Br(e)aking the Boundaries of Physical Simulation Models:
Neural Functional Mock-up Units for Modeling
the Automotive Braking System

Tobias Thummerer!

Fabian Jarmolowitz?

Daniel Sommer? Lars Mikelsons!

IChair of Mechatronics, University of Augsburg, Germany, {tobias.thummerer, lars.mikelsons}@uni-a.de
2Robert Bosch GmbH, Germany, {fabian.jarmolowitz,daniel.sommer4}@de.bosch.com

Abstract

Testing real hardware and simulation models in combina-
tion in a software- or hardware-in-the-loop set-up is chal-
lenging. One of the key factors is the high demand for
accuracy in the simulation model. If classical modeling
based on physical principles is not sufficient to reach the
desired level of accuracy, hybrid modeling, the combina-
tion of physical simulation models and machine learning
can be applied. In this publication, we train a hybrid
model for a controlled electric motor within the electro-
hydraulic braking system of a car under the conditions and
restrictions of a real engineering application in the field.
We apply state-of-the-art modeling patterns for this, and
further extend them with application specific methodolog-
ical optimizations. Finally, we investigate and show the
quantitative and qualitative advantages of the proposed ap-
proach for this specific application, resulting in a gain in
accuracy by multiple factors.

Hybrid Modeling, Graybox Modeling, Scientific Machine
Learning, Functional Mock-Up Unit, Functional Mock-up
Interface, Braking System, Automotive

1 Introduction

Most simulation models in the automotive environment
are built based on physical equations. This has the ad-
vantage that the model builder, as well as other engi-
neers, have an intuitive understanding of the model and
its parameters. As these physical equations also have very
broad validity, most physical models can also generate
correct results outside the required working range (extrap-
olation), making them robust in various application sce-
narios. When creating models, equations are chosen on
the basis of assumptions, i.e. simplifying assumptions are
made. This introduces a modeling error that leads to devi-
ations between the simulation model and the real system.
On the other hand, there are machine learning approaches
that can theoretically generate arbitrarily accurate results
depending on the selected model and model dimension if
a sufficient amount of data is given. This flexibility comes
at the cost of poor interpretability due to the black-box na-
ture of most machine learning models like arifical neural
networks (ANNs). The field of hybrid modeling, which

is part of scientific machine learning, attempts to com-
bine the advantages of both modeling and simulation ap-
proaches, e.g., to create more accurate, yet interpretable
models.

1.1 Use Case: Bosch Integrated Power Brake

The Integrated Power Brake (IPB) is a vacuum-
independent and electro-hydraulic brake control system
that combines brake boosting and brake control functions
in one piece of hardware. By applying the brake pedal, the
control unit calculates the driver’s brake request based on
internal sensors. This brake request is implemented by ac-
tivating a pressure build-up unit consisting of an electric
motor, a gearbox, and a hydraulic piston. Finally, brake
pressure is transferred to the wheel brakes via brake pipes
to decelerate the vehicle. For more information on the sys-
tem, see Robert Bosch GmbH (2025) and Robert Bosch
GmbH (2024).

The developed control software is tested using software-
in-the-loop simulation. This requires a model of the hard-
ware that generates sufficient quality of results. A very
detailed physical model only makes sense to a certain ex-
tent, as otherwise the required simulation performance
cannot be achieved. Therefore, strict requirements are
given for both simulation accuracy and performance. A
hybrid modeling approach should be able to fulfill these
requirements.

The model used for the use case contains the electric mo-
tor, including the mechanical parts of the pressure build-
up unit. The physical model calculates the position, speed,
torque, and current of the rotor. The motor is controlled by
a motor controller that runs software that calculates con-
trol signals based on the position of the rotor. This motor
controller is implemented in software for the use case con-
sidered.

target control

signals signals E IPB '
Motor Control > Motor @-------- 4 Mechanics / !
(Software) ') :

' Hydraulics !

(U

position, speed, current

Figure 1. IPB motor control.

DOI
10.3384/ecp218575

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

575

Br(e)aking the Boundaries of Physical Simulation Models: Neural Functional Mock-up Units ...

The model itself poses various challenges:

* The system is very sensitive with respect to the initial
state of the rotor position, as the control signals are
calculated based on this. Even small deviations make
the motor run out-of-sync, as can be observed for the
physical model during experiments (s. Sec. 4).

* The control signals are sampled with a frequency of
10* Hz, triggering time events at this frequency.

e The nonlinear physical model is marginally stable
with real zero eigenvalues independent of the system
state, so for the entire operation range of the motor.

 Special model conditions (such as reaching end-stop)
cause additional state events.

The system consists of two mechanical and two electrical
states. The mechanical states for the electric motor are the
angular position and the angular speed of the motor rotor.
In addition, the inputs to the electric motor are pulse-width
modulation (PWM) signals for each motor phase, the mo-
tor supply voltage, and the time-varying mechanical load
caused by the hydraulic subsystem.

