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Abstract

This study presents a method for predicting vehicle
suspension component loads at the early design stage. A
hybrid road simulation combines road load data acquired
from a reference vehicle with the Time Waveform
Replication (TWR) technique to generate virtual
equivalent road profiles. The TWR was implemented in
Python, and a multibody dynamics vehicle model
developed using Modelon’s Vehicle Dynamics Library
was used to simulate chassis response. Integration and
iterative simulation between the TWR system and the
vehicle model were conducted via Functional Mock-up
Units using the Python FMI library, FMPy. These virtual
inputs were applied to a virtual test rig. In this study, road
load data from a reference vehicle were used to derive the
input signals, which were then applied to simulate the
suspension loads of a target vehicle. Simulation results
were validated against measurement data to confirm the
effectiveness of the proposed method.
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1 Introduction

In the early stages of vehicle development, where physical
test vehicles are not available, it is essential to predict the
loads input into suspension components to evaluate the
durability performance of the suspension system. The
predicted suspension component loads are used not only
for evaluating the severity and life expectancy of each
suspension part, but also for the development of durability
test modes at the vehicle level, as well as test methods at
the system, module, and component levels. For this reason,
accurate prediction of suspension component loads is
critical, and technologies for such predictions have been
actively researched for decades.

As shown in Figure 1, the technologies used to predict
suspension component loads can be broadly categorized
into two types.

The first is the Virtual Testing Lab (VTL) approach,
where measured wheel loads are directly applied to the
wheel center of a fixed body model to predict component
loads. This method has the advantages of simple analysis
and the ability to use realistic drive signals, but it cannot
consider changes in wheel loads due to design
modifications or interactions between front and rear
suspensions.

In contrast, the Virtual Proving Ground (VPG) method
predicts component loads without any measured data by
utilizing highly accurate road, tire, driver, and vehicle
models. Although it can be applied to any type of vehicle,
its accuracy heavily depends on the fidelity of the tire,
road, and driver models, and it is difficult to accurately
replicate the driving path, speed, and steering of a real test
driver, making the method complex to operate.

Virtual Testing Lab
(Body-Fixed Test Rig)

= Need spindle loads measured
from RLDA of existent vehicles

Broad application to different
new vehicles

Difficulties in complicated
modeling

= Only application to existent
vehicles

Difficulties in simulation with
same conditions of physical
tests(driven path, speed, )

= Compute internal loads for
existent vehicles

Compute spindle loads (and

internal loads) for new vehicle

Figure 1. Types of component load prediction simulations.

This study proposes a hybrid road simulation-based
suspension load prediction method that overcomes the
limitations and leverages the strengths of both VTL and
VPG. Section 2.1 introduces the fundamental concept of
hybrid road simulation using FMI and Modelica Library.
Section 2.2 explains the Time Waveform Replication
(TWR) algorithm required for hybrid road simulation.
Section 2.3 presents the virtual test rig and simulation
method. Sections 2.4 and 2.5 present case studies using
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RLDA (Road Load Data Acquisition) data from the
reference vehicle and the target vehicle to validate the
proposed methodology.

2 Methodology
2.1 Overview of Hybrid Road Simulation

Hybrid road simulation is a technique that utilizes both
RLDA-measured data and a vehicle model. As shown in
Figure 2, the core process of hybrid road simulation
involves generating equivalent virtual road profiles or
drive signal on a virtual test rig to replicate target signals
from RLDA data using the simulation model of the
reference vehicle. The inputs generated are then applied to
the simulation model of the target vehicle to predict
component loads. This approach should be applied to
similar platforms to ensure accuracy, but it offers the
advantages of simulating realistic responses without
requiring separate road or driver models, thus reducing
model dependency.

RLDA for Reference Vehicle

Targetggnal
(Wheel Forces,
Component Loads)

Reference Vehicle Model Target Vehicle Model

m
Back-Calculate
‘ Use for Prediction

Equivalent Virtual Road Profiles

N4

Component Loads
of

Back Calculate
Drive Signals

Figure 2. Hybrid road simulation process.

To perform hybrid road simulation, a TWR algorithm is
required. The TWR methods include an iteration-based
technique using Frequency Response Functions (FRF)
and a control-based approach using PID or Iterative
Learning Control (ILC). The FRF-based method requires
more time due to its iterative nature but is easier to use
and offers good reproducibility. The control-based
method eliminates the need for iterations but requires
optimization of the controller to improve tracking
performance.

