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Abstract 
This study presents a method for predicting vehicle 

suspension component loads at the early design stage. A 

hybrid road simulation combines road load data acquired 

from a reference vehicle with the Time Waveform 

Replication (TWR) technique to generate virtual 

equivalent road profiles. The TWR was implemented in 

Python, and a multibody dynamics vehicle model 

developed using Modelon’s Vehicle Dynamics Library 

was used to simulate chassis response. Integration and 

iterative simulation between the TWR system and the 

vehicle model were conducted via Functional Mock-up 

Units using the Python FMI library, FMPy. These virtual 

inputs were applied to a virtual test rig. In this study, road 

load data from a reference vehicle were used to derive the 

input signals, which were then applied to simulate the 

suspension loads of a target vehicle. Simulation results 

were validated against measurement data to confirm the 

effectiveness of the proposed method. 

Keywords: Suspension Component Loads, Hybrid Road 

Simulation, TWR(Time Waveform Replication), Four-

Post Test Rig, Virtual Testing Lab, Virtual Proving 

Ground, FMI(Functional Mock-up Interface), FMPy, 
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1 Introduction 

In the early stages of vehicle development, where physical 

test vehicles are not available, it is essential to predict the 

loads input into suspension components to evaluate the 

durability performance of the suspension system. The 

predicted suspension component loads are used not only 

for evaluating the severity and life expectancy of each 

suspension part, but also for the development of durability 

test modes at the vehicle level, as well as test methods at 

the system, module, and component levels. For this reason, 

accurate prediction of suspension component loads is 

critical, and technologies for such predictions have been 

actively researched for decades. 

As shown in Figure 1, the technologies used to predict 

suspension component loads can be broadly categorized 

into two types.  

The first is the Virtual Testing Lab (VTL) approach, 

where measured wheel loads are directly applied to the 

wheel center of a fixed body model to predict component 

loads. This method has the advantages of simple analysis 

and the ability to use realistic drive signals, but it cannot 

consider changes in wheel loads due to design 

modifications or interactions between front and rear 

suspensions.  

In contrast, the Virtual Proving Ground (VPG) method 

predicts component loads without any measured data by 

utilizing highly accurate road, tire, driver, and vehicle 

models. Although it can be applied to any type of vehicle, 

its accuracy heavily depends on the fidelity of the tire, 

road, and driver models, and it is difficult to accurately 

replicate the driving path, speed, and steering of a real test 

driver, making the method complex to operate. 

 

Figure 1. Types of component load prediction simulations. 

This study proposes a hybrid road simulation-based 

suspension load prediction method that overcomes the 

limitations and leverages the strengths of both VTL and 

VPG. Section 2.1 introduces the fundamental concept of 

hybrid road simulation using FMI and Modelica Library. 

Section 2.2 explains the Time Waveform Replication 

(TWR) algorithm required for hybrid road simulation. 

Section 2.3 presents the virtual test rig and simulation 

method. Sections 2.4 and 2.5 present case studies using 
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RLDA (Road Load Data Acquisition) data from the 

reference vehicle and the target vehicle to validate the 

proposed methodology. 

2 Methodology 

2.1 Overview of Hybrid Road Simulation 

Hybrid road simulation is a technique that utilizes both 

RLDA-measured data and a vehicle model. As shown in 

Figure 2, the core process of hybrid road simulation 

involves generating equivalent virtual road profiles or 

drive signal on a virtual test rig to replicate target signals 

from RLDA data using the simulation model of the 

reference vehicle. The inputs generated are then applied to 

the simulation model of the target vehicle to predict 

component loads. This approach should be applied to 

similar platforms to ensure accuracy, but it offers the 

advantages of simulating realistic responses without 

requiring separate road or driver models, thus reducing 

model dependency. 

 
Figure 2. Hybrid road simulation process. 

To perform hybrid road simulation, a TWR algorithm is 

required. The TWR methods include an iteration-based 

technique using Frequency Response Functions (FRF) 

and a control-based approach using PID or Iterative 

Learning Control (ILC). The FRF-based method requires 

more time due to its iterative nature but is easier to use 

and offers good reproducibility. The control-based 

method eliminates the need for iterations but requires 

optimization of the controller to improve tracking 

performance. 

2.2 Time Waveform Replication (TWR) 

In this study, the FRF-based iterative method among TWR 

techniques was employed to extract drive signals for the 

hybrid road simulation. Figure 3 illustrates the TWR 

process, which consists of four main steps: (1) FRF 

generation using white-pink noise, (2) initial drive signal 

creation, (3) iterative drive signal update, and (4) 

convergence check using RMSE thresholds. Each step is 

described in detail in the following subsections. 

 

Figure 3. Time waveform replication (TWR) process. 