The simulation model is given as functional mock-up
unit (FMU), which is introduced in detail in the next sec-
tion. The use of a FMU for the considered use case not
only allows one to simulate the motor model but also to
later extend it by a machine learning model without actu-
ally sharing the model equations and parameters. This is
because the FMU contains only compiled machine code.
In fact, the use case shown here was processed with-
out knowing the physical model or its parameters. This
demonstrates a significant advantage of the method, as
models can be improved by hybrid modeling without dis-
closing the corresponding intellectual property.

1.2 Functional Mock-up Interface (FMI)

The Functional Mock-up Interface (FMI) is an open, tool-
independent standard (container format) for exchanging
and co-simulating dynamic models, usually in the form
of ordinary differential equations (ODEs), across differ-
ent simulation systems and tools. Developed initially in
2008-2011, FMI has become the de facto industry stan-
dard for model exchange and co-simulation, supported by
more than 230 different simulation tools (Modelica Asso-
ciation 2020; Bertsch 2022; Modelica Association 2023).
FMI supports two main types of FMUs: Co-simulation
(CS) and Model-exchange (ME). The ME-FMU offers
an interface similar to the right-hand side of a system of
ODEs, for example providing the state derivative for a
given state. This allows for the complementation of the
ODE and its underlying physics with data-driven compo-
nents from machine learning to improve, for example, the
accuracy (Thummerer, Mikelsons, and Kircher 2021).

FMI 3.0 has introduced several features that enables one
to integrate AI models in simulation, e.g. by updating pa-
rameters much more efficiently than in previous versions.

For example, with the added support of adjoint deriva-
tives, FMUs can be integrated in automatic differentiation
frameworks, as demonstrated in FMISensitivity.jl !.

1.3 Neural ODEs

In machine learning, using an ANN to learn for the right-
hand side of an ODE is referred to as neural ODE (R. T. Q.
Chen et al. 2018), compare Fig. 2. The gradient required
for training neural ODE:s is typically determined by back-
propagation through the numerical solver (reverse mode
automatic differentiation) or by applying adjoint methods.
This concept was later extended to support event-ODEs
as well (R. T. Chen, Amos, and Nickel 2020). Numer-
ous publications show that neural (ordinary) differential
equations are an excellent tool to learn dynamical system
behavior (Ramadhan et al. 2023; Tac, Sahli Costabal, and
Tepole 2022; Xie, Parlikad, and Puri 2019).

x(t)

B

x(t + h)
—

x(t)
ANN » f

Figure 2. Within neural ODEs, the right-hand side of an ODE
is expressed by an ANN and solved by a numerical integration
algorithm (ODE solver). Based on a given state x(), the ANN
computes a state derivative x(¢), which is integrated to the next
system state x(z + 1) by performing a step of 4. Figure adapted
from (Thummerer, Kolesnikov, et al. 2023).

1.4 UODE /PeN-ODE

Compared to the concept of neural ODEs, one can con-
clude that, besides ANNSs, other universal approximators
are possible as well to approximate the right-hand side of
an ODE. Further, the right-hand side can contain a pri-
ori knowledge in the form of equations. This concept
was introduced as universal ordinary differential equation
(UODE) (Rackauckas et al. 2021) together with a software
framework. This framework serves as a software founda-
tion for FMIFIux.jI>, which is used within this applica-
tion. Within the OpenSCALING research project (s. Sec.
Funding), a special kind of UODE is introduced, combin-
ing explicitly ANNs and physical simulation models to be
solved by an ODE solver, referred to as physics-enhanced
neural ODE (PeN-ODE). Similar and related research
was performed in Sorourifar et al. (2023) and Thummerer,
Kolesnikov, et al. (2023), using the same terminology. A
detailed discussion on PeN-ODEs can also be found in
(Hofmann and Mikelsons 2025) and the model investi-
gated in this paper can be interpreted as PeN-ODE.

"https://github.com/ThummeTo/
FMISensitivity.jl
https://github.com/ThummeTo/FMIFlux. 1l

576

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218575

https://github.com/ThummeTo/FMISensitivity.jl
https://github.com/ThummeTo/FMISensitivity.jl
https://github.com/ThummeTo/FMIFlux.jl

Session: Control- and Al-based Methods with FMI for Automotive in Track for Control & Al

| oDE ||
x(t) ! L (o) j x(t +h)
———» PeN —ODE +——» S
| ann |}

Figure 3. A physics-enhanced neural (PeN)-ODE, which con-
sists of a ODE, an ANN and the ODE solver. Based on a given
state x(¢), the PeN-ODE computes a state derivative x(¢), which
is integrated to the next state of the system x(z +). There are
no restrictions on how ODE is connected to the ANN.

