Facilitating the use of Physics-Based Simulations on Embedded
Devices by running FMUs from MicroPython

Tom REYNAUD!

Erfan ENFERAD?

Maxime LEFRANCOIS?

"Mines Saint-Etienne, France, tom.reynaud@etu.emse. fr

2

erfan.enferad@gmail.com

3Mines Saint-Etienne, Univ Clermont Auvergne, INP Clermont Auvergne, CNRS, UMR 6158 LIMOS,
F - 42023, Saint-Etienne, France, maxime.lefrancois@emse.fr

Abstract

Physics-based simulations (PBS) are increasingly valu-
able for real-time applications in embedded systems, yet
integrating them on resource-constrained devices remains
challenging. This paper presents ufmu, a lightweight
framework that enables execution of source-code FMI
2.0-compliant Functional Mock-up Units (FMUs) within
the MicroPython environment, targeting platforms such
as the ESP32. The proposed approach integrates into
the MicroPython firmware the FMU source code and
the FMU model description translated into C structures,
and exposes a minimal Python API for simulation con-
trol, enabling model-based computations on-device with-
out cloud dependencies. We evaluate the framework using
a standard FMU model, comparing performance across
ESP32, Unix, and plain C environments in terms of mem-
ory usage, execution time, and firmware size. Despite the
ESP32’s hardware limitations, the results demonstrate that
meaningful simulations can be achieved efficiently, with
minimal memory overhead. All code, documentation, and
experiment instructions are freely available under an MIT
license, supporting reproducibility and adoption in educa-
tion, prototyping, and embedded research. This work also
lays the foundation for future integration with eFMI and
the FMI 3.0 standard.

Keywords: Physics-Based Simulation, FMI, FMU, eFMI,
MicroPython

1 Introduction

The simulation software market is expected to reach 40.5
billion US dollars in 2030 according to a report (Zoting
2023). In recent years physics-based simulation (PBS)
has become a very important tool in different domains
of both science and industry. PBS support for the anal-
ysis and prediction of events, with applications ranging
from breaking systems in vehicles (Magargle et al. 2017)
to earthquake prediction (Saad et al. 2023), having the po-
tential to save lives.

Embedded devices support physics-based simulation
(PBS) by supplying data. In a cloud-edge architecture,
they typically collect sensor data, such as temperature
or humidity, and transmit it to the cloud for processing

and storage. Still, performing real-time calculations in
the cloud is costly, as it increases network traffic and la-
tency, lowers energy efficiency, and can hinder scalability
(Savaglio et al. 2019). Recent developments enable em-
bedded devices to run simulations themselves, helping to
address these issues while also simplifying the overall ar-
chitecture (Lenord et al. 2021). However, the skill gap
between simulation development and embedded system
programming remains a barrier to broader adoption and
integration of these capabilities, especially for hobbyists
or DIY (Do-It-Yourself) enthusiasts.

The Functional Mockup Interface (FMI), developed by
the Modelica Association, is an open standard for shar-
ing and co-simulating dynamic models, supported by tools
for monitoring, evaluation, and plotting (Blockwitz et al.
2012). Models are packaged as Functional Mock-up Units
(FMUs), which encapsulate code, data, and metadata in a
standardized format for easy integration across tools.

Developed as part of the EMPHYSIS project, the em-
bedded Functional Mock-up Interface (eFMI) extends
FMI to enable simulation execution on embedded devices
(Lenord et al. 2021). eFMI introduces a dedicated pro-
gramming language, GALEC, with the goal to ensure PBS
execution stays within the resource constraints of embed-
ded systems. GALEC guarantees static worst-case execu-
tion time and memory usage, and prevents illegal memory
access. Additionally, eFMI’s container architecture sup-
ports multiple model representations, including algorith-
mic, production, and binary code. These features make
eFMI suitable for safety-critical applications and adapt-
able to various embedded software environments.

Optimized for microcontrollers, MicroPython (George
and MicroPython community 2014) is a streamlined im-
plementation of Python 3 designed to compile and exe-
cute code directly on microcontrollers, which are at the
heart of most embedded devices. MicroPython is easier
to learn and use than C (Fangohr 2004) and provides a
rich set of libraries, making it well-suited for education
and rapid prototyping in embedded systems (Tollervey
2017). To our knowledge, embedding FMI simulations
directly within the MicroPython environment is unprece-
dented and complements the eFMI paradigm.

Therefore, this paper addresses the following research

DOI
10.3384/ecp218535

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

535

Facilitating the use of Physics-Based Simulations on Embedded Devices by running FMUs ...

question: How can FMUs be integrated into MicroPython
for execution on embedded devices ? We propose the
ufmu framework, which enables execution of FMI 2.0-
compliant FMUs within MicroPython by:

1. translating the FMU model description into a C
structure,

2. integrating it and the FMU source code into the Mi-
croPython build, and

3. exposing the FMU via a lightweight Python API
through the ufmu library, allowing simulations to run
directly within MicroPython.

This paper makes the following key contributions:

¢ A framework for exporting and running one source-
code FMI 2.0-compliant FMU embedded inside the
MicroPython firmware;

¢ Performance evaluation of the proposed integration;

» Exploration of future perspectives, including the po-
tential use of eFMI for further optimizations and
adaptation to the FMI 3.0 standard.

The rest of this paper is structured as follows. Sec-
tion 2 provides background information. Section 3 out-
lines the ufmu framework, detailing our methodology, as-
sociated challenges, and optimizations. It also validates
the implementation through test cases, including running
the bouncing ball simulation on an ESP32 microcontroller.
Section 4 discusses related work. Finally, Section 5 con-
cludes the paper by summarizing the contributions, dis-
cussing the implications of the work, and outlining future
directions for research and development.

2 Background
2.1 The need for PBS in embedded devices

PBS are models that represent the physical behavior of
a system. Applications include predictive maintenance,
where a component’s remaining life is estimated based on
its current condition to enable timely intervention before
failure (Magargle et al. 2017), and fault diagnosis, where
the source of faults is identified from observed behavior to
support corrective actions and improve system reliability
(Aivaliotis et al. 2019).