2.2.1  FRF Generation Using White-Pink Noise 

In the first step, white-pink noise is applied to the input 

channels of the vehicle model to extract responses from 

the output channels and generate an FRF model. The 

white-pink noise 𝑊𝑃𝑁(𝑓) has a constant magnitude from 

the start frequency (𝑓𝑠𝑡) to the border frequency (𝑓𝑏) and 

gradually decreases from 𝑓𝑏 to the end frequency (𝑓𝑒𝑛), as 

shown in Figure 4. Equation (1) defines WPN(f) across 

these segments, where the attenuation after 𝑓𝑏 depends on 

the exponential parameter 𝑝. 

𝑊𝑃𝑁(𝑓) =

{
 
 

 
 (
1

𝑓𝑏
)
2𝑝

, 𝑓𝑠𝑡 ≤ 𝑓 < 𝑓𝑏

(
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 (1) 

 

 
Figure 4. White-Pink Noise. 

The process for FRF generation is shown in Figure 5.  
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Figure 5. System identification (FRF generation) process. 

In the FRF generation process, the auto-spectrum 

represents the frequency-domain power distribution of a 

signal, typically used to analyze the input characteristics. 

The cross-spectrum, on the other hand, quantifies the 

frequency-domain relationship between the input and 

output signals. These spectral components are used to 

compute the Frequency Response Function (FRF) by 

dividing the cross-spectrum by the auto-spectrum, 

enabling the identification of system dynamics. The cross-

spectrum and auto-spectrum are obtained as shown in 

Equations (2) and (3): 

Φ𝑢𝑦(𝑓) = 𝑈(𝑓)𝑌∗(𝑓) (2) 

Φ𝑢𝑢(𝑓) = 𝑈(𝑓)𝑈∗(𝑓)            (3) 

Here, 𝑈(𝑓)  and 𝑌∗(𝑓)  are the Fourier transforms of 

𝑢(𝑡) and 𝑦(𝑡), respectively, and * denotes the complex 

conjugate. The FRF 𝐻(𝑓) is then derived as: 

𝐻(𝑓) =
Φ𝑢𝑦(𝑓)

Φ𝑢𝑢(𝑓)
 (4) 

2.2.2  Initial Drive Signal Generation 

The initial drive signal is generated using the inverse of 

the FRF and the inverse Fourier transform as shown in 

Equation (5): 

𝑢(𝑡) = 𝑑 ∙ ℱ−1 (𝐻(𝑓)−1ℱ(𝑆 ∙ 𝑤(𝑡))) (5) 

Here, 𝐻(𝑓)−1  is the inverse FRF, ℱ  is the Fourier 

transform, 𝑤(𝑡) is the target signal, 𝑆 and 𝑑 are weights 

for the target and drive signals, respectively. The signal is 

valid within linear system regions, but nonlinear behavior 

introduces error, necessitating additional correction. 

2.2.3  Drive Signal Update via Iteration 

To correct errors between target and actual responses, an 

updated drive signal is computed iteratively. Equation (6) 

represents the iterative update of the drive signal in the 

TWR process. The initial drive signal is computed by 

applying the inverse FRF to the target signal. In 

subsequent iterations, the error between the simulated 

response and the target signal is calculated and passed 

through the inverse FRF to generate a correction signal. 

This correction is then added to the previous drive signal, 

progressively improving the match between the simulated 

and target responses. This approach is grounded in 

frequency-domain system identification and iterative 

learning control principles and has been widely used in 

road load replication studies for its convergence reliability 

and simplicity. The 𝑘 + 1-th drive signal is calculated as 

in Equation (6): 

𝑢𝑘+1(𝑡) = 𝑢𝑘(𝑡) + 𝑑 ∙ ℱ
−1 (𝐻(𝑓)−1ℱ (𝐸 ∙ (𝑦(𝑡) − 𝑆 ∙ 𝑤(𝑡)))) (6) 

Here, E is the error weighting parameter, and 𝑦(𝑡) is the 

output of the 𝑘-th iteration. The process continues until 

the RMSE (Root Mean Square Error) of each output 

channel is below the threshold. 

2.3 Virtual Test Rig for Hybrid Road 

Simulation 

The virtual test rig used in this study was constructed 

using a full vehicle model based on Modelon’s Vehicle 

Dynamics Library (VDL), which supports high-fidelity 

multibody dynamics (MBD) simulation. This MBD-based 

model captures realistic vehicle responses and suspension 

loads by simulating the actual kinematics and compliance 

characteristics of suspension and chassis systems. The 

suspension architecture of the reference and target 

vehicles consists of a McPherson strut configuration at the 

front and a multi-link suspension at the rear, as illustrated 

in Figures 6 and 7. This combination was selected to 

reflect a typical modern passenger vehicle setup, where 

the front provides packaging efficiency and steering 

simplicity, while the rear enables better ride comfort and 

lateral stability.  