1.5 Preliminary Work

ME-FMUs offer a similar interface compared to ODEs
and can therefore be intuitively replaced with each other
on a conceptual level. However, on the technical level,
multiple adjustments are required. In Thummerer, Mikel-
sons, and Kircher (2021), neural FMUs were introduced
as the combination of FMUs and ANNs. From the point
of view of PeN-ODEs, a neural FMU can be constructed
by replacing the ODE by a ME-FMU. In addition, neural
FMU s can also be constructed based on CS-FMUSs (Thum-
merer, Mikelsons, and Kircher 2021), but are not further
investigated in this contribution.

x(t)
— ! Newral FMU >

f x(t+h)
—

Figure 4. A neural FMU (ME), that consists of a ME-FMU, an
ANN and the ODE solver. Based on a given state x(¢), the neural
FMU computes a state derivative x(¢), which is integrated into
the next state of the system x(¢ + /). No assumptions on how the
FMU is connected to the ANN are made. In addition, multiple
FMUs and ANNSs can be involved.

In Thummerer, Stoljar, and Mikelsons (2022), multi-
ple training strategies for neural FMUs are investigated.
In the following, we briefly explain the methodological
foundation that we use as a starting point for the presented
extensions. The following decisions are made:

Gates As a starting point for building a hybrid model
architecture, the gates topology is used (Thummerer, Stol-
jar, and Mikelsons 2022), based on a parallel-serial lay-
out (Thummerer and Mikelsons 2025). Here, two gates
are applied that control how much of the (original) FMU
motor dynamics and how much of the (newly) learned

ANN motor dynamics contribute to the resulting hybrid
model motor dynamics. The gates are parameterizable and
are trained together with other optimization parameters,
choosing proper initial parameters is part of hyperparam-
eter optimization.

Pre- and Post-Processing To normalize the values be-
tween machine learning and the domain of the physical
model, pre- and post-processing is applied online (Thum-
merer, Stoljar, and Mikelsons 2022). Here, pre- and post-
processing corresponds to the introduction of two addi-
tional linear operations that shift and scale signals at the
domain boundaries (between the physical and machine
learning model and vice versa) in order to prevent sub-
optimal operation ranges for the nonlinearities inside the
ANN. For example, if hyperbolic tangent activation is ap-
plied (as we used in the later experiment), small values
close to zero lead to operation in (almost) linear ranges of
this function and therefore neglection of the intended non-
linearity, whereas large values drastically saturate to 1 or
—1, leading to a vanishing gradient. Both issues are major
obstacles when training (nonlinear) hybrid models.

Interfaces In Thummerer and Mikelsons (2025), it is
investigated how models can be combined, and learnable
connections between physical and machine learning mod-
els are proposed. However, it is shown that this is not
always efficient if only a limited amount of data is avail-
able. This motivates a clever selection of interface signals
for the ANN. Because only little is known about the not
modeled physical effect, it is decided to use the following
signals as inputs for the ANN:

* The system state is used, to allow the ANN to learn
its own representation of the right-hand side of the
ODE. This corresponds to a parallel-like model ar-
chitecture.

* The system inputs, to allow the learned right-hand
side to further depend on the current input.

* The state derivative calculated by the FMU, which
allows to correct the dynamical representation of the
system calculated by the physical model. This corre-
sponds to a serial-like model architecture.

* The time is explicitly not used as input to the ANN,
because a time-invariant system is assumed, so with-
out explicit time dependency.

The presented decisions result in the architecture visu-
alized in Fig. 5, which is used as the foundation for the
considered application.

2 Method

Although the architecture introduced in Fig. 5 was able
to produce good results in a very similar form for dif-
ferent application scenarios from mechanical engineering
(Thummerer, Stoljar, and Mikelsons 2022; Thummerer,

DOI
10.3384/ecp218575

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

577

Br(e)aking the Boundaries of Physical Simulation Models: Neural Functional Mock-up Units ...

x(t) x(t) —>
> > o x,(t) =
o0
£ £ +
NIERECIRRE L 8 0 =
t o | xp(t o) x(t Z | X,(t x(t
of 2 28 g ON I E7IOT 8 @ > f ——>
u(t) N IOR a
Jp(6)

Figure 5. The starting point for derivation of the neural FMU (ME) used in this paper. It features pre- and post-processing layers
as well as gates. First, the state x, time ¢, and inputs u are fed into the FMU. The FMU computes a state derivative Xz, which is
pre-processed together with the original state and input values. After pre-processing, the considered values are passed to an ANN,
that computes its own state derivative vector X4, which is further post-processed to x4. The gates layer then controls how much of
the ANN dynamics and the FMU dynamics contribute to the overall dynamics of the hybrid model x, which is finally integrated to
the next system state x(¢ +) by performing a step with size & in time.

Kolesnikov, et al. 2023) and medical technology (Thum-
merer, Tintenherr, and Mikelsons 2021), further method-
ological adjustments must be made for the particularly
challenging application case at hand. These are introduced
and discussed below.

