benchmark for advanced control strategies.

In contrast, CityLearn provides an efficient frame-
work for benchmarking control algorithms, including
rule-based control, MPC, and multi-agent reinforcement
learning, at the urban scale, but it presents several limita-
tions compared to more comprehensive platforms such as
BOPTEST and DOPTEST (Vázquez-Canteli et al. 2019).
First, its modelling approach consolidates district energy
systems, heat pump behaviour, and building thermal dy-
namics into simplified representations, limiting the fidelity
of simulations, especially for multi-zone or commercial
applications (Nweye et al. 2025). Thus, while CityLearn
is well-suited for rapid comparative analyses, high-fidelity
studies may benefit from alternative, more detailed mod-
elling environments. Second, the CityLearn framework
is not language-agnostic: the framework is Python-based
and requires controllers to be implemented as such.

Furthermore, TACO (Toolchain for Automated Control
and Optimisation) (Jorissen, Boydens, and Helsen 2019)
is a Modelica-based framework to develop white-box non-
linear MPC strategies for any energy system. However,
TACO only implements and solves white-box MPC for
detailed emulator models. Hence, energy system configu-
rations can be compared, but no control strategies.

In this context, the field lacks a customisable, high-
fidelity emulation tool for buildings and districts, which
could further support the development of novel control
strategies and the deployment of sustainable energy sys-
tems. BOPTEST and DOPTEST implement high-fidelity
benchmark models, but these frameworks are not intended
for simulating custom user models, yet alternatives such
as CityLearn are not suitable for studies requiring high fi-
delity, while tools such as TACO support detailed emu-
lator models but don’t offer controller freedom. There-
fore, this paper presents yet another residential district
simulator, yards .2,3 yards targets interactive, high-fidelity
simulations of buildings and districts with support for cus-
tom, user-defined, energy system models and Key Per-
formance Indicators (KPIs). yards bridges the gap be-
tween emulator designers who use Modelica to create em-
ulators, and controller developers, who may interact with
the yards simulator through a web Application Program-
ming Interface (API). The yards simulator takes inspira-

1This paper makes a distinction between emulators and simulators:
emulators are models to test/benchmark a controller against; simulators
are software that simulates a model.

2yards is intentionally all lower case.
3Available at https://gitlab.kuleuven.be/positiv

e-energy-districts/yards

tion from the BOPTEST and DOPTEST frameworks and
adopts the same interface, retaining near-compatibility
with BOPTEST and DOPTEST from the perspective of
the controller developer. yards is open source, cross-
platform, and supports multiple (open source and propri-
etary) Modelica compilers.

The rest of the paper is structured as follows: Section 2
discusses yards design and implementation, and compares
its design with that of the BOPTEST framework. Sec-
tion 3 showcases yards from both emulator designer and
controller developer perspective. The case study repack-
ages and simulates a residential district model using the
yards framework. Section 4 concludes the paper.

2 Design and Implementation
yards (Fig. 1) is consists of two components: the build
pipeline and the simulator server. The build pipeline trans-
forms the user4-provided model into a yards-compatible
Functional Mock-up Unit (FMU) (Modelica Association
2022), and generates additional metadata files for the sim-
ulator based on the model and user-provided metadata
files. The simulator defines a high-level web API to run
the simulation, log the results, provide forecasts and cal-
culate KPIs. This section first presents the build pipeline,
followed by a discussion on the simulator.

2.1 Build Pipeline
The build pipeline generates all files required to run the
simulator, i.e. the FMU and the files managed by the
data manager in Fig. 1. To this end, yards generates a
model description in XML format using OpenModelica
and requires the user to specify any remaining metadata.
As such, the user provides not only a Modelica model,
but also several configuration files in JSON format (left
side of Fig. 1): the forecastables.json file provides
a description of all forecasts and how to calculate them;
libraries.json is a list of Modelica dependencies
of the model; build_config.json and config.json
configure the build pipeline and simulator.

2.1.1 Model and Metadata

The emulator designer must provide yards with a simu-
latable Modelica model without inputs or outputs at the
top level. Instead, the model includes read and overwrite
blocks at arbitrary depth, indicating variables to be ex-
posed or overwritten, respectively (Fig. 2). yards searches
the generated XML description of the model for these read
and overwrite blocks, and generates a wrapper model that
contains the original model and exposes the inputs and
outputs of these read and overwrite blocks at the top level.
Subsequently, a wrapped FMU of this model can be gen-
erated using either OpenModelica or Dymola. The latter
option requires the user to manually compile the wrapper
model and provide yards with the compiled FMUs.

4User refers to the emulator designer

Yet Another Residential District Simulator: yards for Controller Development in the Residential …

526 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218525

https://gitlab.kuleuven.be/positive-energy-districts/yards
https://gitlab.kuleuven.be/positive-energy-districts/yards

Modelica FMU Test Case

config.json

forecastables.json kpis.json Data Manager

forecasts.csv KPI Calculator

categories.json Forecaster

libraries.json

build_config.json

yards
Build Pipeline

Simulator

Front End

yards Server

User-Provided File Non-User-Provided File

Controller

Figure 1. yards design overview: the emulator designer provides a Modelica model, corresponding metadata, a KPI calculator and
a list of Modelica dependencies and how to install them. yards uses these inputs to build an FMU of the model, which is managed
by the yards server and exposed to the controller via a web interface. The controller is not part of yards.

