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Abstract

This paper proposes a new paradigm of the Embodied
Cyber-Physical System (Embodied CPS, ECPS) to
address the issues of the disconnection between physical
laws and intelligent decision-making and the insufficient
interaction with dynamic environments in the modeling
and simulation of traditional CPS. ECPS achieves
unified modeling of physical laws and autonomous
decision-making through the "perception-decision-
action" closed loop. To verify ECPS, an embodied space
framework based on Modelica/MWorks is designed.
Through three major technological innovations:
constructing an embodied domain modeling specification
and embedding the Navier-Stokes equations into the
training of the policy network; expanding the syntax and
semantics of Modelica, encapsulating physical constraint
reinforcement learning components, and establishing a
gradient interaction protocol between the Physics-
Informed Neural Network (PINN) and Modelica
equations; building a digital twin-hardware-in-the-loop
co-simulation platform based on the FMI/SSP protocol to
establish a collaborative verification link between high-
precision physical simulation and real-time decision-
making. Taking the Unmanned Surface Vehicle (USV)
as the carrier, the full-process method from dynamic
modeling, reinforcement learning strategy training to
virtual-real environment co-simulation is demonstrated.
Experiments verify the effectiveness of this framework
in achieving the closed-loop coupling of physical
simulation and intelligent decision-making under
complex sea conditions, providing a methodological
foundation for interpretable modeling and verifiable
simulation in the development of embodied intelligence.
Keywords: embodied intelligence, embodied domain,
embodied spatial, physical information neural network

1 Introduction

1.1 Background

With the increasing demand for the adaptability of
autonomous systems in dynamic physical environments,
Cyber-Physical Systems (CPS) [ are gradually evolving
towards Embodied Cyber-Physical Systems (Embodied
CPS, ECPS). Its core feature lies in that intelligent agents
need to conduct real-time interactions with the physical
environment through the "perception-decision-action”
closed loop . In the traditional CPS framework,
physical models and intelligent algorithms are often
designed in a segmented way, resulting in bottlenecks
such as the lack of compliance with physical laws and
insufficient dynamic interaction modeling when
intelligent agents are deployed in real environments. For
example, in scenarios where dynamic physical
constraints (such as the torque limitations of robotic arm
joints and the dynamic boundaries of mobile robots)

coexist with high-dimensional environmental
uncertainties (such as the random distribution of
obstacles and multimodal disturbances), existing

methods find it difficult to achieve the deep integration
of physical laws, environmental interactions, and
autonomous decision-making. How to construct a
simulation system with the ternary coupling of "physics-
information-environment" B, and organically unify the
strong constraints of physical laws with the data-driven
environmental adaptability has become the core
challenge in the development of embodied intelligence
systems.

1.2 Related Work

In terms of ECPS simulation methods, current research
presents two typical paths: One is based on the Modelica
multi-domain modeling tool (such as MWORKS), which
accurately describes the constitutive relations of physical
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systems through acausal equations. However, in terms of
the deep integration of the intelligent decision-making
layer and the deep learning framework, it is still limited
by the difficult problem of collaborative solving of
discrete-continuous systems. The other is to adopt the
Physics-Informed Neural Network (PINN) [“. By
embedding physical laws such as the Navier-Stokes
equations into the neural network training process
through the residual constraints of differential equations,
it demonstrates the advantage of following physical
constraints in embodied intelligence scenarios such as
fluid mechanics prediction and robotic motion control. It
is worth noting that recent research attempts to integrate
PINN with Modelica ], and realizes the co-simulation of
the neural network model and the multi-domain physical
model through the Functional Mock-up Interface (FMI)
standard. However, there is still a lack of standardized
protocols in key technical aspects such as the gradient
backpropagation mechanism and the alignment of spatio-
temporal scales between the two. Overall, the
development of current ECPS simulation tools is still in
the exploratory stage. Existing research generally faces
three major bottlenecks: the lack of a semantic-level
integration mechanism between physical equations and
data-driven models; the insufficient standardization of
the protocol stack for real-time interaction between
heterogeneous  simulation  platforms; and the
contradiction between the efficiency and interpretability
of the representation of the embodied space in a high-
dimensional dynamic environment.