2.1 Architecture: Learning Input Delay

The measurement data used is recorded at high frequency
(10*Hz). It is worth mentioning that this sampling fre-
quency is not an excessive choice and is required to cap-
ture significant information, for example PWM signals to
drive the electric motor. Due to the combination of sev-
eral sensor signals in the data logger or errors in time syn-
chronization between these sensors, time offsets may oc-
cur between the measurement signal of different sensors
(see Fig. 6). In general, for small deviations, it is difficult
to distinguish these temporal deviations from system dy-
namics. If the cause cannot be clearly identified (and ex-
plained), appropriate correction options can be provided in
the architecture for both possible causes. This is achieved
by integrating a block for introducing a constant-time off-
set for the input signal in addition to a neural network for
correcting the system dynamics. Mathematically, this is
defined simply as follows:

where At is a trainable parameter and u,,, is the output
signal of the delay correction block. Since the time-offset
block is parameterized and its parameter Ar can be dif-
ferentiated, this parameter can be optimized together with
the parameters of the neural network in a gradient-based
training.

2.2 Architecture: Bypass Dynamics

For the presented application, we decide to only manip-
ulate the mechanical part of the system state vector, so
the mechanical subsystem, respectively. This is justified

data
physical model

angular velocity (normalized)

L L L
4.400 4.405 4.410

t[s]

L L
4.390 4.395

Figure 6. The plot shows the angular velocity data, as well as the
output of the simulation model. There is a time shift in between
that could be compensated by adding an offset in time to the
input signals.

by the fact that the modeling and parameterization of the
electrical subsystem are assumed to be accurate, while the
mechanical subsystem has a higher level of uncertainty.
As a consequence, the electrical part of the state derivative
is forwarded to the ODE solver without any manipulation,
which corresponds to leaving the right-hand side of the
electrical subsystem untouched. To further preserve the
second-order ODE structure for the mechanical subsys-
tem, we only allow manipulation of the rotor acceleration
(and not the rotor speed), which we achieve by forwarding
the unmodified rotor speed to the ODE integrator as well.

Based on the preliminary work summarized in Fig. 5,
the proposed input offset correction block and signal for-
warding, a model architecture as in Fig. 7 can be deployed
to address the presented use case.

2.3 Data Handling

As shown in Fig. 8, real measurement data is often very
heterogeneous in terms of information content. For a

578

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218575

Session: Control- and Al-based Methods with FMI for Automotive in Track for Control & Al

x(t) - x(t) — _
» » Al4] =
0
® g h
—> A > 8 S N % . <
t R g Xr13)| 8 x(t). % Xa[4] 303 o X4l f R >
ol £ < & s
5|] | 2 g ©
ut) | &5 & | uw o
—> 3 § > >
(s~ u(t + At) .
S XrL4]

Figure 7. The architecture designed for the presented use case, based on the introduced architecture in Fig. 5 and extended by input
delay correction. Not all state derivatives X are computed by the ANN and post-processing, only X4 (the motor rotor acceleration).
The others Xp(;.3) are cached and forwarded directly to the ODE solver.

[training region
speed
angle

F/“\

measurements (normalized)

t[s]

Figure 8. The training data. As data is heterogneous (varying
information content), only the green regions (that offer informa-
tion variance) are used for training.

large part of the time axis, the system is at rest (or almost
at rest). This is due to a delay between the start and end of
the recording and the execution of the actual test. In this
application, we have decided to thin out the data manually,
but we are working in parallel on robust approaches to au-
tomate this step. It is important to note that this step is
more complex than, for example, filtering only for deriva-
tives and has a significant influence on the quality of the
results with such a small amount of training data.

3 Experiment

The presented method is validated in the challenging use
case of the IPB introduced in Sec. 1.1. The experiment in-
volves the training process, followed by the comparison of
results against measurements of the real physical system
(ground-truth data, baseline). To determine good hyper-
parameters, a hyperparameter optimization is performed.

3.1 Data

For intellectual property reasons, all data plots and error
measures within this publication are normalized. The data
used for training, validation, and testing was generated un-

der typical development conditions:

* All measurements were performed on the real IPB
hardware (prototype) and

* an ECU software measurement tool was used to mea-
sure the sensor and actor control quantities, so no ad-
ditional sensor are required/used.

To show the ability of the presented method to provide
good results on a very small data set under conditions of
real development in the field, only three measurements
with durations of ~ 12 — 255 are used. One trajectory
is used for training (gradient determination for optimiza-
tion), one for validation (evaluating the success of hyper-
parameter optimization), and one for testing (completely
unknown to the model and optimization processes).

3.2 Training

Because the experiment includes a real industrial simula-
tion model that is part of active development, this model
cannot be shared. However, the experiment setup is de-
scribed in the following, to allow for reproduction within
similar use cases:

Hyperparameter Optimization For hyperparameter op-
timization, the optimizer Hyperband (Li et al. 2018)
is applied with parameters R = 81 and 11 = 3. The
optimizer is paired with a simple random sampler as
the inner sampling algorithm?. As resource for Hy-
perband, a time span is used for the processed train-
ing data, which is limited to a maximum of 100s.