Figure 2. Example of a thermal RC model with read and
overwrite blocks. The reaDisturbance and reaTin read
blocks, and the oveHeater overwrite block indicate that these
quantities should be exposed at the top level.

The read and overwrite blocks indicate which quantities
are measurable or controllable, but they do not provide any
information about their forecastability. yards relies on the
emulator designer to specify which quantities have avail-
able forecasts, as defined in the forecastables.json
file. Quantities should only be indicated as forecastable
if there is no causal relationship between the quantity
and any control input. For example, weather conditions
are forecastable, but the building’s indoor temperature de-
pends on the control actions of the heating system and, as
such, is not forecastable. The forecastables file takes the
format of Listing 1: at the first level, the forecast inter-
polation method is specified (linear or zero-order hold);
at the second level, forecast names are specified as keys,
and their corresponding values indicate how the forecast
is to be calculated and provide additional properties when
necessary. In Listing 1, forecast1 corresponds directly to
a variable in the model. yards will search the XML de-
scription for metadata and replicate that metadata for this

forecast. forecast2 is an expression of multiple variables.
In this case, yards is unable to determine the correct unit
and description from the XML description. Hence, the
emulator designer must provide this information.

Listing 1. Forecast metadata example
{ "linear": {

"forecast1": "model.reaVar1.y",
}, "zoh": {

"forecast2": {
"expression": "model.reaVar2.y +

model.reaVar3.y",
"unit": "A unit",
"description": "Var2 + Var3"

}
}

}

2.1.2 Implementation

The yards build pipeline (Fig. 3) uses a combina-
tion of Bash, Python and OpenModelica. To organ-
ise the build process, recipes are noted in a Makefile
that can be parametrised via a simple configuration file
(build_config.json). The pipeline runs in a con-
tainerised environment.

The build pipeline (Fig. 3) works as follows: First, the
Modelica dependencies are downloaded to the container,
and the OpenModelica path is populated with the model
dependencies. Second, a prelude script to load all model
dependencies is generated and combined with predefined
templates to generate Modelica scripts. The script gen-
eration also involves filling in arguments such as model
names, since custom command line arguments cannot be
provided to .mos scripts. Third, the generated dump_xml
script is used to obtain the XML description of the model.
Fourth, the wrapped model is generated, and the user-
provided metadata is combined with the XML descrip-
tion to generate the forecast data and metadata files for the
simulator. Generating the forecast data involves simulat-
ing the original model for a user-specified time frame and
resolution. Since this step can be costly, yards provides

Session: Control for HVAC and Buildings in Track for Control & AI

DOI Proceedings of the 16th International Modelica&FMI Conference 527
10.3384/ecp218525 September 8-10, 2025, Lucerne, Switzerland

options to accelerate this step using a simplified model.
Fifth, the wrapped model is compiled into an FMU. Sixth,
the generated forecast and metadata files are bundled with
the wrapped FMU, and the pipeline is finished.

Whereas the FMU compilation step by default uses
OpenModelica, yards allows compiling FMUs with other
tools, such as Dymola.5 In that case, the build pipeline
stops after generating the wrapped Modelica model (step
four above). The user should then compile the FMU man-
ually. yards checks (and repairs) the model description of
the manually compiled FMU for deficiencies against the
OpenModelica XML description. The repaired FMU is
bundled with the generated metadata files, after which the
pipeline is finished.

2.1.3 Comparison with BOPTEST

The yards and BOPTEST build pipelines differ in three
aspects: design approach, tooling, and model description
generation. yards presents a configurable monolithic build
pipeline aimed at non-expert emulator designers who re-
quire only minimal knowledge of the build process. In
contrast, BOPTEST implements and maintains a separate
build pipeline for each model but reuses some common
utility functions across test cases. The declarative con-
figuration required by yards including model metadata,
is arguably easier to use compared to manually writing
build scripts. BOPTEST uses the JModelica compiler
(Åkesson, Gäfvert, and Tummescheit 2009), the Optimica
Compiler Toolkit (OCT) and Dymola (Dempsey 2006) to
build its test cases. OCT and Dymola are proprietary soft-
ware, whereas the open source development of JModelica
has been discontinued (Modelon 2019). yards depends on
the open source OpenModelica compiler (Fritzson et al.
2020) but also supports other compilers such as Dymola
(Dempsey 2006). The choice of tooling leads to differ-
ences in model generation as well. Whereas BOPTEST
extracts model metadata from an FMU of the original
model, yards uses OpenModelica to generate an easily
parseable model description directly from the Modelica
model using OpenModelica’s dumpXMLDAE function. The
approach of yards avoids compiling an intermediate FMU,
which is typically an expensive step in the build process.

2.2 Simulator and API

2.2.1 Simulator

The yards simulator contains four core components (see
Fig. 1): the forecaster, the KPI calculator, the data man-
ager, and the test case. The forecaster provides predictions
for forecastable quantities. The KPI calculator computes
model-specific key performance indicators. The default
yards KPI calculator returns an empty dictionary when
KPIs are queried, but emulator designers may provide a
custom implementation (in Python) instead. KPI calcula-

5Our approach could hypothetically work with any tool that com-
piles FMUs from Modelica models, but we have only tested it with Dy-
mola and OpenModelica

Table 1. Types of requests that yards accepts and their behaviour

Type Behaviour

GET Obtain model/simulator metadata
PUT Obtain data/set simulator parameter/initialise
Identical sequential PUT requests → same result

POST Advance simulation
Identical sequential POST requests → different results

Table 2. yards API and compatibility with BOPTEST (v0.5.0).
Additions to the API after BOPTEST v0.5.0 are unimplemented.