 
Figure 6. Front suspension model (McPherson strut) in VDL. 
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Figure 7. Rear suspension model (multi-link) in VDL. 

While developing the suspension model, it was 

identified that the default bump stop element in 

Modelon’s VDL lacks support for nonlinear force–

displacement characteristics, which are critical for 

accurately capturing suspension component loads during 

durability simulations. To address this limitation, a 

custom bump stop model was implemented using 

Modelica. This component incorporates a user-defined 

nonlinear force–displacement curve using a lookup table 

and becomes active when the damper compression 

exceeds a predefined bump clearance. This modeling 

approach enables accurate replication of the sharp load 

increase that occurs during bottoming events, which 

significantly influences suspension component fatigue 

and durability assessment. To support this, two dedicated 

submodels were constructed and are illustrated in Figures 

8 and 9.  

 

Figure 8. 1D translational bump stopper model. 

Figure 8 shows the custom 1D translational bump 

stopper model used in the rear suspension system. The 

element accepts the force–displacement curve and is 

activated only when bump clearance is exceeded. 

Figure 9 presents the kinematic model in the rear 

suspension linkage model that computes the bump stop 

compression displacement. In this configuration, the 

bump stop is mounted not on the shock absorber upper 

bushing but directly on the vehicle body. As such, the 

damper stroke alone does not reflect bump stop 

engagement. Therefore, an additional kinematic model 

was developed to calculate the relative displacement 

between the lower control arm and the chassis hardpoint. 

This value serves as the effective compression input to the 

bump stop force model. 

 

Figure 9. Kinematic model for bump stopper. 

This approach ensures that the bump stop responds only 

under physically accurate conditions, enhancing the 

realism of load prediction and its influence on suspension 

durability performance. 

The virtual test rig is configured as a 4-post setup, 

capable of applying vertical displacements at the tire 

contact patches through equivalent virtual road profiles. 

Additionally, actuators are installed at each wheel center 

to apply longitudinal and lateral forces, as well as 

moments. This configuration enables comprehensive 

reproduction of real-world wheel center load conditions 

and supports the simulation of both road-induced and 

control-induced excitations. Figure 10 shows the layout of 

this virtual durability test rig within the simulation 

environment. 
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Figure 10. Configuration of virtual test rig. 

To enable hybrid road simulation, the entire vehicle 

model and test rig were exported as Functional Mock-up 

Units (FMUs) using the FMI standard. These FMUs were 

integrated with a Python-based TWR algorithm, 

implemented using the FMPy library. This setup allows 

for automated iteration of drive signals to match target 

RLDA responses. The overall simulation framework and 

data flow between Python and the FMU-based vehicle 

model are depicted in Figure 11.  

 

Figure 11. TWR simulation based on FMPy. 

The TWR algorithm operates by comparing the actual 

response of the virtual vehicle to the target RLDA signals. It 

continuously updates the drive signals by feeding new input 

signals, stored in *.mat format, into the FMU simulation. These 

updates are computed using an FRF-based iterative optimization 

approach, which enhances tracking fidelity for complex time-

domain signals. During each TWR iteration, the Python 

controller: 

Step 1. Executes a simulation with the current drive signal. 

Step 2. Evaluates the error between target and simulated output 

(e.g., wheel center forces). 

Step 3. Updates the drive signal using the inverse FRF and re-

simulates until convergence.  

This tightly integrated Python-FMI workflow provides robust 

co-simulation performance while ensuring that realistic 

suspension dynamics are captured through the MBD-based 

virtual rig. 

2.4 Application to Hybrid Road Simulation 

2.4.1  Drive Signal Update via Iteration 

For the reference vehicle, equivalent virtual road profiles 

and drive signals capable of reproducing 20 channels of 

wheel forces and moments were generated based on 

Belgian road RLDA data. Predicted and measured 

component and wheel loads were compared. Figures 12 

and 13 show the improvement in front and rear vertical 

wheel force prediction accuracy across iterations. Figure 

14 illustrates the RMSE convergence behavior across 10 

iterations for 20 wheel load channels. All channels 

showed a consistent downward trend in RMSE, indicating 

stable convergence. While convergence patterns were 

similar overall, the final RMSE values for vertical loads 

remained slightly higher, stabilizing below 12%. This 

level of accuracy is considered reasonable for durability 

simulation purposes. In contrast, wheel center 

longitudinal and lateral loads, as well as aligning and 

overturning moments, achieved lower residual RMSE 

values, typically below 6%. These results confirm the 

robustness of the FRF-based iterative TWR algorithm in 

minimizing signal error across diverse load types. 

 

Figure 12. Predicted results of front wheel center vertical load. 
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Figure 13. Predicted results of rear wheel center vertical load. 

 

Figure 14. RMSE history of wheel loads and moments. 