Optimizer For the actual training, the optimizer Adam
(Kingma 2014) is applied, with step size N €
[1076,107%] (best: 376), B; € {0.99,0.9} (best:
0.99) and B, € {0.9999,0.999,0.99} (best: 0.9999).
Stochastic mini-batching is applied as training strat-
egy, with a batch element length of [0.01s,0.1s]
(best: 0.025).

3Implementation available: https://github.com/
ThummeTo/DistributedHyperOpt. jl.

DOI
10.3384/ecp218575

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

579

https://github.com/ThummeTo/DistributedHyperOpt.jl
https://github.com/ThummeTo/DistributedHyperOpt.jl

Br(e)aking the Boundaries of Physical Simulation Models: Neural Functional Mock-up Units ...

Loss function The loss function consists of two sepa-
rated errors, one for the motor angle and one for
the speed. For error determination, mean squared
error (MSE) as well as mean absolute error (MAE)
(best) are used. To obtain a scalar loss, the loss terms
are weighted by a percentage between 0 % and 100 %
(best: 70% speed, 30% angle) and added together.
This allows for loss functions that involve only the
speed, only the angle, or a mixture of both.

ANN layout For the ANN, different widths {8,16,32}
(best: 8) and depths {2,3,4} (best: 4) are tested.
Only the tanh activation function is applied for all
layers.

Gates The gates for the influence of the ANN are trained
together with the ANN parameters, but feature differ-
ent initial openings between [0 %, 50 %] (best: 30 %).

4 Results & Discussion

After training, we find the following results that we want
to discuss in detail in this section. It is important to note
that training, validation, and testing are performed open-
loop. This means that control signals are recorded from
the closed-loop (controlled) system, but for training and
validation, the motor is operated based on the pre-recorded
control signals without involving the controller (remove
feedback). This allows us to evaluate the actual accuracy
of the hybrid model without controller influences posi-
tively distorting the results.

Training, validation, and test data vary w.r.t. different
aspects, for example the maximum applied load or the
maximum rotor velocity vary by at least 10 % between the
individual datasets.

We deliberately decided against baselining against a
pure ML model because under the given circumstances
(very little data, very few training resources) no pre-
sentable ML model can be trained, even if more advanced
approaches such as neural ODE are used for this purpose.
Please note that training data only captures a part of the
state space of the system, and therefore a pure ML ap-
proach is by design not able to recover the system behav-
ior beyond the limited training data.

4.1 Validation

The best hyperparameter run values can be found in Sec.
3.2, leads to the following results for the motor angle (s.
Fig. 9). The determined value for the time offset (input
delay) is ~ —1.995 x 10~s. Because the motor is very
sensitive with respect to the inputs, this small offset has a
significant positive influence on the simulation results.
Qualitatively, it can be stated that the neural FMU tra-
jectory does not have any significant, obvious deviation
compared to the data trajectory. This does not apply to the
original FMU that has a large deviation, especially near
the end of the trajectory. This can be seen in Fig. 10 start-

Data (validation)
FMU [MAE: 1.3063e-02 | MSE: 5.5456e-04] |
Neural FMU [MAE: 2.8673e-03 | MSE: 9.1095e-06]

angle (normalized)

L L L
125 15.0 17.5

t[s]

L L
7.5 10.0

Figure 9. The motor angle on the validation data on the full
trajectory. Loss values are given in square brackets.

ing at around 18.3s, which shows the deviation in more
detail.

Data (validation)
FMU [MAE: 4.1868e-02 | MSE: 2.7517e-03]
Neural FMU [MAE: 2.2390e-03 | MSE: 6.0755e-06]

angle (normalized)

18.5
t[s]

L L
17.5 18.0

Figure 10. The motor angle on the validation data, zoomed in
to the time interval from 17.5s to 19.5s. The loss values for this
interval are given in square brackets.

On a quantitative level, the deviation for the motor an-
gle for the neural FMU is ~ 4.6 times smaller compared to
the FMU on MAE, and even around 61 times on MSE. At
this point, we need to highlight that these factors are very
impressive from an engineering point of view and deliver
massive added value for the (hybrid) simulation model.

As expected from the good results for the motor angle,
the neural FMU also provides a qualitatively good fit on
the motor speed, see Fig. 11.

Again, we investigate a part of the speed trajectory in
more detail. What is particularly striking are the deviat-
ing spikes of the FMU, which can be investigated in more
detail in Fig. 12. The spikes result from the fact that
the model is very sensitive with respect to the control sig-
nals and small deviations between the control signal and
the position of the rotor lead to unstable behavior in the
open-loop control system. Although the original simula-
tion model (FMU) consistently shows these oscillations
that even lead to overshoots in the event of rapid changes
in speed (acceleration), the neural FMU is able to com-
pensate for the unintended oscillations and provides a nice

580

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218575

Session: Control- and Al-based Methods with FMI for Automotive in Track for Control & Al

speed (normalized)

Data (validation)
MU [MAE: 8.4621e-03 | MSE: 4.7061e-04]
Neural FMU [MAE: 4.0819e-03 | MSE: 1.2346e-04]

L L L
125 15.0 17.5

t[s]

L L
7.5 10.0

Figure 11. The motor speed on the validation data on the full

trajectory. Loss values are given in square brackets.

speed (normalized)

Data (validation)

——— FMU [MAE: 2.8514e-02 | MSE: 2.7845e-03]
Neural FMU [MAE: 7.5964e-03 | MSE: 3.0448e-04]

L L L
18.4 18.6 18.8 19.0

t[s]

Figure 12. The motor speed on validation data, highlighting
the interval between 18.2s and 19.5s. Loss values are given in
square brackets.

and smooth fit without significant deviations.