Command BOPTEST compatibility

GET forecast_points Compatible
GET inputs Compatible
GET kpi Model-specific return
GET kpi_absolute Model-specific return, superset
GET measurements Compatible
GET name Compatible
GET scenario Compatible
GET step Compatible
GET version Compatible
POST advance Compatible
POST submit Silent or loud failure
PUT forecast Compatible
PUT initialize Compatible
PUT results Compatible
PUT scenario Model-specific input and return
PUT step Compatible

tors may implement arbitrary KPIs based on the exposed
measurements, overwrites and forecasts. yards provides a
base class to simplify the implementation of custom KPI
calculators. The data manager tracks control signals and
measurements, providing a convenient interface for other
components to access simulation data. The test case han-
dles the FMU simulation and processes incoming requests
from the front end.

yards reuses a substantial part of the BOPTEST code-
base. The simulator is implemented in Python and uses the
PyFMI package (Andersson, Åkesson, and Führer 2016)
to interact with the FMU.

2.2.2 API

The yards simulator provides a REST API for interac-
tively simulating the model, obtaining measurements and
forecasts, and for calculating KPIs. The API is avail-
able through HTTP, such that yards is not restricted to
controllers implemented in any specific programming lan-
guage. Commands are grouped into HTTP GET, PUT
and POST requests by intended behaviour (Table 1). Re-
sponses are JSON strings and always take the format of
Listing 2. The front end implementation uses the Flask
framework (Pallets Projects 2010).

Yet Another Residential District Simulator: yards for Controller Development in the Residential …

528 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218525

Templates compile_wrapped.mos

Original Model Wrapped Model

prelude.mos config.json

dump_xml.mos XML Description forecasts.csv

OpenModelica Path categories.json

libraries.json forecastables.json kpis.json

User-Provided End Result

Wrapped FMU

Bash OpenModelica Python

Figure 3. yards build pipeline. This diagram represents the case where OpenModelica is chosen as the compiler and the entire
pipeline can be run in the container. Additional steps are needed if external compilers are used.

Listing 2. yards API response. The status value is 200, 400
or 500, indicating success, invalid request or internal errors, re-
spectively.
{
"message": "Informative message",
"payload": {

"a request-specific": "data structure"
},
"status": 200

}

The yards API is fully compatible with that of
DOPTEST, which is in turn a superset of the BOPTEST
(v0.5.0) API, in terms of request format. Responses and
behaviour are, however, not identical for the complete
API. Differences are listed in Table 2. Commands related
to BOPTEST dashboard submission fail either silently or
loudly (depending on configuration). As the KPIs and sce-
nario are defined by the emulator designer, related com-
mands and their return values may take arbitrary formats.

3 Case Study
This case study6 showcases the yards framework, from
both an emulator designer standpoint and a controller de-
veloper perspective. The section starts with the model de-
scription, followed by an overview of the KPIs. Next, the
implementation of the model and KPIs in the yards frame-
work is described, comprising the emulator designer’s
tasks. Afterwards, three controllers and their implemen-
tation are treated. The section ends with a discussion of
the results.

3.1 Model Description
This case study uses the MoPED.Districts.Layout4
model from the open source MoPED library
(Verleyen et al. 2022). This model is similar to the
MoPED.Districts.Layout3 model, which is used in
the DOPTEST framework (Arroyo et al. 2023). The
district model is implemented using component models

6Available at https://gitlab.kuleuven.be/positiv
e-energy-districts/yards-case-study

from the Modelica Standard Library (Modelica Associa-
tion 2020), the Modelica Buildings library (Wetter et al.
2014), and the IDEAS library (Jorissen, Reynders, et al.
2018). For detailed information on the model equations,
refer to (Arroyo et al. 2023) and the respective library
documentation.

The model MoPED.Districts.Layout4 represents
a tiny cluster consisting of three residential, detached,
single-family buildings. Each house is modelled as a
single-zone building, relying on the detailed, white-box
IDEAS (Jorissen, Reynders, et al. 2018) Rectangular-
ZoneTemplate. This building model template models each
building envelope component as a construction consisting
of several material layers and includes one-dimensional
conduction, internal and external convection, and long-
wave and short-wave radiation, allowing for dynamic heat
transfer simulations. Occupancy behaviour is included to
account for the internal heat gains of the occupants. More
information on the building geometry and occupancy can
be found in (Arroyo et al. 2023).

Each building of the tiny cluster is equipped with an
individual energy system to provide heat for space heat-
ing and domestic hot water, cold for space cooling, and
electricity for appliances. The only interconnection be-
tween the buildings is via the electrical distribution grid.
Each building has an individual air-to-water heat pump
connected to a simple parallel throttling circuit with an
embedded floor heating system for space heating and a
domestic hot water storage tank. Domestic hot water is
drawn from the tank via a tap, resulting in the inflow of
cold city water into the tank. Space cooling is provided by
a separate air-to-air heat pump. The electrical load of each
house is a combination of an inflexible demand profile for
plug loads and flexible loads consisting of the air-to-water
heat pump and the air-to-air heat pump. Each house has
a PV installation with an inverter that curtails power gen-
eration when the grid voltage deviates by more than 10%
from the nominal voltage.