The use of PBS directly inside embedded systems is an
emerging field that holds great promise for improving the
accuracy, efficiency, and performances of these systems
(Tavella et al. 2016). Accuracy is improved by offering a
more precise representation of the system’s physical be-
havior, which is crucial for real-time operations in safety-
critical systems, medical devices, and automobiles (Ar-
mugham et al. 2021). Efficiency is improved by enabling
auto-calibrating scenarios, reducing the need for extensive
testing and debugging (Liu and Negrut 2021; Gundermann
et al. 2017). Performance is enhanced by optimizing the
architecture and operation of the system, leading to a more
efficient and responsive system (Vanommeslaeghe et al.
2018; Tavella et al. 2016). Additionally, performing the
process on the embedded device itself boosts responsive-

ness and scalability.

However, several challenges remain. First, PBS can be
computationally demanding, restricting their deployment
on resource-constrained devices. Second, integration with
existing embedded software can be complex and may re-
quire significant development effort and expertise. Finally,
their sensitivity to input data quality makes them difficult
to apply in real-world scenarios (Duraiswami and Zotkin
2016). Despite these challenges, the benefits of integrat-
ing physics-based simulations into embedded systems are
evident. As technology advances, their adoption is likely
to grow across a wide range of applications.

2.2 FMI and FMUs

The Functional Mockup Interface (FMI), developed by the
Modelica Association, is an open standard for sharing and
co-simulating Modelica models, which are typically ex-
ported as Functional Mock-up Units (FMUs). FMUs en-
capsulate code, data, and metadata in a uniform package,
enhancing the credibility and usability of simulations in
complex engineering processes (Gall et al. 2021).

FMI 2.0 is the most widely adopted and extensively
supported version of FMI, with over 210 tools offering
compatibility and ensuring seamless integration across
industries such as automotive, aerospace, and energy.!
While FMI 3.0 introduces advanced co-simulation fea-
tures, richer data-type support, and scheduled-execution
interfaces—such as 8-, 16-, 32-, and 64-bit integer types,
single-precision floats, and opaque binary variables—its
adoption remains nascent compared to 2.0. Given its
proven stability, broad toolchain compatibility, and full
backward-compatibility with existing FMUs, FMI 2.0 is
the preferred choice for most engineering workflows to-
day, and the one we will focus on in this paper.

The following outlines the sequence of FMI func-
tion calls that ensure accurate state propagation, event
handling, and system updates within the simulation.
All FMU function calls omit the fmi2_ prefix for
better readability. During initialization, the FMU is
created with instantiate, and memory is allo-
cated for state variables and event indicators. The
experiment is configured using setupExperiment,
followed by a transition into initialization mode
with enterInitializationMode. Initial
variable values are retrieved using getReal and
getInteger. After exiting initialization mode with
exitInitializationMode, an initial event itera-
tion is performed using newDiscreteStates. The
simulation loop starts by retrieving continuous states
and derivatives via getContinuousStates and
getDerivatives. Time advancement is handled with
setTime, and the next simulation step is performed
using setContinuousStates. The event handling
mechanism is activated when necessary, transitioning
into event mode with enterEventMode and resolving

'https://fmi-standard.org/tools/

536

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218535

https://fmi-standard.org/tools/

Session: FMI for Embedded Systems and Virtual Prototyping in Track for Control & Al

discrete state updates via newDiscreteStates. If
required, the simulation re-enters continuous-time mode
using enterContinuousTimeMode. Throughout
the process, output variables are gathered by invoking
getReal and getInteger.

2.3 MicroPython

MicroPython (George and MicroPython community 2014)
is a lightweight implementation of Python designed for
microcontrollers. Unlike CPython, which requires a full
OS, MicroPython runs directly on bare-metal hardware,
providing direct access to peripherals like GPIO, I12C, SPI,
and UART, making it ideal for resource-constrained envi-
ronments. Arduino has embraced MicroPython as a sup-
ported platform for programming microcontrollers, pro-
viding tools like the Arduino Lab for MicroPython to fa-
cilitate development. This integration allows developers
to leverage the simplicity of Python while utilizing Ar-
duino’s extensive hardware ecosystem.

MicroPython leverages one of Python’s key advantages:
its ease of use, especially in comparison to C/C++, the
dominant languages for embedded systems programming.
According to (Fangohr 2004), Python-based development
can significantly reduce the time needed for implementa-
tion and debugging.

Additionally, as discussed in (Tollervey 2017), Mi-
croPython includes an extensive standard library and sup-
ports external modules, allowing developers to leverage
a broad range of functionalities without needing to write
low-level firmware from scratch. It also has built-in li-
braries to harness as much as its support can offer, like the
for the ESP32, as shown in Figure 1

Despite its compact size, MicroPython remains highly
extensible. Developers can integrate it with C/C++ code
for performance-critical tasks, ensuring that time-sensitive
operations are not compromised. Furthermore, the ac-
tive community and robust documentation provide sup-
port, making MicroPython an attractive option for both
hobbyists and professionals.

from machine
from onewire

import Pin

import OneWire

from ds18x20 import DS18X20

Initialize DS18B20 sensor on GPIO pin 4
ds = DS18X20 (OneWire (Pin(4)))

Scan for connected devices

roms = ds.scan()

Start temperature conversion
ds.convert_temp ()
print ("Temperature:",
— "ecm)

ds.read_temp (roms[0]),

Figure 1. Snippet of the MicroPython code to read temperature
on an embedded device from an external sensor

3 The ufmu framework

3.1 Overview

Our approach integrates an FMU following the FMI 2.0
standard into a MicroPython-compatible C module, en-
abling users to interact with FMUs directly from MicroPy-
thon scripts. Figure 2 illustrates the process, which in-
volves: (A) Exporting the simulation as FMU, (B) De-
compressing the FMU, (C) Parsing and modifying the .c,
.h, .xml files, (D) Building MicroPython with the ufmu
library, (E) Flashing the device with the firmware.

The following subsections detail the process. Sec-
tion 3.2 covers the extraction and preparation of the FMU
archive for integration into the embedded environment.
Section 3.3 discusses the process of adapting the FMU to
work seamlessly with MicroPython, including wrapping
simulation functions for compatibility. Several challenges
had to be addressed, such as adapting FMU execution for
a resource-constrained embedded environment, handling
compilation differences between Unix and ESP32, and en-
suring modularity and reusability of the functions. Sec-
tion 3.4 discusses how these issues were tackled and the
optimizations applied. Finally, Section 3.5 reports on the
evaluation of the ufmu framework.

ufmu supports both the Unix and the ESP32 ports of
MicroPython. All the code and necessary instructions to
reproduce the experiments are openly available on Github
under the open-source license of the MIT,? alongside the
end-user documentation.?