4.2 Testing

For proper validation of the hybrid model, the neural FMU
is further investigated under testing data, that is com-
pletely unknown from training as well as hyperparameter
optimization. As for validation data, the neural FMU qual-
itatively performs very well on testing data (s. Fig. 13),
and is even able to provide a little better increase in preci-
sion of the predicted rotor angle of factor ~ 5.4 on MAE
or factor ~ 74 on MSE, respectively.

In contrast to the validation, we want to inspect a seg-
ment with raising edge for the motor angle in more de-
tail, see Fig. 14. Within this segment, the original model
(FMU) already performs very well, and we want to inves-
tigate if the neural FMU is able to retain the parts of the
original model that already perform well. Even if the
original model has high accuracy in the investigated time
span, the neural FMU is able to outperform this perfor-
mance by a factor of around 2.2 (MAE).

Finally, we also investigate the motor speed on testing
data in the following. When investigating the rotor speed
on testing data (s. 15), we find quantitative improvements
similar to the validation scenario of factor > 2 (MAE).

Data (test)
———FMU [MAE: 1.3256e-02 | MSE: 4.8471e-04]
Neural FMU [MAE: 2.4647e-03 | MSE: 6.5264e-06]

angle (normalized)

L L L
10.0 125 15.0

t[s]

L L
5.0 7.5

Figure 13. The motor angle on test data on the full trajectory.

Data (test)
FM

[MAE: 5.5521e-03 | MSE: 3.6713e-05]
Neural FMU [MAE: 2.5518e-03 | MSE: 6.9115e-06]

angle (normalized)

8.5 9.0 9.5
t[s]

!
10.0

Figure 14. The motor angle on the test data, between 7.8 s and
10.2s. Loss values are given in square brackets.

speed (normalized)

Data (test)

[MAE: 9.9369e-03 | MSE: 8.0778e-04]
Neural FMU [MAE: 3.5979e-03 | MSE: 9.7467e-05]

L L
5.0 7.5 10.0

t[s]

Figure 15. The motor speed on the test data on the full trajec-
tory. Loss values are given in square brackets.

Again, more significantly, the qualitative fit has drasti-
cally improved in terms of reduced (wrong) oscillations in
the open-loop simulated motor, see Fig. 16.

5 Conclusion

We can summarize that hybrid modeling has the poten-
tial to be used in challenging real industrial applications.
In this particular use case of the automotive braking sys-
tem, we were able to increase the accuracy by multiple
factors, even though the physical model was based on a

DOI
10.3384/ecp218575

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

581

Br(e)aking the Boundaries of Physical Simulation Models: Neural Functional Mock-up Units ...

speed (normalized)

Data (test)
———FMU

[MAE: 2.9194e-02 | MSE: 5.0831e-03]
Neural FMU [MAE: 1.0425e-02 | MSE: 4.0018e-04]

L L L
8.25 8.50 8.75

t[s]

L !
7.75 8.00

Figure 16. The motor speed on test data, highlighting the inter-
val between 7.75s and 8.75s. Loss values are given in square
brackets.

simulation model from real state-of-the-art engineering,
built and parameterized by experts. Nevertheless, the suc-
cessful results presented are still based on well-founded
decisions by the development engineer, e.g. the choice of
a model architecture that meets the requirements of the
use case. We also see this as the task of the modern sim-
ulation engineer in the future. Although such decisions
can in principle also be optimized by ML approaches, the
approach presented here impresses with its very low com-
puting power requirements compared to large-scale opti-
mizations. In this use case, even the in general expensive
hyperparameter optimization was executed on a standard
desktop CPU with a runtime of only around 48 hours.

For the considered use case, we used data from the
(partly) available real prototype to improve an existing
simulation model. This approach is of course not appli-
cable, e.g. during early phases of the development, when
a real demonstrator is not available. However, the pro-
posed method can also be applied based on synthetic data
from another simulation model, e.g. to create a hybrid
surrogate model with improved properties (e.g. computa-
tional performance or memory requirements) compared to
the original model.

Future work will focus, for example, on training and
testing based on a larger data set. In this application, in
particular, a relatively small data set (one maneuver each
for training, testing, and validation) was used to demon-
strate the applicability of the method even with only small
amounts of data, which is common for many industrial ap-
plication fields — especially during protoyping. Further,
we look at ways to further automate parts of development
(e.g. training and batching strategies) to further reduce the
development time of such hybrid models.