To obtain realistic results, the use case is subject to con-
sistent boundary condition data of 2021 linked to Leuven
(Belgium). Weather data has been measured by the Build-

Session: Control for HVAC and Buildings in Track for Control & AI

DOI Proceedings of the 16th International Modelica&FMI Conference 529
10.3384/ecp218525 September 8-10, 2025, Lucerne, Switzerland

https://gitlab.kuleuven.be/positive-energy-districts/yards-case-study
https://gitlab.kuleuven.be/positive-energy-districts/yards-case-study

ing Physics Section of the KU Leuven on campus. Oc-
cupancy profiles, including plug loads, have been gener-
ated using StROBe (Baetens and Saelens 2016). Hourly
emission profiles have been derived from the Belgian gen-
eration mix (ENTSO-E 2025) and emission factors pub-
lished by ElectricityMaps (ElectricityMaps 2025). Hourly
electricity prices correspond to the hourly day-ahead price
(Elexys 2024) without additional taxes.

3.2 Key Performance Indicators
The emulator designer can customise the KPI calculation
according to their needs. This case study implements the
KPIs below. All KPIs are calculated over the full simu-
lation horizon, spanning from the start time ts to the fi-
nal time t f . KPIs can be calculated on a per-house basis
(κ i, i ∈ {1,2,3}) or on a district level (κ tot).

3.2.1 Thermal Discomfort
For space heating and space cooling, the thermal discom-
fort, κtdis,shc, in [K h], is calculated as the cumulative de-
viation of the operative zone temperature To(t) from its
lower T o and upper T o comfort limits for each house i
(Eq. (1)).

κ
i
tdis,shc =

∫ t f

ts
δTo,i(t)dt i ∈ {1,2,3} (1a)

δTo,i(t) =


T o,i −To,i(t) if To,i(t)< T o,i

0 if To,i(t) ∈ [T o,i,T o,i]

To,i(t)−T o,i if To,i(t)> T o,i

(1b)

The comfort limits are determined according to the
EN16798-1:2019 standard (Eq. (2), where nocc,i is the
amount of building occupants present in house i).

T o,i =

{
20◦C if nocc,i > 0
15◦C otherwise

i ∈ {1,2,3} (2a)

T o,i =

{
26◦C if nocc,i > 0
30◦C otherwise

i ∈ {1,2,3} (2b)

For domestic hot water, the thermal discomfort, κtdis,dhw,
also in [K h], is calculated as the cumulative deviation of
the tank temperature Ttan(t) from its lower limit T tan =
45◦C for each house i (Eq. (3)).

κ
i
tdis,dhw =

∫ t f

ts
δTtan,i(t)dt i ∈ {1,2,3} (3a)

δTtan,i(t) =

{
T tan,i −Ttan,i(t) if Ttan,i(t)< T tan,i

0 if Ttan,i(t)≥ T tan,i
(3b)

Thermal discomfort is aggregated at the district level as in
Eq. (4).

κ
tot
tdis,shc =

3

∑
i=1

κ
i
tdis,shc (4a)

κ
tot
tdis,dhw =

3

∑
i=1

κ
i
tdis,dhw (4b)

3.2.2 Electric Energy Use

Electric power is aggregated at the building and district
levels. For an individual building i, electric power ex-
change at the building’s grid connection point Pi com-
prises the PV installation, plug loads, the air-to-water heat
pump for heating and the air-to-air heat pump for cooling.
Injection and offtake electric power of individual build-
ings is defined in Eq. (5).

Pin j,i(t) = max{0,Pi(t)} i ∈ {1,2,3} (5a)
Po f f ,i(t) = max{0,−Pi(t)} i ∈ {1,2,3} (5b)

At the district level, energy exchange between individual
houses is taken into account, resulting in the district injec-
tion and offtake electric power (Eq. (6)).

Pin j,tot(t) = max{0,
3

∑
i=1

Pi(t)} (6a)

Po f f ,tot(t) = max{0,−
3

∑
i=1

Pi(t)} (6b)

The electric energy use KPIs, κ
in j
ener and κ

o f f
ener, aggregate

electric power injection and offtake over the simulated
time period, resulting in Eq. (7) (with abuse of notation).

κ
in j,i
ener =

∫ t f

ts
Pin j,i(t)dt i ∈ {1,2,3, tot} (7a)

κ
o f f ,i
ener =

∫ t f

ts
Po f f ,i(t)dt i ∈ {1,2,3, tot} (7b)

3.2.3 Operational CO2 Emissions

Since all energy services are electrified, the operational
CO2 emissions only originate from the offtake of electric-
ity Po f f (t) from the grid.

κ
o f f ,i
emis =

∫ t f

ts
ε(t)Po f f ,i(t)dt i ∈ {1,2,3, tot} (8)

ε(t) is the hourly CO2 emission factor. The houses are
rewarded for injecting emission-free electricity generated
by their PV installation, Pin j(t). Sharing energy between
buildings within the district is considered emission-free,
but when injecting energy into the grid, an injection com-
pensation equal to 50% of the emission intensity is as-
sumed.

κ
in j,i
emis =

∫ t f

ts
0.5ε(t)Pin j,i(t)dt i ∈ {1,2,3, tot} (9)

A clear distinction between the emissions due to offtake,
κ

o f f
emis, and the emission compensation due to injection,

κ
in j
emis, is made to have a better understanding of the sys-

tem’s behaviour.