1.3 Challenges

The core challenges of ECPS simulation are as follows:

It is difficult to couple multi domain models: the
traditional Modelica standard library lacks a specific
agent interface, and cannot uniformly describe the real-
time interaction between physical equations (such as ship
dynamics) and intelligent algorithms (such as DRL) 61,
Physical constraints are separated from intelligent
decision-making: data-driven methods are easy to
generate actions that violate physical laws (such as
exceeding the safety threshold of roll angle), while
traditional control theory is difficult to deal with high-
dimensional environmental uncertainty; Lack of virtual
and real collaborative verification system: the existing
tool chain (such as Gazebo+ROS) " has a gap between
the physical simulation accuracy (microsecond step size)
and the efficiency of intelligent algorithm (millisecond
response), and lacks standardized interface protocol.

1.4 Proposed Approach

In response to the above challenges, this paper proposes
an ECPS simulation framework based on the embodied
space, and achieves methodological breakthroughs
through a three-level technical path. With the modeling
specification of the embodied domain as the technical

language to define standardized interaction interfaces
(such as sensors/actuators) and physical constraint
description grammars, and supports the semantic-level
integration of complex physical models such as the six-
degree-of-freedom dynamics of ships and reinforcement
learning strategies. Relying on the embodied space
architecture, a collaborative simulation link of "physical
domain (high-precision fluid mechanics equations) -
information domain (DRL decision-making) - embodied
domain (PINN gradient interaction)" is constructed. The
constraints of the Navier-Stokes equations are embedded
in the strategy training through the PINN-Modelica
protocol to ensure that intelligent decisions strictly
follow the physical boundaries. Based on the FMI/SSP
protocol, multi-time scale scheduling (1ms-level physical
simulation/10ms-level decision-making) is realized. In
combination with ROS/Unity, the co-verification of
virtual and real environments is achieved, providing a
methodological paradigm for the engineering of ECPS in
dynamic environments.

2 Methodology

2.1 Modelica Modeling Specification for the
Embodied Domain

To meet the needs of intelligent design for modern
autonomous systems and address the issues of
insufficient intelligence in traditional cyber-physical
integration systems and weak theoretical constraints of
intelligent algorithms, this paper constructs a three-tier
technical system for the Modelica modeling specification
of the embodied domain: forming the embodied domain
specification based on the extensible syntax and
semantics of Modelica; constructing a verification
protocol stack for virtual and real systems based on API
interfaces, the FMI standard, and the SSP protocol; and
building a physical-intelligence integration engine based
on the PINN-Modelica gradient interaction protocol.
This specification incorporates intelligent considerations
on the basis of the physical domain and the information
domain to achieve the unification of physical laws and
autonomous decision-making. On the one hand, by
utilizing the extensible syntax and semantics of Modelica,
a general modeling specification and architecture for
embodied entities are formed. The model components of
different objects are standardized, and generalized
models of general autonomous systems such as
autonomous vehicles and unmanned surface vehicles are
constructed. This provides theoretical constraint
boundaries for the embodied data training of various
unmanned systems and scenario working conditions, and
is verified in real time through the physics-informed
neural network, breaking through the collaborative
bottleneck between semantic ambiguity and physical
compliance. On the other hand, based on the PINN-DRL
architecture, physical laws such as the Navier-Stokes
equations are embedded in the neural network training.

foundation, this framework expands the Modelica
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Through the regularization constraints of physical
equations, the model not only fits the data but also
follows physical laws, thereby improving generalization
ability, data efficiency, and interpretability of time
decision-making in dynamic environment.