Abbreviations

ANN arifical neural network
CS co-simulation

FMI Functional Mock-up Interface

FMU functional mock-up unit

IPB Integrated Power Brake

MAE mean absolute error

ME model-exchange

MSE mean squared error

ODE ordinary differential equation
PeN physics-enhanced neural
PWM pulse-width modulation

UODE universal ordinary differential equation

Funding

This research was partially funded by the following
sources:

* ITEA3-Project UPSIM (Unleash Potentials in Sim-
ulation) No. 19006. For more information, see:
https://www.upsim-project.eu/ (accessed on
12.12.2024).

* ITEA4-Project OpenSCALING (Open standards for
SCALable virtual engineerING and operation) No. 22013.
For more information, see: https://openscaling.
org/ (accessed on 12.12.2024).

The authors thank all those involved for their support in
making our research possible.

Availability of Software, Data and

Model

The software used FMIFIux.jI* is open source on GitHub.
However, the simulation model and the data presented are
not available to the public due to intellectual property. All
data shown was normalized. However, FMIFlux.jl offers
demo applications that are similar to the workflow pre-
sented, and application-specific features, such as learn-
ing of time shifts, are available as part of the open source
repository.

Author Contributions

Conceptualization, T.T., J.F., S.D., M.L.; methodology,
T.T., M.L.; software, T.T.; validation, T.T., S.D.; first-
principle model: S.D.; writing, T.T., S.D., J.F., M.L.; vi-
sualization, T.T., S.D.; All authors have read and agreed
to the published version of the manuscript.

‘https://github.com/ThummeTo/FMIFlux. 1l

582

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218575

https://www.upsim-project.eu/
https://openscaling.org/
https://openscaling.org/
https://github.com/ThummeTo/FMIFlux.jl

Session: Control- and Al-based Methods with FMI for Automotive in Track for Control & Al

References

Bertsch, Christian (2022). FMI 3.0 — The next generation ex-
change format for system simulation beyond tool borders.
Tech. rep. Robert Bosch GmbH. URL: https://www.bosch.
com/stories/fmi-3-0-the-next- generation-exchange-format-
for-system-simulation-beyond-tool-borders/.

Chen, Ricky T. Q. et al. (2018). “Neural Ordinary Differential
Equations”. In: Advances in Neural Information Processing
Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/
2018/ile/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

Chen, Ricky TQ, Brandon Amos, and Maximilian Nickel
(2020). “Learning neural event functions for ordinary differ-
ential equations”. In: arXiv preprint arXiv:2011.03902.

Hofmann, Andreas and Lars Mikelsons (2025). “Towards In-
tegration of PeN-ODEs in a Modelica-based workflow”. In:
16th International Modelica & FMI Conference, Lucerne,
Switzerland, Sep 8-10, 2025. (submitted).

Kingma, Diederik P (2014). “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980.

Li, Lisha et al. (2018). “Hyperband: A novel bandit-based ap-
proach to hyperparameter optimization”. In: Journal of Ma-
chine Learning Research 18.185, pp. 1-52.

Modelica Association (2020-12). Functional Mock-up Interface
for Model Exchange and Co-Simulation. Document version:
2.0.2. Tech. rep. Linkoping: Modelica Association. URL:
https : / / github . com / modelica / fmi - standard / releases /
download/v2.0.2/FMI-Specification-2.0.2.pdf.

Modelica Association (2023-07). Functional Mock-up Interface
Specification. Version 3.0.1. Tech. rep. Modelica Association.
URL: https://fmi-standard.org/docs/3.0.1/.

Rackauckas, Christopher et al. (2021). Universal Differential
Equations for Scientific Machine Learning. arXiv: 2001 .
04385 [cs.LG].

Ramadhan, Ali et al. (2023). Capturing missing physics in cli-
mate model parameterizations using neural differential equa-
tions. arXiv: 2010.12559 [physics.ao—-ph]. URL: https:
/larxiv.org/abs/2010.12559.

Robert Bosch GmbH, ed. (2024). Kraftfahrtechnisches Taschen-
buch. Wiesbaden: Springer Vieweg. ISBN: 978-3-658-44233-
0. por: 10.1007/978-3-658-44233-0. URL: https://link.
springer.com/book/10.1007/978-3-658-44233-0.

Robert Bosch GmbH (2025). Bosch Integrated Power Brake.
https : // www . bosch - mobility. com/en/solutions / driving -
safety/integrated-power-brake/ [Accessed: 04-03-2025].

Sorourifar, Farshud et al. (2023). “Physics-enhanced neural or-
dinary differential equations: application to industrial chem-
ical reaction systems”. In: Industrial & Engineering Chem-
istry Research 62.38, pp. 15563-15577.

Tac, Vahidullah, Francisco Sahli Costabal, and Adrian B. Tepole
(2022). “Data-driven tissue mechanics with polyconvex neu-
ral ordinary differential equations”. In: Computer Methods in
Applied Mechanics and Engineering 398, p. 115248. ISSN:
0045-7825. DOT: https://doi.org/10.1016/j.cma.2022.115248.
URL: https://www.sciencedirect.com/science/article/pii/
S0045782522003838.