3.2 FMU Preprocessing

The first step of the framework involves exporting the sim-
ulation as an FMU (Step A). FMUs are zip archives typi-
cally containing C source files, an XML model description
file, and precompiled binaries for various platforms, as can
be seen in States 2 and 3 of Figure 2. The framework then
consists in preprocessing the FMU.

First, the FMU file is unzipped (Step B) using
a Makefile, revealing its internal structure, including
the modelDescription.xml file and source code
(State 3). Then, the modelDescription.xml file
is parsed to extract metadata about the FMU, such as
variable definitions, simulation parameters, and function
mappings (Step C). This parsing is performed using the
xmllint software to dynamically configure the library.

Once the relevant information is extracted, the source
files are modified to integrate with the MicroPython-
compatible library. This includes wrapping core FMU
functions to expose them as callable functions from Mi-
croPython, adjusting variable storage and memory han-
dling to fit the microcontroller’s limitations, and adding
required definitions to handle different prefixes for func-
tion names. Additionally, configuration headers are gen-
erated based on the extracted metadata, storing variable

thtps://github.com/ImaginusOZ/MicroFMU—library
3https://imaginus02.github.io/MicroFMU-1library

DOI
10.3384/ecp218535

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

537

https://github.com/Imaginus02/MicroFMU-library
https://imaginus02.github.io/MicroFMU-library

Facilitating the use of Physics-Based Simulations on Embedded Devices by running FMUs ...

‘D D EDEDS

3) decompressed
simulation folder

1) Simulation
sources

2) exported .fmu
archive of the
simulation

.

6) flashed esp32

1L

4) constituted library ~ 5) MicroPython

firmware

Figure 2. Flow diagram of the MicroPython firmware creation process, showing the integration of the FMU execution engine,

preprocessing, and compilation steps.

definitions and simulation parameters efficiently (State 4).

This preprocessing ensures that each FMU is correctly
configured before compilation, allowing it to run on the
target environment with no manual intervention (either
Unix or ESP32 in our case).

3.3 Library Integration into MicroPython

Once the FMU source code has been preprocessed, the
next step involves integrating it into the MicroPython
firmware (Step D), and flashing it on the device (Step E).

Integration is achieved using a C module that bridges
the FMU execution engine and the MicroPython inter-
preter. This module exposes the core FMU functions via
the minimal MicroPython-compatible ufmu APIL. As de-
tailed in Annex A, the API includes a main class and util-
ity functions to initialize a simulation instance with spec-
ified time parameters, access variable names and descrip-
tions, read and modify variable values, and iterate through
the simulation instance with output at each step.

The build process then differs by target: building for
Unix uses a traditional Makefile workflow, while building
for the ESP32 relies on CMake and the ESP-IDF frame-
work, with different flags for function name overrides and
linker configuration. Once the FMU execution engine is
shipped into the MicroPython firmware, the end-developer
only needs to define how the simulation is controlled and
executed using this APL.

Figure 3 illustrates the use of the ufmu API to
control and execute the BouncingBall.fmu simula-
tion. A simulation instance is created by call-
ing the setup_simulation function with a start
time, a stop time, and a step size. Once ini-
tialized, simulation variables can be accessed us-
ing get_variable_names, which returns an ar-
ray containing the names of all FMU variables, and
get_variables_description, which provides ad-
ditional details on each variable’s purpose and properties.
The simulation instance is implemented as a Python gen-
erator, allowing users to step through it with a simple
for loop. At each iteration, it yields an array of current
variable values in a consistent order. Users can dynami-
cally modify some of the variables during execution us-
ing change_variable_value, in line with the FMI
2.0 specification. This design ensures both simplicity and
flexibility when interacting with the simulation.

3.4 Challenges and Optimizations

>>> import ufmu as fmu
>>>
>>> # Print available variables and their

— descriptions

>>> for name in fmu.get_variables_names/() :
>>> description =

— fmu.get_variables_description (name)
>>> base_value =

— fmu.get_variables_base_values (name)

>>> print (£"'{name}' (= {base_value} at
— t0): {description}")

'step' (= 0 at t0): Simulation step count
'time' (= 0.0 at t0): Simulation time

'h' (= 1.0 at t0): Position of the ball
'der(h)' (= 0.0 at t0): Derivative of h

'v' (= 0.0 at t0): Velocity of the ball
'der(v)' (= 0.0 at tO): Derivative of v

'g' (= -9.81 at t0): Gravity acting on the ball
'e' (= 0.7 at t0): Coefficient of restitution
>>>

>>> # Set up the simulation parameters

>>> startTime, stopTime, stepSize = 0, 3, 0.1
>>>

>>> # Initialize simulation instance

>>> sim = fmu.setup_simulation (startTime,

— stopTime, stepSize)

>>>

>>> # Change a variable (e.g., 'h' for height)
>>> fmu.change_variable_value(sim, 'h', 20)
>>>

>>> # Run the simulation and print time and

— height for each step

>>> for s, t, h, der_h, v, der_v, g, e in sim:

>>> print (f"t: {t:.2f}s, h: {h:.2f}m")
t: 0.10s, h: 19.95m
t: 0.20s, h: 19.80m

Figure 3. REPL (Read-Evaluate-Print-Loop) snippet of Mi-
croPython code to retrieve simulation information and run the
BouncingBall.fmu simulation.

538

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218535

Session: FMI for Embedded Systems and Virtual Prototyping in Track for Control & Al

Developing the ufmu framework to run FMUs from Mi-
croPython on an ESP32 presented several challenges that
required careful consideration and optimization to ensure
the library’s functionality and efficiency. Since microcon-
trollers in embedded systems are typically dedicated to a
single task, the approach adopted was to embed a single
FMU within the MicroPython environment and expose it
through the fmu module.

One of the main challenges was the discrepancy be-
tween the compilation processes for Unix and ESP32 tar-
gets. The Unix port relies on Makefiles, while the ESP32
port uses CMake and the ESP-IDF framework. This dif-
ference necessitated adjustments in build configurations to
ensure compatibility across both platforms. Specifically,
the ESP32 compilation process required additional flags to
override certain function name prefixes in the FMU source
code, which were incompatible with the linker’s expecta-
tions. By dynamically adjusting the build flags, we en-
sured proper linking of functions during compilation, re-
solving this issue effectively.