Yet Another Residential District Simulator: yards for Controller Development in the Residential …

530 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218525

3.2.4 Operational Costs
Since all energy services are electrified, the operational
costs only originate from the offtake of electricity, Po f f (t),
from the grid.

κ
o f f ,i
cost =

∫ t f

ts
c(t)Po f f ,i(t)dt i ∈ {1,2,3} (10)

c(t) is the hourly electricity price. The houses are re-
warded for injecting electricity generated by their PV in-
stallation, Pin j(t). An injection tariff equal to 50% of the
offtake price is assumed.

κ
in j,i
cost =

∫ t f

ts
0.5c(t)Pin j,i(t)dt i ∈ {1,2,3} (11)

The case study does not consider any financial agreements
at the district level. As such, the district injection revenue
and offtake cost are simply the sum of the individual rev-
enues and costs (Eq. (12)).

κ
in j,tot
cost =

3

∑
i=1

κ
in j,i
cost (12a)

κ
o f f ,tot
cost =

3

∑
i=1

κ
o f f ,i
cost (12b)

3.3 Implementation
To prepare the model for the yards build pipeline, meta-
data, dependencies, and the builder configuration must be
provided.

3.3.1 Modelica and Model Metadata
The MoPED.Districts.Layout4 model is obtained
from the MoPED repository (Verleyen et al. 2022). This
model has been expressly built for DOPTEST and as such,
the necessary read/overwrite blocks are already present.
The Modelica dependencies of MoPED are specified in
the libraries.json file. These dependencies can be
either installed directly through OpenModelica or down-
loaded using Git. Alternatively, the user may mount a lo-
cal version of the dependencies in the builder container
and provide an empty libraries.json file. Forecast
metadata is provided in the format of Listing 1.

The configuration of the build pipeline (Listing 3)
specifies various technicalities such as the name of
the models to compile, the path to the model pack-
age and metadata files, but also includes instruc-
tions for generating the forecast data. Since the dis-
trict model is quite computationally expensive, the
simplified MoPED.Districts.Layout4RC model is
used to generate the forecasts for weather and oc-
cupancy instead. This model uses linear second-
order RC models for the building envelope instead of
the more complex IDEAS RectangularZoneTemplate.
The MoPED.Districts.Layout4RC model is simulated
with the provided arguments, and the simulation results
are used as forecasts.

Listing 3. Build pipeline configuration for the case study
{
"models": ["MoPED.Districts.Layout4"],
"modelicafile": "MoPED/package.mo",
"metadata": "metadata",
"compiler": "omc",
"forecast": {

"forecast_model": "MoPED.Districts.
Layout4RC",

"start_time": 0.0,
"stop_time": 691200.0,
"number_of_intervals": 768

}
}

3.3.2 KPI Calculator

The KPI calculator (Listing 4) implements each KPI as a
separate method. The yards-provided base class is used
for easy access to model variables at simulation runtime.
Some KPIs, such as those related to operational emissions
take extra parameters, which can be passed by setting the
scenario, either in the config.json or during the simu-
lation through a request (Table 2). The structure and con-
tents of the scenario can be fully customised by the emu-
lator designer.

Listing 4. KPI calculator for the use case. The code is simplified
and abbreviated. Class methods have been de-indented one extra
level for readability.

from .baseclass import BaseKPICalculator
class KPICalculator(object):
mandatory methods
def __init__(self, testcase):
self.base = BaseKPICalculator(testcase)
self.house_prefixes = ["house1", "house2"

, "house3"]
def initialize(self):
self.base.initialize()

def get_kpis_absolute(self, scenario=None):
def get_core_kpis(self, scenario=None):
he l p e r methods
def emissions(self, prefix,

injection_scaling_factor=0.5):
def thermal_discomfort(self, prefix):
...
def get_house_kpis(self, prefix, scenario):
def get_district_kpis(self, scenario):

3.3.3 Building the Model

To build the FMU, the yards builder image must be started
as a container with local development files mounted (List-
ing 5). The buildcache and target volumes cache in-
termediate build steps and store the build result. Using
this approach, changes in model, metadata and KPI calcu-
lator files are available immediately and build results can
be accessed by inspecting the buildcache volume.

Listing 5. Run the yards build pipeline

$ docker run \
-v buildcache:/yards/build \
-v target:/yards/target \
-v ./MoPED:/yards/MoPED \

Session: Control for HVAC and Buildings in Track for Control & AI

DOI Proceedings of the 16th International Modelica&FMI Conference 531
10.3384/ecp218525 September 8-10, 2025, Lucerne, Switzerland

-v ./metadata:/yards/metadata \
-v ./build_config.json:/yards/

build_config.json \
yards/builder

To run the simulator after finishing the build, a differ-
ent container based on the yards simulator image must
be started. When starting this container (Listing 6),
the target volume and custom KPI calculator must be
mounted and the network must be configured.

Listing 6. Run the yards simulator. After running this command
the simulator can be accessed via http://localhost:50
01.

$ docker run -p 5001:5000 \
-v target:/home/user/target \
-v ./kpis/kpi_calculator.py:/home/user/

kpis/kpi_calculator.py \
yards/simulator

Above approach is suitable for active development of
the simulator, but requires that model files are available on
the host machine. To simplify distribution of the packaged
model, one may create a new image that includes the built
FMU and custom KPI calculator (Listing 7) and distribute
this image.