Thummerer, Tobias, Artem Kolesnikov, et al. (2023). “Paving
the way for hybrid twins using neural functional mock-up
units”. In: Modelica Conferences, pp. 141-150.

Thummerer, Tobias and Lars Mikelsons (2025). Learnable & In-
terpretable Model Combination in Dynamical Systems Mod-

eling. arXiv: 2406.08093 [cs.LG]. URL: https://arxiv.org/
abs/2406.08093.

Thummerer, Tobias, Lars Mikelsons, and Josef Kircher (2021).
“NeuralFMU: towards structural integration of FMUs into
neural networks”. In: Proceedings of 14th Modelica Confer-
ence 2021, Linkdping, Sweden, September 20-24, 2021. Ed.
by Martin Sjolund et al. ISBN: 978-91-7929-027-6. DOI: 10.
3384/ecp21181297.

Thummerer, Tobias, Johannes Stoljar, and Lars Mikelsons
(2022). “NeuralFMU: Presenting a Workflow for Integrat-
ing Hybrid NeuralODEs into Real-World Applications”.
In: Electronics 11.19. 1SSN: 2079-9292. por: 10 . 3390/
electronics11193202. URL: https://www.mdpi.com/2079-
9292/11/19/3202.

Thummerer, Tobias, Johannes Tintenherr, and Lars Mikelsons
(2021-11). “Hybrid modeling of the human cardiovascular
system using NeuralFMUs”. In: Journal of Physics: Confer-
ence Series 2090.1, p. 012155. por1: 10.1088/1742- 6596/
2090/1/012155. URL: https://dx.doi.org/10.1088/1742-
6596/2090/1/012155.

Xie, Xiang, Ajith Kumar Parlikad, and Ramprakash Srini-
vasan Puri (2019). “A Neural Ordinary Differential Equa-
tions Based Approach for Demand Forecasting within Power
Grid Digital Twins”. In: 2019 IEEE International Conference
on Communications, Control, and Computing Technologies
for Smart Grids (SmartGridComm), pp. 1-6. DOI: 10.1109/
SmartGridComm.2019.8909789.

DOI
10.3384/ecp218575

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

583

https://www.bosch.com/stories/fmi-3-0-the-next-generation-exchange-format-for-system-simulation-beyond-tool-borders/
https://www.bosch.com/stories/fmi-3-0-the-next-generation-exchange-format-for-system-simulation-beyond-tool-borders/
https://www.bosch.com/stories/fmi-3-0-the-next-generation-exchange-format-for-system-simulation-beyond-tool-borders/
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://github.com/modelica/fmi-standard/releases/download/v2.0.2/FMI-Specification-2.0.2.pdf
https://github.com/modelica/fmi-standard/releases/download/v2.0.2/FMI-Specification-2.0.2.pdf
https://fmi-standard.org/docs/3.0.1/
https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/2010.12559
https://arxiv.org/abs/2010.12559
https://arxiv.org/abs/2010.12559
https://doi.org/10.1007/978-3-658-44233-0
https://link.springer.com/book/10.1007/978-3-658-44233-0
https://link.springer.com/book/10.1007/978-3-658-44233-0
https://www.bosch-mobility.com/en/solutions/driving-safety/integrated-power-brake/
https://www.bosch-mobility.com/en/solutions/driving-safety/integrated-power-brake/
https://doi.org/https://doi.org/10.1016/j.cma.2022.115248
https://www.sciencedirect.com/science/article/pii/S0045782522003838
https://www.sciencedirect.com/science/article/pii/S0045782522003838
https://arxiv.org/abs/2406.08093
https://arxiv.org/abs/2406.08093
https://arxiv.org/abs/2406.08093
https://doi.org/10.3384/ecp21181297
https://doi.org/10.3384/ecp21181297
https://doi.org/10.3390/electronics11193202
https://doi.org/10.3390/electronics11193202
https://www.mdpi.com/2079-9292/11/19/3202
https://www.mdpi.com/2079-9292/11/19/3202
https://doi.org/10.1088/1742-6596/2090/1/012155
https://doi.org/10.1088/1742-6596/2090/1/012155
https://dx.doi.org/10.1088/1742-6596/2090/1/012155
https://dx.doi.org/10.1088/1742-6596/2090/1/012155
https://doi.org/10.1109/SmartGridComm.2019.8909789
https://doi.org/10.1109/SmartGridComm.2019.8909789

	Introduction
	Use Case: Bosch Integrated Power Brake
	Functional Mock-up Interface (FMI)
	Neural ODE
	UODE / PeN-ODE
	Preliminary Work

	Method
	Architecture: Learning Input Delay
	Architecture: Bypass Dynamics
	Data Handling

	Experiment
	Data
	Training

	Results & Discussion
	Validation
	Testing

	Conclusion