Memory management was another critical challenge,
given the ESP32’s limited RAM (approximately 4MB).
To optimize memory usage, the library reuses the same
variable to store the results of each simulation step. In-
stead of retaining historical data, each new step overwrites
the previous values, ensuring minimal memory consump-
tion. This approach allows the library to handle simula-
tions with a large number of variables and steps without
exceeding the microcontroller’s memory limits. The end-
developer decides whether to retain the values or not.

Function name prefix conflicts also posed a significant
challenge. The FMU source code often included pre-
fixes that conflicted with the linker’s expectations dur-
ing the ESP32 compilation process. To address this, the
library dynamically modifies the function names during
preprocessing, ensuring they align with the linker’s re-
quirements. This adjustment was crucial for enabling suc-
cessful compilation and execution on the ESP32.

3.5 Evaluation

While the Unix port served as a reliable testing ground,
the ESP32 port required additional debugging due to its
unique constraints. The bouncing ball simulation, pro-
vided as a FMU test case, was instrumental in identify-
ing and resolving issues related to memory management,
function naming, and execution speed.

We assessed the ufmu framework by measuring the im-
pact of shipping the BouncingBall.fmu on the firmware
size, and measuring the execution time and peak mem-
ory usage for running this model from O to 10 with two
distinct configurations: one with a step size of 0.01 and
another with a step size of 0.0001.

Two ports were compared to a plain C simulator* de-
veloped alongside the ufmu library: MicroPython for
the ESP32 target, and MicroPython for Unix. To ensure

“https://github.com/Imaginus02/FMUSimulator

the reliability and accuracy of our performance measure-
ments, each simulation was executed 10 times under iden-
tical conditions, with the same code as shown in Figure 4,
and the mean value of the results was calculated. This ap-
proach minimizes the impact of any outliers or transient
system behaviors that could skew the data. The Plain C
simulator and the MicroPython Unix port were both exe-
cuted within a WSL2 environment on a Windows 10 sys-
tem, leveraging the computational power of an Intel(R)
Core(TM) i7-10750H CPU @ 2.60GHz. The MicroPy-
thon ESP32 implementation, on the other hand, was run
directly on the embedded hardware to evaluate its perfor-
mance in a resource-constrained environment.

The results are summarized in Table 1. Integrating
ufmu with the BouncingBall.fmu model increased the
ESP32 MicroPython firmware by 220 KB (15 %), bump-
ing it from 1.5 MB to roughly 1.72 MB. The Plain C sim-
ulator outperformed both Unix and MicroPython imple-
mentations in terms of execution speed (respectively 2 and
100 times faster). However, its memory usage, because of
the fact that it keep all step result, is hardly comparable to
the MicroPython one. The executable size is minimal, as it
avoids the overhead associated with interpreted languages
like MicroPython.

The MicroPython Unix port exhibited a bug when han-
dling simulations with more than 5,000 steps, prevent-
ing it from completing the larger simulation (step size =
0.0001).> This issue is reflected in the results with an "X"
in Table 1. Despite this limitation, the Unix port demon-
strated competitive performance for smaller simulations.

The MicroPython ESP32 port, while significantly
slower than the other two due to the hardware limita-
tions of the ESP32, successfully completed both simula-
tions. These results highlight the trade-offs between per-
formance and resource efficiency when deploying simula-
tions on embedded systems.

import ufmu as fmu
import time
import micropython
start_time = 0
end_time = 10
step_size = XX
start = time.ticks_ms ()
simInstance = fmu.setup_simulation(start_time,
— end_time, step_size)
fmu.change_variable_value (simInstance, 'h',
for i in simInstance:
pass
print ("Time taken: ",
— time.ticks_diff(time.ticks_ms (), start),
— "ms")
micropython.mem_info ()

20)

Figure 4. The code run by MicroPython to get the result pre-
sented in Table 1. The value replaced here by XX is respectively
0.01 and 0.00001

5This corresponds to a known issue: https://github.com/
Imaginus02/MicroFMU-1library/issues/1

DOI
10.3384/ecp218535

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

539

https://github.com/Imaginus02/FMUSimulator
https://github.com/Imaginus02/MicroFMU-library/issues/1
https://github.com/Imaginus02/MicroFMU-library/issues/1

Facilitating the use of Physics-Based Simulations on Embedded Devices by running FMUs ...

4 Related Work

4.1 Portable runtime
Python-based FMUs

The concept of portability extends beyond just MicroPy-
thon. In the field of FMUs, ensuring that Python-based
FMUs can execute across various systems without depen-
dency conflicts is crucial. One approach to achieving this
portability is through containerization.

A notable effort in this direction is the addition of
Docker support to UniFMU (Schranz et al. 2021), a
tool designed for building and executing FMUs. By
encapsulating all necessary runtime dependencies in a
Docker container, this approach allows FMUs to be dis-
tributed and deployed seamlessly across different environ-
ments. This capability is particularly beneficial in scenar-
ios requiring co-simulation, as demonstrated in the case
of a robotic arm and its controller, where two Python-
based FMUs were successfully executed within a Docker
container. This method eliminates compatibility issues
and simplifies the deployment process, aligning with the
broader goal of making Python-based embedded applica-
tions more accessible and portable.

By combining the lightweight nature of MicroPython
with advances in FMU portability, developers can leverage
Python for a wider range of embedded and simulation ap-
plications. The ability to run MicroPython on constrained
hardware while simultaneously supporting Python-based
FMU s in containerized environments highlights the versa-
tility and growing influence of Python in embedded sys-
tems and simulation workflows.

This approach becomes particularly valuable when de-
ploying large-scale embedded systems for co-simulation
scenarios, such as in (Jung, Shah, and Weyrich 2018),
where a dynamic, multi-agent-based simulation frame-
work was used to model a smart warehouse. In
this scenario, various IoT components—such as stor-
age racks, temperature sensors, forklifts, and incoming
goods—communicate and make autonomous decisions in
real time. Each component is represented as an inde-
pendent simulation agent capable of dynamically joining
an ongoing co-simulation, enabling a flexible "Plug-and-
Simulate" behavior. By leveraging modular co-simulation
techniques, the study demonstrates how distributed em-
bedded systems can interact seamlessly, allowing for ef-
ficient and adaptive digital twin implementations. The
ability to deploy Python-based FMUs within portable run-
time environments, such as Docker, further enhances this
flexibility, enabling scalable and reproducible simulations
across heterogeneous IoT ecosystems.