2.2 Time Waveform Replication (TWR)

In this study, the FRF-based iterative method among TWR
techniques was employed to extract drive signals for the
hybrid road simulation. Figure 3 illustrates the TWR
process, which consists of four main steps: (1) FRF
generation using white-pink noise, (2) initial drive signal
creation, (3) iterative drive signal update, and (4)

convergence check using RMSE thresholds. Each step is
described in detail in the following subsections.

First Drive
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l Targets
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Figure 3. Time waveform replication (TWR) process.

2.2.1 FRF Generation Using White-Pink Noise

In the first step, white-pink noise is applied to the input
channels of the vehicle model to extract responses from
the output channels and generate an FRF model. The
white-pink noise WPN(f) has a constant magnitude from
the start frequency (f5;) to the border frequency (f;,) and
gradually decreases from f;, to the end frequency (f,,,), as
shown in Figure 4. Equation (1) defines WPN(f) across
these segments, where the attenuation after f;, depends on
the exponential parameter p.
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Figure 4. White-Pink Noise.

The process for FRF generation is shown in Figure 5.
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Figure 5. System identification (FRF generation) process.

In the FRF generation process, the auto-spectrum
represents the frequency-domain power distribution of a
signal, typically used to analyze the input characteristics.
The cross-spectrum, on the other hand, quantifies the
frequency-domain relationship between the input and
output signals. These spectral components are used to
compute the Frequency Response Function (FRF) by
dividing the cross-spectrum by the auto-spectrum,
enabling the identification of system dynamics. The cross-
spectrum and auto-spectrum are obtained as shown in
Equations (2) and (3):

q)uy(f) = U(f)Y*(f)
@, (f) = U(NHU(f)

2
©)

Here, U(f) and Y*(f) are the Fourier transforms of
u(t) and y(t), respectively, and * denotes the complex
conjugate. The FRF H(f) is then derived as:

q)uy U)

) =52

“4)

2.2.2 Initial Drive Signal Generation

The initial drive signal is generated using the inverse of
the FRF and the inverse Fourier transform as shown in
Equation (5):

u(t) =d-F (H(H'F(S - w®)) (5)
Here, H(f)™! is the inverse FRF, F is the Fourier
transform, w(t) is the target signal, S and d are weights
for the target and drive signals, respectively. The signal is
valid within linear system regions, but nonlinear behavior
introduces error, necessitating additional correction.

2.2.3 Drive Signal Update via Iteration
To correct errors between target and actual responses, an

updated drive signal is computed iteratively. Equation (6)
represents the iterative update of the drive signal in the

TWR process. The initial drive signal is computed by
applying the inverse FRF to the target signal. In
subsequent iterations, the error between the simulated
response and the target signal is calculated and passed
through the inverse FRF to generate a correction signal.
This correction is then added to the previous drive signal,
progressively improving the match between the simulated
and target responses. This approach is grounded in
frequency-domain system identification and iterative
learning control principles and has been widely used in
road load replication studies for its convergence reliability
and simplicity. The k + 1-th drive signal is calculated as
in Equation (6):

e ® = u(® + d-F (HPOTF (B (70 = - w®)))  (6)

Here, E is the error weighting parameter, and y(t) is the
output of the k-th iteration. The process continues until
the RMSE (Root Mean Square Error) of each output
channel is below the threshold.

2.3 Virtual Test Rig for Hybrid Road
Simulation

The virtual test rig used in this study was constructed
using a full vehicle model based on Modelon’s Vehicle
Dynamics Library (VDL), which supports high-fidelity
multibody dynamics (MBD) simulation. This MBD-based
model captures realistic vehicle responses and suspension
loads by simulating the actual kinematics and compliance
characteristics of suspension and chassis systems. The
suspension architecture of the reference and target
vehicles consists of a McPherson strut configuration at the
front and a multi-link suspension at the rear, as illustrated
in Figures 6 and 7. This combination was selected to
reflect a typical modern passenger vehicle setup, where
the front provides packaging efficiency and steering
simplicity, while the rear enables better ride comfort and
lateral stability.

N
7L\

Figure 6. Front suspension model (McPherson strut) in VDL.
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Figure 7. Rear suspension model (multi-link) in VDL.

While developing the suspension model, it was
identified that the default bump stop element in
Modelon’s VDL lacks support for nonlinear force—
displacement characteristics, which are critical for
accurately capturing suspension component loads during
durability simulations. To address this limitation, a
custom bump stop model was implemented using
Modelica. This component incorporates a user-defined
nonlinear force—displacement curve using a lookup table
and becomes active when the damper compression
exceeds a predefined bump clearance. This modeling
approach enables accurate replication of the sharp load
increase that occurs during bottoming events, which
significantly influences suspension component fatigue
and durability assessment. To support this, two dedicated
submodels were constructed and are illustrated in Figures
8and 9.