In this study, component damage was calculated as a 

normalized pseudo damage metric using rainflow cycle 

counting and Miner’s rule. The damage values represent 

relative fatigue severity based on the simulated load time 

histories, allowing comparison between measured and 

predicted results without requiring material-specific S-N 

curves. Table 1 summarizes RMS and normalized pseudo 

damage values of measured and simulated component 

loads, confirming the high accuracy of the generated drive 

signal and road profile. 

 

Table 1. TWR simulation results of reference vehicle. 

Channel Index Simulation Target Error 

Front 

Wheel 

Center 

Vertical 

Load 

RMS 1729.62 1691.39 2.26 % 

Pseudo 

Damage 
1.34 1.24 8.06 % 

Rear 

Wheel 

Center 

Vertical 

Load 

RMS 2074.84 2048.02 1.31 % 

Pseudo 

Damage 
1.81 1.7 6.47 % 

Front 

Lower Arm 

Boll Joint 

Fx Load 

RMS 875.29 866.18 1.05 % 

Pseudo 

Damage 
0.33 0.32 3.13 % 

Real Assist 

Arm Axial 

Load 

RMS 1634.37 1615.21 1.19 % 

Pseudo 

Damage 
2.88 2.80 2.86 % 

Rear 

Lower Arm 

Axial Load 

RMS 1548.75 1571.01 1.42 % 

Pseudo 

Damage 
2.80 2.96 5.40 % 

2.4.2 Simulation for Target Vehicle 

The extracted drive signals and road profiles were applied 

to the target vehicle model to predict component and 

wheel loads. Figures 15 to 19 present range pair graphs 

showing load distribution and cumulative damage. While 

vertical loads and front lower arm ball joint loads closely 

matched measured data, some discrepancies were 

observed in rear component loads, primarily due to 

sensitivity of damage metrics and reliance on reference 

vehicle measurements for lateral/longitudinal forces. 

 
Figure 15. Damage of front wheel center vertical load. 
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Figure 16. Damage of rear wheel center vertical load. 

 
Figure 17. Damage of front lower arm ball joint load. 

 

 
Figure 18. Damage of rear assist arm axial load. 

 

 
Figure 19. Damage of rear lower arm axial load. 

Table 2 presents the RMS and damage values for major 

suspension components, showing that trends in damage 

and RMS variation were reproduced reasonably well even 

for the rear suspension. 

Table 2. TWR simulation results of target vehicle. 

Channel Index Simulation Target Error 

Front 

Wheel 

Center 

Vertical 

Load 

RMS 1726.78 1842.046 6.26 % 

Pseudo 

Damage 
1.36 1.4 2.86 % 

Rear 

Wheel 

Center 

Vertical 

Load 

RMS 1785.68 1819.82 1.87 % 

Pseudo 

Damage 
1.02 1.1 7.27 % 

Front 

Lower Arm 

Boll Joint 

Fx Load 

RMS 875.63 858.28 2.02 % 

Pseudo 

Damage 
0.424 0.372 13.98 % 

Real Assist 

Arm Axial 

Load 

RMS 1291.52 1251.66 3.18 % 

Pseudo 

Damage 
1.69 1.37 23.36 % 

Rear 

Lower Arm 

Axial Load 

RMS 1419.09 1345.80 5.45 % 

Pseudo 

Damage 
2.40 1.75 37.14 % 

3 Conclusion 

This study presented a hybrid road simulation method for 

predicting vehicle suspension component loads by 

integrating road load data and multibody vehicle models 

through FMI-based co-simulation. By employing an FRF-

based iterative TWR algorithm, equivalent virtual road 

profiles were generated using RLDA data from a 

reference vehicle and applied to a target vehicle model 

exported as an FMU. 

The proposed methodology offers several advantages 

relevant to the Modelica and FMI community: 

• FMI-based modular integration: The approach 

demonstrates a practical application of the FMI standard 

using FMPy to couple a Python-based TWR algorithm 

with a Modelica-based full vehicle model, ensuring 

seamless interoperability in a simulation workflow. 

• Efficient virtual durability testing: By leveraging 

existing RLDA data and applying it through a virtual test 

rig configuration, the method enables early-stage 

durability analysis without the need for physical 

prototypes or detailed driver models. 
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• System-level fidelity with manageable complexity: 

Compared to traditional Virtual Proving Ground (VPG) 

approaches, the hybrid method maintains accuracy in 

load prediction while reducing the dependency on high-

fidelity subsystems like road or tire models. 

Future work will focus on extending this FMI-based 

hybrid simulation framework to cover broader driving 

scenarios and enhancing prediction robustness, especially 

for design-dependent variables such as lateral and 

longitudinal load components. This research illustrates 

how the use of standardized model exchange formats like 

FMI can accelerate the development and validation of 

vehicle durability simulation methods in industrial 

applications. 
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