4.2 FMI and eFMI in Embedded, Automotive,
and Industrial Applications

environments for

Recent advancements have demonstrated the feasibility of
using FMUs and their embedded counterpart, eFMU, for
real-time simulation on microcontrollers. The increasing

computational capabilities of embedded hardware, along
with the standardization of the FMI, have unlocked new
possibilities for Cyber-Physical Systems (CPS), industrial
automation, and automotive systems.

In the context of CPS, (Hong et al. 2020) proposed
a simulation framework leveraging FMI, incorporating
a redundancy reduction algorithm to optimize perfor-
mance for resource-constrained microcontrollers. Simi-
larly, (Gundermann et al. 2017) validated embedded FMI
for lifetime testing of electromechanical systems through
a 60-day real-time study on a linear stepper motor, con-
firming its reliability in embedded environments.

The eFMI standard, developed under the EMPHY SIS
project and detailed in (Lenord et al. 2021), is tailored to
meet the constraints of embedded systems, including hard
real-time requirements and limited memory. It enables
seamless integration of high-fidelity, physics-based mod-
els into embedded control systems, making it particularly
impactful in domains like automotive, aerospace, and in-
dustrial automation, where such models can enhance con-
trol strategies, diagnostics, and predictive maintenance.

In the automotive sector, FMI plays a pivotal role in
software validation, virtual Electronic Control Unit (ECU)
testing, and real-time simulation of vehicle dynamics.
(Mikelsons and Samlaus 2017) demonstrated the integra-
tion of FMI-based models into ECU validation workflows,
identifying software issues early in the development pro-
cess and improving reliability.

To overcome the incompatibility of traditional Co-
Simulation FMUs with embedded automotive applica-
tions—due to stringent real-time constraints, MISRA
compliance, and AUTOSAR architecture—eFMI has been
extended to AUTOSAR environments (Armugham et al.
2021). In a case study, a physics-based model was inte-
grated into a Bosch ECU using an AUTOSAR toolchain,
illustrating a compliant, efficient, and cost-effective ap-
proach that significantly reduced the manual coding effort
typically required.

Beyond automotive use cases, FMI and eFMI are also
advancing industrial automation by enabling embedded
simulations for real-time failure detection and predictive
diagnostics. As embedded FMI technology evolves along-
side edge computing and optimized firmware, its role in
real-time embedded systems is expected to grow substan-
tially, driving innovation across various high-demand sec-
tors.

Building upon these advancements, our MicroPython
FMU implementation bridges a gap in the embedded
systems landscape by making simulation capabilities ac-
cessible to Python programmers in resource-constrained
environments. While existing work has demonstrated
FMU viability on dedicated microcontrollers, our ap-
proach extends these benefits to the growing ecosys-
tem of MicroPython-enabled devices, enabling rapid pro-
totyping, interactive debugging, and simplified deploy-
ment without sacrificing real-time performance. This
contributes to the democratization of complex simulation

540

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218535

Session: FMI for Embedded Systems and Virtual Prototyping in Track for Control & Al

Table 1. Executing the BouncingBall.fmu simulation in different Python environments with setting start_time = 0, end_time = 10,
and step_size = 1072 or 107, h is changed to 20 at the start of the simulation. X means that the test resulted in an error.

Exec. environment Plain C simulator

Executable size (KB) 112

Step size 1072 1073

Time (s) 0.001 1.005
Memory usage (KB) 1,632 64,032

capabilities, allowing domain experts without extensive
embedded C programming knowledge to leverage FMI’s
standardized approach for applications ranging from ed-
ucational settings to industrial IoT deployments where
Python’s flexibility and MicroPython’s efficiency can sig-
nificantly accelerate development cycles.

4.3 Cloud vs. Edge Deployment for FMI-
Based Simulations

Several studies have investigated the trade-offs between
cloud-based and edge-based IoT simulations. (Savaglio
et al. 2019) assessed the performance, latency, scalability,
and resource utilization of both deployment options. Their
findings suggest that edge computing provides lower la-
tency and better scalability for IoT applications, whereas
cloud computing offers superior data handling and pro-
cessing reliability. Recent advancements in edge deploy-
ment, such as those proposed by (Bu, Filipau, and Bak-
lanov 2024), have further streamlined the process of de-
ploying cyber-physical models at the edge or in the cloud.
Their framework utilizes FMUs as executable binaries
and JavaFMI as the simulation engine, encapsulating each
model deployment within a microservice. This approach
ensures flexibility and scalability, as demonstrated by their
examples of a winch controller at the edge and a wireline
logging unit simulator in the Azure DevOps pipeline.

For FMI-based simulations, the choice between cloud
and edge computing depends on factors such as real-time
constraints, network bandwidth, and security considera-
tions. Many real-time embedded applications benefit from
edge-based execution, as it allows FMUSs to run with min-
imal latency directly on the device. The classification of
hardware types, as outlined by (Bormann et al. 2025), pro-
vides further clarity on this decision. Table 2 summarizes
the classification of common devices used in IoT simula-
tions and deployments.

For instance, devices like the Raspberry Pi, classified
as Class 15, are well-suited for fog computing, while mi-
crocontrollers such as the ESP32, classified as Class 10,
are ideal for edge computing. This classification helps
in aligning the hardware capabilities with the specific re-
quirements of IoT simulations and deployments.

The work of (Jung, Shah, and Weyrich 2018) com-
plements this discussion by proposing a dynamic co-
simulation approach for IoT systems, where each com-
ponent is simulated independently and can dynamically
join the co-simulation during runtime. This "Plug-and-

MicroPython Unix MicroPython ESP32
843 1,725 (+220 / +15 %)
1072 1073 1072 1073
0.002 X 0.139 141.309
355 X 21 46

Table 2. Classification of devices for IoT simulations and de-
ployments by (Bormann et al. 2025)

Device Classification

Arduino Uno Class 5 (Edge Comput-
ing)

ESP32 Class 10 (Edge Comput-
ing)

Raspberry Pi Class 15 (Fog Comput-
ing)

Modern Smartphone Class 16 (Edge/Cloud
Computing)

Laptop Class 17 (Cloud Com-
puting)

High end Home Com- | Class 18 (Cloud Com-

puter puting)

Simulate" behavior is particularly advantageous for edge
deployments, where heterogeneous devices with varying
computational capabilities must interact seamlessly. Their
modular framework aligns with the microservice architec-
ture proposed by (Bu, Filipau, and Baklanov 2024), high-
lighting the importance of flexibility in edge-based FMI
deployments.