)i

\J nsionFrame

Figure 8. 1D translational bump stopper model.

Figure 8 shows the custom 1D translational bump
stopper model used in the rear suspension system. The
element accepts the force—displacement curve and is
activated only when bump clearance is exceeded.

Figure 9 presents the kinematic model in the rear
suspension linkage model that computes the bump stop
compression displacement. In this configuration, the
bump stop is mounted not on the shock absorber upper
bushing but directly on the vehicle body. As such, the
damper stroke alone does not reflect bump stop
engagement. Therefore, an additional kinematic model
was developed to calculate the relative displacement
between the lower control arm and the chassis hardpoint.
This value serves as the effective compression input to the
bump stop force model.

&HLES

ol

labilizerFrame

vehicleFrame

* Switch Model for Mounting Point

# Kinematic Model for Bump Stopper

uprightFrame

Figure 9. Kinematic model for bump stopper.

This approach ensures that the bump stop responds only
under physically accurate conditions, enhancing the
realism of load prediction and its influence on suspension
durability performance.

The virtual test rig is configured as a 4-post setup,
capable of applying vertical displacements at the tire
contact patches through equivalent virtual road profiles.
Additionally, actuators are installed at each wheel center
to apply longitudinal and lateral forces, as well as
moments. This configuration enables comprehensive
reproduction of real-world wheel center load conditions
and supports the simulation of both road-induced and
control-induced excitations. Figure 10 shows the layout of
this virtual durability test rig within the simulation
environment.
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Figure 10. Configuration of virtual test rig.
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To enable hybrid road simulation, the entire vehicle
model and test rig were exported as Functional Mock-up
Units (FMUs) using the FMI standard. These FMUs were
integrated with a Python-based TWR algorithm,
implemented using the FMPy library. This setup allows
for automated iteration of drive signals to match target
RLDA responses. The overall simulation framework and
data flow between Python and the FMU-based vehicle
model are depicted in Figure 11.

Chassis Model

(Modelon/VDL)
8] FMPy-based TWR Simulation -
Export | R Sienal P
a 4 FMU : ESI‘U“NE h Igﬂﬂ S
- g H itz
Dymola Time Waveform Replication
/hodelkm Back Calculate

Virtual Road Profiles

Syl
Hf)=7¢ (?]

Update
Drive Signals

Figure 11. TWR simulation based on FMPy.

The TWR algorithm operates by comparing the actual
response of the virtual vehicle to the target RLDA signals. It
continuously updates the drive signals by feeding new input
signals, stored in *.mat format, into the FMU simulation. These
updates are computed using an FRF-based iterative optimization
approach, which enhances tracking fidelity for complex time-
domain signals. During each TWR iteration, the Python
controller:

Step 1. Executes a simulation with the current drive signal.

Step 2. Evaluates the error between target and simulated output
(e.g., wheel center forces).

Step 3. Updates the drive signal using the inverse FRF and re-
simulates until convergence.

This tightly integrated Python-FMI workflow provides robust
co-simulation performance while ensuring that realistic

suspension dynamics are captured through the MBD-based
virtual rig.

2.4 Application to Hybrid Road Simulation

2.4.1 Drive Signal Update via Iteration

For the reference vehicle, equivalent virtual road profiles
and drive signals capable of reproducing 20 channels of
wheel forces and moments were generated based on
Belgian road RLDA data. Predicted and measured
component and wheel loads were compared. Figures 12
and 13 show the improvement in front and rear vertical
wheel force prediction accuracy across iterations. Figure
14 illustrates the RMSE convergence behavior across 10
iterations for 20 wheel load channels. All channels
showed a consistent downward trend in RMSE, indicating
stable convergence. While convergence patterns were
similar overall, the final RMSE values for vertical loads
remained slightly higher, stabilizing below 12%. This
level of accuracy is considered reasonable for durability
simulation purposes. In contrast, wheel center
longitudinal and lateral loads, as well as aligning and
overturning moments, achieved lower residual RMSE
values, typically below 6%. These results confirm the
robustness of the FRF-based iterative TWR algorithm in
minimizing signal error across diverse load types.
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Figure 12. Predicted results of front wheel center vertical load.
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Figure 13. Predicted results of rear wheel center vertical load.

Table 1. TWR simulation results of reference vehicle.