Listing 7. Package the model by running the yards build
pipeline as an intermediate stage in a multi-stage image build
resulting in a self-contained simulator image with the custom
model and KPIs.

FROM yards/builder:latest AS build
copy model and metadata config files from

host to image
COPY . /yards/
RUN ./entrypoint.sh make target
FROM yards/simulator:latest
COPY --chown=user --from=build /yards/

target/models/wrapped.fmu target/models
/wrapped.fmu

COPY --chown=user kpis/kpi_calculator.py ./
kpis/kpi_calculator.py

3.4 Controller Development
This section introduces and compares three controllers for
space heating. The three controllers are the baseline (C0),
the price-based controller (C1) and the price-difference-
based controller (C2). Controller C0 reduces the temper-
ature setpoint when no occupants are present, to reduce
energy usage. The price-based controller C1 preheats the
building when the electricity price is low, to avoid energy
use when the price is high. Controller C2 forecasts the
electricity price and preheats the building only before a
significant price increase. All three controllers aim to bal-
ance thermal comfort with energy use and cost.

3.4.1 Controller Design

In the district model, the control logic for space heating
contains two control loops. The outer loop determines
the temperature setpoint To,set(t) for the zone. The in-
ner hysteresis-based loop operates the heat pump to drive

the zone temperature towards this setpoint. The hysteresis
band has a width of 1◦C and is centred around the cur-
rent setpoint To,set. The heat pump is switched on or off to
maintain the zone temperature within this band. All con-
trollers in this section determine the temperature setpoint
To,set and rely on the inner control loop to operate the heat
pump.

First, controller C0 implements the rule in Eq. (13).
Since comfort bounds are less strict when the building is
empty (Eq. (2)), the temperature setpoint can be decreased
significantly at this time. Second, the rule for C1 is given
by Eq. (14): when the electricity price is low, tempera-
ture is increased. The thermal inertia of the building can
be used to reduce energy consumption when prices rise
above this threshold, reducing costs.

T C0
o,set,i =

{
T C0

high = 21 ◦C if nocc,i > 0
T C0

low = 15 ◦C otherwise
(13)

T C1
o,set,i =

{
T C1

high = 24 ◦C if c(t)≤ cth

T C1
low = 21 ◦C otherwise

(14)

Finally, controller C2 aims to anticipate large changes in
electricity price. It modulates the temperature setpoint
between upper and lower limits depending on the fore-
casted short-term change in price ∆c (Eq. (15), where
∆t is the timestep, α ∈ [0,1] the modulation factor, and
∆cscale = 0.05 e/kWh, a parameter to tune controller sen-
sitivity).

∆c = max{c(t + j∆t)− c(t)| j = 0 . . .6} (15a)
α = min{∆c/∆cscale,1} (15b)

T C2
o,set,i = (1−α)T C2

low +αT C2
high (15c)

= 21◦C+α ·3◦C

3.4.2 Implementation and Simulation

Controller C0 is implemented directly in the Modelica
model and is part of the MoPED library; it can be sim-
ulated by calling the POST advance method of the yards
API without arguments. Controllers C1 and C2 are imple-
mented in Python (Listing 8). They first query the electric-
ity price via a PUT forecast call, and use this information
to compute the heating setpoint. The heating setpoint is
then supplied as an argument to the POST advance call to
yards.

Listing 8. Implementation of C1. Code altered for brevity.

def do_step(url, Tlow, Thigh, cth):
price_key = ’

PriceElectricPowerHighlyDynamic’
price = requests.put(f’{url}/forecast’,

json={’point_names’: [price_key], ’
horizon’: 0, ’interval’: 1}).json()[’
payload’][price_key]

Tset = Tlow if price[0] > cth else Thigh
setpoints = {

’house1_hva_oveTSetHeaDay_u’: Tset,

Yet Another Residential District Simulator: yards for Controller Development in the Residential …

532 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218525

http://localhost:5001
http://localhost:5001

15

20

25

30

Te
m

pe
ra

tu
re

 [°
C

] (a)

House 1 Indoor Temperature - C0

15

20

25

30

Te
m

pe
ra

tu
re

 [°
C

] (b)

House 1 Indoor Temperature - C1

15

20

25

30

Te
m

pe
ra

tu
re

 [°
C

] (c)

House 1 Indoor Temperature - C2

0 1 2 3 4 5 6 7
Time [days]

0.05

0.10

Pr
ic

e
[

/k
W

h] (d)

Electricity Price

Indoor Temperature Temperature Setpoint Comfort Bounds Electricity Price Price Threshold

Figure 4. (a)-(c) Indoor temperature in house 1 (solid line) over a one week period under each of the three control strategies ((a) -
C0, (b) - C1, (c) - C2). Dashed lines show the heating setpoints computed by the controllers, and the lightly shaded band represents
the occupancy-dependent comfort bounds (Eq. (2)). (d) Dynamic electricity price (dotted) and C1 price threshold (dash-dotted).

’house1_hva_oveTSetHeaDay_activate’: 1,
se t o the r houses . . .

}
requests.post(f’{url}/advance’, json=

setpoints).json()[’payload’]

All simulations are performed for one week, starting on
the 1st of January, with a time step ∆t of 1 hour. For each
of the three simulations, the same controller was applied
to all three houses of the tiny cluster simultaneously.