On the cloud side, (Stelzig and Rodenberg 2023) in-
troduces the concept of Simulation Model as a Service
(SMaaS), which leverages cloud infrastructure to deploy,
execute, and track simulation models efficiently. While
cloud-based solutions excel in handling large-scale sim-
ulations and complex data processing, they often face
challenges related to latency and real-time responsiveness.
This trade-off underscores the need for hybrid approaches,
where computationally intensive tasks are offloaded to the
cloud, while time-critical operations are handled at the
edge.

The integration of these approaches is further supported
by (Vanommeslaeghe et al. 2018), which explores the
co-simulation of embedded platforms and physics-based
models. Their work emphasizes the importance of opti-
mizing hardware architectures to support FMI-based sim-
ulations, particularly in edge environments where resource
constraints are a significant concern. By combining in-
sights from these studies, it becomes clear that the choice
between cloud and edge deployment is not binary but
rather a spectrum, where the optimal solution depends on
the specific requirements of the application, such as la-
tency tolerance, computational complexity, and scalability

DOI
10.3384/ecp218535

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

541

Facilitating the use of Physics-Based Simulations on Embedded Devices by running FMUs ...

needs.

Building on these deployment insights, our MicroPy-
thon FMU implementation presents a good middle ground
particularly well-suited for Class 10 devices like the
ESP32. By embedding FMU capabilities directly into
MicroPython, we enable sophisticated edge-based simula-
tions without requiring cloud connectivity or fog comput-
ing resources. This approach addresses the latency con-
cerns highlighted in edge computing research while main-
taining the flexibility needed for dynamic co-simulation
scenarios. The memory-optimized design of our module
responds directly to the resource constraints emphasized
in the literature, while its Python interface removes barri-
ers to implementation that typically accompany embedded
FMU deployments. This positions our work as a prac-
tical enhancement to the "Plug-and-Simulate" paradigm,
extending FMI’s benefits to resource-constrained IoT de-
vices where traditional deployment methods would be
prohibitively complex or performance-intensive.

4.4 Discussion

By combining insights from these studies, it becomes
clear that hardware optimization for FMI execution in-
volves a multi-faceted approach, encompassing effi-
cient memory management, real-time scheduling, and
hardware-specific optimizations. These advancements are
paving the way for more sophisticated FMI-based sim-
ulations on resource-constrained devices, enabling their
use in a wider range of applications, from industrial au-
tomation to autonomous systems. The state of the art
in FMI-based simulations for embedded systems demon-
strates significant progress across multiple fronts, from
portable runtime environments to hardware optimization.
The integration of Python-based FMUs with containeriza-
tion technologies, such as Docker, has enhanced porta-
bility and reproducibility, enabling seamless deployment
across diverse environments. This is particularly valuable
for co-simulation scenarios, where modular and dynamic
frameworks, as proposed by (Jung, Shah, and Weyrich
2018), allow heterogeneous systems to interact efficiently.

Despite these advances, there remain significant limi-
tations to the adoption of MicroPython-based FMU im-
plementations in industrial settings. Professional environ-
ments typically demand rigorous certification, long-term
support, and deterministic performance guarantees that in-
terpreted languages like Python may struggle to provide.
While our implementation offers valuable prototyping ca-
pabilities, industry practitioners will likely continue fa-
voring native C/C++ implementations for production sys-
tems where reliability and performance predictability are
paramount.

The development of eFMI has further expanded the ap-
plicability of FMI in resource-constrained environments,
enabling high-fidelity physics-based models to run on mi-
crocontrollers. This advancement is particularly transfor-
mative for automotive and industrial applications, where
real-time execution and compliance with standards like

AUTOSAR are critical. The successful integration of
eFMI into automotive ECUs, as demonstrated by (Ar-
mugham et al. 2021), highlights its potential to bridge the
gap between simulation and real-world execution. eFMI
being compatible with FMI, we expect that our frame-
work could be used to run FMUs optimized for resource-
constrained environments thanks to GALEC.

Our current implementation focuses exclusively on
FMI 2.0 standard compatibility, which presents both
advantages and limitations. = While FMI 2.0 offers
widespread tool support and established functionality, it
lacks newer features from FMI 3.0 such as binary co-
simulation interfaces and enhanced array variable han-
dling that could potentially improve performance on con-
strained devices. Future work could explore adapting our
approach to leverage these newer standard capabilities as
tool support matures.

The debate between cloud and edge deployment for
FMI-based simulations underscores the importance of
balancing computational power, latency, and scalability.
While cloud-based solutions excel in handling large-scale
simulations, edge computing offers the low latency and
real-time responsiveness required for many embedded ap-
plications. Hybrid approaches, combining the strengths of
both paradigms, are emerging as a promising solution for
complex, distributed systems. Our choice of the ESP32
platform was strategically motivated by its unique com-
bination of computational capability, memory resources,
and wide adoption in the IoT ecosystem. With dual-core
processing up to 240MHz and typically 4MB of flash
memory, it represents an optimal middle ground between
severely constrained Class 1-5 devices and more powerful
Class 15+ systems. Furthermore, the ESP32’s native sup-
port for both WiFi and Bluetooth positions it ideally for
co-simulation scenarios where edge devices must commu-
nicate with other simulation components.

As the field continues to evolve, the convergence
of these technologies—portable runtime environments,
eFMI, cloud-edge hybrid architectures—will play a piv-
otal role in addressing the challenges of real-time execu-
tion, resource constraints, and system integration.

5 Conclusions

This paper introduced ufmu, a lightweight library that
enables FMU simulations to run efficiently on resource-
constrained microcontrollers. By integrating and execut-
ing FMU models within the MicroPython environment,
ufmu provides an accessible and flexible FMU tool that
may prove useful for education and rapid prototyping in
embedded systems.

The library achieves this by translating FMU model de-
scriptions into a C-based structure and embedding them
within the MicroPython build process. This approach en-
sures seamless execution while exposing a minimal high-
level Python API for user interaction. As a result, ufmu
allows developers to run model-based simulations directly

542

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218535

Session: FMI for Embedded Systems and Virtual Prototyping in Track for Control & Al

on microcontrollers without relying on a full desktop or
cloud computing setup.

While the current implementation successfully enables
FMU simulations to run on an ESP32 microcontroller,
there are several areas for future improvement to enhance
the library’s functionality, usability, and performance.