Channel Index Simulation Target  Error
Front
\;}f:el RMS 172962 169139  2.26%
Center
Vertical ~ Pseudo 134 124 8.06 %
Load Damage
Rear
Wheel RMS 2074.84  2048.02  131%
Center
Vertical ~ Pseudo 181 17 6.47 %
Load Damage
Front RMS 875.29 866.18 1.05 %
Lower Arm
Boll Joint Pseudo
FxLoid  Domage 0.33 0.32 3.13 %
Real Assist | RMS 163437 161521  1.19%
Arm Axial
Load 5225; 2.88 2.80 2.86 %
Rear RMS 154875  1571.01  1.42%
Lower Arm
Axial Load 5225; 2.80 2.96 5.40 %

—e—FxFL
90 . . . . § . . | —e—FyFL
FzFL
—e—MxFL
©— MzFL
FxFR
—e—FyFR
—e—FzFR
—&— MxFR
MzFR
—e— FxRL
—e—FyRL
FzRL
—©—MxRL
—e—MzRL
—e—FxRR
FyRR
—e—FzRR
©— MxRR
MzRR

Root Mean Square Error %]

20 ‘Wheel Center
LongiudinallLateralLoads &
10 Aligning/Overtuming Moment

Number of Iteration

Figure 14. RMSE history of wheel loads and moments.

In this study, component damage was calculated as a
normalized pseudo damage metric using rainflow cycle
counting and Miner’s rule. The damage values represent
relative fatigue severity based on the simulated load time
histories, allowing comparison between measured and
predicted results without requiring material-specific S-N
curves. Table 1 summarizes RMS and normalized pseudo
damage values of measured and simulated component
loads, confirming the high accuracy of the generated drive
signal and road profile.

2.4.2 Simulation for Target Vehicle

The extracted drive signals and road profiles were applied
to the target vehicle model to predict component and
wheel loads. Figures 15 to 19 present range pair graphs
showing load distribution and cumulative damage. While
vertical loads and front lower arm ball joint loads closely
matched measured data, some discrepancies were
observed in rear component loads, primarily due to
sensitivity of damage metrics and reliance on reference
vehicle measurements for lateral/longitudinal forces.
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Figure 15. Damage of front wheel center vertical load.
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Figure 16. Damage of rear wheel center vertical load.
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Figure 17. Damage of front lower arm ball joint load.

Table 2 presents the RMS and damage values for major
suspension components, showing that trends in damage
and RMS variation were reproduced reasonably well even
for the rear suspension.

Table 2. TWR simulation results of target vehicle.

Channel Index Simulation Target  Error
Front
Wheel RMS 172678  1842.046  6.26 %
Center
Vertical  Pseudo 136 1.4 2.86 %
Load Damage
Rear
Wheel RMS 178568  1819.82  1.87%
Center
Vertical ~ Pseudo 1.02 1.1 7.27 %
Load Damage
Front RMS 875.63 858.28 2.02 %
Lower Arm
Boll Joint Pseudo
FxLoad  pomage 0424 0372 13.98%
Real Assist | RMS 129152 125166  3.18%
Arm Axial
Load Pseudo 1.69 137 2336%
Damage
Rear RMS 1419.09 1345.80 5.45%
Lower Arm
Axial Load ~ Pseudo 2.40 175 37.14%
Damage

3 Conclusion

This study presented a hybrid road simulation method for
predicting vehicle suspension component loads by
integrating road load data and multibody vehicle models
through FMI-based co-simulation. By employing an FRF-
based iterative TWR algorithm, equivalent virtual road
profiles were generated using RLDA data from a
reference vehicle and applied to a target vehicle model
exported as an FMU.

The proposed methodology offers several advantages
relevant to the Modelica and FMI community:

e FMI-based modular integration: The approach
demonstrates a practical application of the FMI standard
using FMPy to couple a Python-based TWR algorithm
with a Modelica-based full vehicle model, ensuring
seamless interoperability in a simulation workflow.

o Efficient virtual durability testing: By leveraging
existing RLDA data and applying it through a virtual test
rig configuration, the method enables early-stage
durability analysis without the need for physical
prototypes or detailed driver models.
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Figure 18. Damage of rear assist arm axial load.
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Figure 19. Damage of rear lower arm axial load.
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e System-level fidelity with manageable complexity:
Compared to traditional Virtual Proving Ground (VPG)
approaches, the hybrid method maintains accuracy in
load prediction while reducing the dependency on high-
fidelity subsystems like road or tire models.

Future work will focus on extending this FMI-based
hybrid simulation framework to cover broader driving
scenarios and enhancing prediction robustness, especially
for design-dependent variables such as lateral and
longitudinal load components. This research illustrates
how the use of standardized model exchange formats like
FMI can accelerate the development and validation of
vehicle durability simulation methods in industrial
applications.
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