3.5 Results and Discussion
The KPI calculator allows to easily compare the imple-
mented controllers (Table 3). For all three controllers, dis-
trict electricity offtake is substantially larger than injec-
tion, which aligns with expectations for a winter month
with limited PV production and consistent heating de-
mand. The baseline C0 achieves the lowest energy use and
operational emissions, but incurs higher costs and space
heating-related thermal discomfort than the custom C1
and C2 controllers. Figure 4 clearly shows the cause of the
thermal discomfort: C0 is unable to anticipate the sudden
change in comfort bounds, resulting in thermal discom-
fort (around day 2 and 3.25 in Fig. 4a). In contrast, C1
and C2 (Figs. 4b and 4c) use more conservative tempera-
ture setpoints, and thus avoid this problem. Controller C1
achieves the lowest offtake cost (e43.00, -4.97% vs. C0)

Table 3. District-level KPIs for all three controllers. These re-
sults were obtained through a GET kpi call to yards after finish-
ing each simulation.

Metric C0 C1 C2

Operational
Costs [e]

κ
in j,tot
cost 0.49 0.24 0.36

κ
o f f ,tot
cost 45.25 43.00 43.31

Operational
Emissions [kgCO2]

κ
in j,tot
emis 0.32 0.15 0.26

κ
o f f ,tot
emis 42.90 44.10 43.93

Energy Use [kWh] κ
in j,tot
ener 10.25 4.76 8.11

κ
o f f ,tot
ener 760.5 773.5 775.2

Thermal
Discomfort [Kh]

κ tot
tdis,shc 18.05 0.00 0.00

κ tot
tdis,dhw 0.00 0.00 0.00

but also the highest offtake-related CO2 emissions (44.10
kgCO2, +2.8% vs. C0).

A follow-up to this case study could be to develop a
novel, more performant and more advanced controller.
This may be done by another researcher, using a different
programming language, on a different operating system.
The flexibility of yards to package custom models with
a consistent interface opens up a lot of possibilities for

Session: Control for HVAC and Buildings in Track for Control & AI

DOI Proceedings of the 16th International Modelica&FMI Conference 533
10.3384/ecp218525 September 8-10, 2025, Lucerne, Switzerland

collaborative and open research: emulator designers can
independently and rapidly publish their models for con-
troller developers to optimise. Where centralised, curated
benchmarks like BOPTEST and DOPTEST allow com-
parisons between controllers across the globe on a curated
set of models, yards is ideal for collaborations compar-
ing a limited set of controllers for an arbitrary model or
even for use in a one-person project. As such, the work
presented in this paper can be seen as complementary to
existing efforts, rather than competitive.

4 Conclusion
yards is a novel building and district simulator for devel-
oping and testing advanced control strategies with high-
fidelity models. It allows emulator designers to package
Modelica models as an interactive web-based simulator
with which controllers can interact. Custom KPI calcu-
lators can optionally be embedded alongside the models.

The presented case study demonstrates yards’ capabil-
ities on a small residential district, showing how yards
facilitates cross-language co-simulation of emulator and
controller, and allows to easily compare controller per-
formance using custom KPIs. yards provides a versatile
environment for evaluating and testing advanced control
concepts in residential energy systems.

Acknowledgements
The authors acknowledge the financial support by
KU Leuven through the TECHPED - C2 project
(C24M/21/021). The TECHPED project investigates
TECHnically feasible and effective solutions for Posi-
tive Energy Districts. Lucas Bex and Muhammad Hafeez
Saeed ackowledge the support from Research Founda-
tion Flanders - FWO (research fellowships 1S00325N and
1S66625N, respectively). Climatic data were collected in
Leuven by the Building Physics Section of KU Leuven.

References
Åkesson, Johan, Magnus Gäfvert, and Hubertus Tummescheit

(2009). “JModelica—an Open Source Platform for Optimiza-
tion of Modelica Models”. In: 6th Vienna International Con-
ference on Mathematical Modelling.

Andersson, Christian, Johan Åkesson, and Claus Führer (2016).
PyFMI: A Python Package for Simulation of Coupled
Dynamic Models with the Functional Mock-up Interface.
Vol. LUTFNA-5008-2016. Technical Report in Mathemati-
cal Sciences. Centre for Mathematical Sciences, Lund Uni-
versity.

Arroyo, Javier et al. (2023). “Prototyping the DOPTEST Frame-
work for Simulation-Based Testing of System Integration
Strategies in Districts”. In: Proceedings of the 18th IBPSA
Conference. Shanghai, China.

Baetens, Ruben and Dirk Saelens (2016). “Modelling uncer-
tainty in district energy simulations by stochastic residential
occupant behaviour”. In: Journal of Building Performance
Simulation 9.4, pp. 431–447. DOI: 10.1080/19401493.2015.
1070203.

Blum, David et al. (2021). “Building Optimization Testing
Framework (BOPTEST) for Simulation-Based Benchmark-
ing of Control Strategies in Buildings”. In: Journal of Build-
ing Performance Simulation 14.5, pp. 586–610. ISSN: 1940-
1493. DOI: 10.1080/19401493.2021.1986574.

Dempsey, Mike (2006). “Dymola for Multi-Engineering Mod-
elling and Simulation”. In: IEEE Vehicle Power and Propul-
sion Conference, pp. 1–6. DOI: 10.1109/VPPC.2006.364294.