As a natural progression of this work, adding support
for the FMI 3.0 standard is a key objective. The cur-
rent implementation supports basic simulation execution
but supporting advanced states such as setup, pause, and
resume modes, would be desirable. For example, users
could pause a simulation to modify parameters and then
resume execution without restarting the simulation.

Future development will also focus on expanding sup-
port to other microcontroller platforms, such as STM32 or
Raspberry Pi Pico.

References

Aivaliotis, Panagiotis. et al. (2019). “Methodology for enabling
Digital Twin using advanced physics-based modelling in pre-
dictive maintenance”. In: Procedia CIRP 81, pp. 417-422.
ISSN: 22128271. por: 10.1016/j.procir.2019.03.072. (Visited
on 2023-10-08).

Armugham, Siva Sankar et al. (2021). eFMI (FMI for Embedded
Systems) in AUTOSAR for Next Generation Automotive Soft-
ware Development. URL: https://www.sae.org/publications/
technical - papers/content/2021-26-0048/ (visited on 2025-
02-19).

Blockwitz, Torsten et al. (2012). “Functional Mockup Interface
2.0: The Standard for Tool independent Exchange of Simula-
tion Models”. en. In: Functional Mockup Interface 2.0. DOI:
10.3384/ecp12076173. URL: https://ep.liu.se/en/conference-
article.aspx?series=ecp&issue=76&Article_No=17.

Bormann, Carsten et al. (2025-01). Terminology for
Constrained-Node Networks. Internet Draft draft-ietf-
iotops-7228bis-01. Num Pages: 28. Internet Engineering
Task Force. URL: https://datatracker.ietf.org/doc/draft-ietf-
iotops-7228bis (visited on 2025-02-20).

Bu, Fanping, Mikalai Filipau, and Nikolay Baklanov (2024).
“Advanced Edge Deployment: Abstracting Cyber-Physical
Models via FMU Mastery”. en. In: Modelica Conferences,
pp. 170-177. 1sSN: 1650-3740. po1: 10.3384/ecp207170.
URL: https://www.ecp.ep.liu.se/index.php/modelica/article/
view/1142 (visited on 2025-02-19).

Duraiswami, Ramani and Dmitry N. Zotkin (2016-10-01). “Ef-
ficient physics based simulation of spatial audio for virtual
and augmented reality”. In: Journal of the Acoustical Society
of America 140.4. Number: 4_Supplement, pp. 2999-3000.
ISSN: 0001-4966, 1520-8524. DOI: 10.1121/1.4969294. (Vis-
ited on 2023-10-08).

Fangohr, Hans (2004). “A comparison of C, MATLAB, and
Python as teaching languages in engineering”. In: Compu-
tational Science-ICCS 2004: 4th International Conference,
Krakow, Poland, June 6-9, 2004, Proceedings, Part IV 4.
Springer, pp. 1210-1217.

Gall, Leo et al. (2021-09). “Continuous Development and Man-
agement of Credible Modelica Models”. en. In: Modelica
Conferences, pp. 359-372. 1SSN: 1650-3740. DOI: 10.3384/
ecp21181359. URL: https://www.ecp.ep.liu.se/index.php/
modelica/article/view/214 (visited on 2025-02-19).

George, Damien P. and the MicroPython community (2014).
MicroPython. Ed. by George Robotics Limited. https://
micropython.org/. Accessed: 2025-07-30.

Gundermann, Julia et al. (2017-07-04). “The Embedded Simu-
lation via FMI and its Application to the Simulation of Life-
time Tests Including Wear”. In: The 12th International Mod-
elica Conference, Prague, Czech Republic, May 15-17, 2017,
pp. 541-545. pOI: 10.3384/ecp17132541. (Visited on 2023-
10-09).

Hong, Seokjoon et al. (2020-01-01). “F-DCS: FMI-Based Dis-
tributed CPS Simulation Framework with a Redundancy Re-
duction Algorithm”. In: Sensors 20.1. Number: 1, p. 252.
ISSN: 1424-8220. por: 10.3390/s20010252. (Visited on
2023-10-08).

Jung, Tobias, Payal Shah, and Michael Weyrich (2018). “Dy-
namic Co-Simulation of Internet-of-Things-Components us-
ing a Multi-Agent-System”. In: Procedia CIRP 72, pp. 874—
879. 1SSN: 22128271. por: 10.1016/j.procir.2018.03.084.
(Visited on 2023-10-08).

Lenord, Oliver et al. (2021-09-27). “eFMI: An open standard
for physical models in embedded software”. In: 14th Model-
ica Conference 2021, pp. 57-71. DOI: 10.3384/ecp2118157.
(Visited on 2023-10-02).

Liu, C. Karen and Dan Negrut (2021-05-03). “The Role of
Physics-Based Simulators in Robotics”. In: Annual Review
of Control, Robotics, and Autonomous Systems 4.1. Number:
1, pp. 35-58. 1SSN: 2573-5144, 2573-5144. por: 10.1146/
annurev-control-072220-093055. (Visited on 2023-10-02).

Magargle, Ryan et al. (2017-07-04). “A Simulation-Based Dig-
ital Twin for Model-Driven Health Monitoring and Predic-
tive Maintenance of an Automotive Braking System”. In:
The 12th International Modelica Conference, Prague, Czech
Republic, May 15-17, 2017, pp. 35-46. por: 10. 3384 /
ecpl1713235. (Visited on 2023-12-04).

Mikelsons, Lars and Roland Samlaus (2017-07-04). “Towards
Virtual Validation of ECU Software using FMI”. In: The 12th
International Modelica Conference, Prague, Czech Republic,
May 15-17, 2017, pp. 307-311. por: 10.3384/ecp17132307.
(Visited on 2023-10-15).

Saad, Omar M. et al. (2023-12-01). “Earthquake Forecasting
Using Big Data and Artificial Intelligence: A 30-Week Real-
Time Case Study in China”. In: Bulletin of the Seismological
Society of America 113.6, pp. 2461-2478. 1SSN: 0037-1106,
1943-3573. DOI: 10.1785/0120230031. (Visited on 2023-12-
04).

Savaglio, Claudio et al. (2019-04). “IoT Services Deployment
over Edge vs Cloud Systems: a Simulation-based Analysis”.
In: IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE
INFOCOM 2019 - IEEE Conference on Computer Commu-
nications Workshops (INFOCOM WKSHPS). Paris, France:
IEEE, pp. 554-559. 1SBN: 978-1-72811-878-9. por: 10.1109/
INFCOMW.2019.8845305. (Visited on 2023-10-02).

Schranz, Thomas et al. (2021-09). “Portable runtime environ-
ments for Python-based FMUs: Adding Docker support to
UniFMU?”. en. In: Modelica Conferences, pp. 419-424. ISSN:
1650-3740. DOI: 10.3384/ecp21181419. URL: https://www.
ecp.ep.liu.se/index.php/modelica/article/view/220 (visited on
2025-02-19).

Stelzig, Philipp Emanuel and Benjamin Rodenberg (2023-12).
“Simulation Model as a Service (SMaaS): A concept for inte-
grated deployment, execution and tracking of system simula-
tion models”. en. In: Modelica Conferences, pp. 33—42. 1ISSN:

DOI
10.3384/ecp218535

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

543

https://doi.org/10.1016/j.procir.2019.03.072
https://www.sae.org/publications/technical-papers/content/2021-26-0048/
https://www.sae.org/publications/technical-papers/content/2021-26-0048/
https://doi.org/10.3384/ecp12076173
https://ep.liu.se/en/conference-article.aspx?series=ecp&issue=76&Article_No=17
https://ep.liu.se/en/conference-article.aspx?series=ecp&issue=76&Article_No=17
https://datatracker.ietf.org/doc/draft-ietf-iotops-7228bis
https://datatracker.ietf.org/doc/draft-ietf-iotops-7228bis
https://doi.org/10.3384/ecp207170
https://www.ecp.ep.liu.se/index.php/modelica/article/view/1142
https://www.ecp.ep.liu.se/index.php/modelica/article/view/1142
https://doi.org/10.1121/1.4969294
https://doi.org/10.3384/ecp21181359
https://doi.org/10.3384/ecp21181359
https://www.ecp.ep.liu.se/index.php/modelica/article/view/214
https://www.ecp.ep.liu.se/index.php/modelica/article/view/214
https://micropython.org/
https://micropython.org/
https://doi.org/10.3384/ecp17132541
https://doi.org/10.3390/s20010252
https://doi.org/10.1016/j.procir.2018.03.084
https://doi.org/10.3384/ecp2118157
https://doi.org/10.1146/annurev-control-072220-093055
https://doi.org/10.1146/annurev-control-072220-093055
https://doi.org/10.3384/ecp1713235
https://doi.org/10.3384/ecp1713235
https://doi.org/10.3384/ecp17132307
https://doi.org/10.1785/0120230031
https://doi.org/10.1109/INFCOMW.2019.8845305
https://doi.org/10.1109/INFCOMW.2019.8845305
https://doi.org/10.3384/ecp21181419
https://www.ecp.ep.liu.se/index.php/modelica/article/view/220
https://www.ecp.ep.liu.se/index.php/modelica/article/view/220

Facilitating the use of Physics-Based Simulations on Embedded Devices by running FMUs ...

1650-3740. DOI: 10.3384/ecp20433. URL: https://ecp.ep.liu. change_variable value(...)
se/index.php/modelica/article/view/911 (visited on 2025-02- Modifies a variable’s value during simulation.

19).

* P ters:
Tavella, Jean-Philippe et al. (2016-09). “Toward an accurate and arameters

fast hybrid multi-simulation with the FMI-CS standard”. In: - Sim_inst.ance (object)
2016 IEEE 21st International Conference on Emerging Tech- — var_ref (int or str)
nologies and Factory Automation (ETFA). 2016 IEEE 21st — value (float)

International Conference on Emerging Technologies and Fac- e Returns: boolean success indicator

tory Automation (ETFA). Berlin, Germany: IEEE, pp. 1-
5. ISBN: 978-1-5090-1314-2. por: 10.1109/ETFA .2016.
7733616. (Visited on 2023-10-08).

Tollervey, Nicholas H. (2017). Programming with MicroPython:
Embedded Programming with Microcontroller and Python.
First edition. Beijing Boston Farnham: O’Reilly. 195 pp.
ISBN: 978-1-4919-7273-1.

Vanommeslaeghe, Yon et al. (2018). “Towards Co-Simulation of
Embedded Platforms and Physics-Based Models”. In: 2018
44th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA). 1SSN: 978-1-5386-7383-6.

Zoting, Shivani (2023). Simulation Software Market Size,
Trends, Growth, Report 2030. URL: precedenceresearch.com/
simulation-software-market (visited on 2023-12-01).

A ufmu class and methods descrip-
tion
simulation_instance
Class representing a configured simulation instance:
e Implements iterator protocol for step-by-step simu-
lation
* Maintains internal simulation state
simulate (tStart, tEnd, h)
Executes a complete simulation in one call.

e Parameters: tStart, tEnd, h (float): start time,
end time, step size
* Returns: list of output value tuples

setup_simulation (tStart, tEnd, h)
Creates a simulation instance for step-by-step execu-
tion.

e Parameters: same as above

* Returns: a simulation_instance object
get_variable_count ()

Returns the number of variables in the model.

* Returns: integer count
get_variables_names(...)

Retrieves variable names.

* Parameters: optional indices/names

* Returns: tuple of variable name strings
get_variables_base_values(...)

Retrieves initial values of variables.

* Parameters: optional indices/names

* Returns: tuple of values (float/int)
get_variables_description(...)

Retrieves variable descriptions.

* Parameters: optional indices/names
* Returns: tuple of variable description strings

544 Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218535

https://doi.org/10.3384/ecp20433
https://ecp.ep.liu.se/index.php/modelica/article/view/911
https://ecp.ep.liu.se/index.php/modelica/article/view/911
https://doi.org/10.1109/ETFA.2016.7733616
https://doi.org/10.1109/ETFA.2016.7733616
precedenceresearch.com/simulation-software-market
precedenceresearch.com/simulation-software-market

	Introduction
	Background
	The need for PBS in embedded devices
	FMI and FMUs
	MicroPython

	The ufmu framework
	Overview
	FMU Preprocessing
	Library Integration into MicroPython
	Challenges and Optimizations
	Evaluation

	Related Work
	Portable runtime environments for Python-based FMUs
	FMI and eFMI in Embedded, Automotive, and Industrial Applications
	Cloud vs. Edge Deployment for FMI-Based Simulations
	Discussion

	Conclusions
	ufmu class and methods description