ElectricityMaps (2025). Emission factors. URL: https://github.
com/electricitymaps/electricitymaps-contrib/wiki/Emission-
factors (visited on 2025-01-29).

Elexys (2024-01-15). Spot Belpex. URL: https : / / my . elexys .
be / MarketInformation / SpotBelpex . aspx (visited on 2024-
01-15).

ENTSO-E (2025). Actual Generation per Production Type - Bel-
gium. URL: https://transparency.entsoe.eu/ (visited on 2025-
01-29).

Fritzson, Peter et al. (2020-01-10). “The OpenModelica Inte-
grated Environment for Modeling, Simulation, and Model-
Based Development”. In: Modeling, Identification and Con-
trol 41.4, pp. 241–295. DOI: 10.4173/mic.2020.4.1.

Jorissen, Filip, Wim Boydens, and Lieve Helsen (2019). “TACO,
an Automated Toolchain for Model Predictive Control of
Building Systems: Implementation and Verification”. In:
Journal of Building Performance Simulation 12.2, pp. 180–
192. ISSN: 1940-1493. DOI: 10 . 1080 / 19401493 . 2018 .
1498537.

Jorissen, Filip, Glenn Reynders, et al. (2018). “Implementation
and Verification of the IDEAS Building Energy Simulation
Library”. In: Journal of Building Performance Simulation
11.6, pp. 669–688. DOI: 10.1080/19401493.2018.1428361.

Ma, Yingbo et al. (2021). ModelingToolkit: A Composable
Graph Transformation System For Equation-Based Model-
ing. arXiv: 2103.05244 [cs.MS].

Modelica Association (2020-06-04). Modelica Standard Li-
brary. Version v4.0.0. URL: https : / / github. com / modelica /
ModelicaStandardLibrary (visited on 2025-04-16).

Modelica Association (2022-11-10). Functional Mock-Up Inter-
face for Model Exchange and Co-Simulation. Version 2.0.4.
URL: https : / /github.com/modelica / fmi- standard/ releases /
download/v2.0.4/FMI- Specification- 2.0.4.pdf (visited on
2023-12-13).

Modelon (2019-12-18). JModelica.Org. URL: https://jmodelica.
org/ (visited on 2025-04-11).

Nweye, Kingsley et al. (2025). “CityLearn v2: Energy-flexible,
resilient, occupant-centric, and carbon-aware management of
grid-interactive communities”. In: Journal of Building Per-
formance Simulation 18.1, pp. 17–38.

Pallets Projects (2010). Flask. URL: https://github.com/pallets/
flask (visited on 2025-04-16).

Vázquez-Canteli, José R et al. (2019). “Citylearn v1. 0: An ope-
nai gym environment for demand response with deep rein-
forcement learning”. In: Proceedings of the 6th ACM Interna-
tional Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, pp. 356–357.

Verleyen, Lucas et al. (2022-11). “Identifying technically feasi-
ble and effective solutions towards Positive Energy Districts
(PEDs)”. In: Proceedings of the Urban Energy in a Net Zero
World Conference. Glasgow, Scotland.

Wetter, Michael et al. (2014). “Modelica Buildings library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270. DOI: 10.1080/19401493.2013.765506.

Yet Another Residential District Simulator: yards for Controller Development in the Residential …

534 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218525

https://doi.org/10.1080/19401493.2015.1070203
https://doi.org/10.1080/19401493.2015.1070203
https://doi.org/10.1080/19401493.2021.1986574
https://doi.org/10.1109/VPPC.2006.364294
https://github.com/electricitymaps/electricitymaps-contrib/wiki/Emission-factors
https://github.com/electricitymaps/electricitymaps-contrib/wiki/Emission-factors
https://github.com/electricitymaps/electricitymaps-contrib/wiki/Emission-factors
https://my.elexys.be/MarketInformation/SpotBelpex.aspx
https://my.elexys.be/MarketInformation/SpotBelpex.aspx
https://transparency.entsoe.eu/
https://doi.org/10.4173/mic.2020.4.1
https://doi.org/10.1080/19401493.2018.1498537
https://doi.org/10.1080/19401493.2018.1498537
https://doi.org/10.1080/19401493.2018.1428361
https://arxiv.org/abs/2103.05244
https://github.com/modelica/ModelicaStandardLibrary
https://github.com/modelica/ModelicaStandardLibrary
https://github.com/modelica/fmi-standard/releases/download/v2.0.4/FMI-Specification-2.0.4.pdf
https://github.com/modelica/fmi-standard/releases/download/v2.0.4/FMI-Specification-2.0.4.pdf
https://jmodelica.org/
https://jmodelica.org/
https://github.com/pallets/flask
https://github.com/pallets/flask
https://doi.org/10.1080/19401493.2013.765506

	Introduction
	Design and Implementation
	Build Pipeline
	Model and Metadata
	Implementation
	Comparison with BOPTEST

	Simulator and API
	Simulator
	API

	Case Study
	Model Description
	Key Performance Indicators
	Thermal Discomfort
	Electric Energy Use
	Operational CO2 Emissions
	Operational Costs

	Implementation
	Modelica and Model Metadata
	KPI Calculator
	Building the Model

	Controller Development
	Controller Design
	Implementation and Simulation

	Results and Discussion

	Conclusion