2.2 Extension Specification for Modelica

Embodied Domains

Traditional engineering often faces problems such as
poor compatibility of heterogeneous interface protocols,
discretization of physical constraint description, and
difficulty in cross domain simulation coupling, resulting
in low efficiency of agent modeling and limited
simulation credibility. Although the Modelica standard
library can solve the unified modeling and simulation
problems in many fields, such as Electromechanical,
hydraulic and thermal control, it lacks standardized
support for perception action closed-loop, real-time
physical constraints and intelligent strategy fusion, and
cannot realize the deep coupling between the agent and
the physical environment. It is difficult to cope with the
rapid development of embodied intelligence in the fields
of robots, unmanned systems and so on.

can switch autonomously according to demand. The
information domain includes reinforcement learning
strategies and neural network reductions, achieving
closed-loop optimization of physical laws and
autonomous decision-making. The embodied domain is
responsible for the environmental interaction capabilities
of the entire embodied space, including communication,
3D visual scenes, external devices, etc. The various parts
are connected through the embodiment domain language
extension, achieving a technical closed loop of
"perception-decision-action".

Therefore, in order to support the formal modeling of
embodied agents and improve the modeling ability of
complex systems, it has three core functional modules:
standardized interaction framework: defining the base
class and open interface of embodied agents, unifying
the sensor actuator communication standard and
reducing the amount of hardware adaptation code.
Integration of physical intelligence: innovative
introduction of PINN hybrid modeling syntax and
physical constraint reinforcement learning library to
optimize Al strategy in strict accordance with dynamic
laws. Multi domain collaborative support: define

Embodied Cyber-Physical Systems
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Figure 1. Embodied Cyber-Physical Systems.

The embodied cyber-physical system consists of three
parts: the physical domain, the information domain, and
the embodied domain. The physical domain includes
various embodied intelligent agents, such as autonomous
vehicles, unmanned ships, drones, robots, robotic arms,

Modelica general standard interface based on API
interface or communication protocol to realize the
coupling simulation of control logic, physical model and
environmental factors under a unified time base.
Specifically, this specification extends the following
syntax for Modelica language:

robotic dogs, and so on. Embodied intelligent agents e add the embodied keyword to support the
satisfy the concept of Modelica replaceable classes and declaration of embodied agents.
DOI Proceedings of the 16 International Modelica&FMI Conference 593
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The traditional Modelica modeling is centered on
physical entities and lacks the explicit expression of the
cognitive behavioral characteristics of agents. The
embodied keyword is realized through the reconstruction
of the syntax layer:

1. Ontology mapping: forcibly declare the interfaces
of perceptual input and action output, so that the
code structure is strictly isomorphic with the
perceptual action cycle of embodied intelligence.

2. Quantification of cognitive delay: by using
cognitivedelay and other built-in parameters, the
biologically inspired nerve conduction delay (about
50-200ms) is incorporated into the dynamic
equation to avoid the distortion problem that the
control delay is simplified to the ideal zero delay in
the traditional modeling.

3. Constraint prefix declaration: physical constraints
are required to be declared through constraint
blocks at the agent definition stage to ensure that
subsequent control strategy development naturally
meets the physical feasibility.

The extension syntax is as follows:

Listing 1. Embodied keyword

embodied <AgentName>
extends <BaseClassName>;
parameter <Type> <paramName> =
<value> "Description";
input <Type> <sensorName>[N] ";
output <Type> <actuatorName>[M];
replaceable
<PolicyPackage>.<Algorithm> policy
constrainedby EmbodiedPolicyInterface;
constraint <ConstraintType>
<constraintName>
equation
<equation>;
end <AgentName>;

e physical constraint fusion modeling, introducing the
physical constraint description equation, allowing
the PINN prediction results to be embedded in the
Modelica model.

Traditional physical modeling and data-driven modeling

have been separated for a long time, mainly in the

following aspects:

1.  White box model dilemma: pure physical equations
are difficult to accurately describe complex
nonlinear phenomena (such as turbulence and
material fatigue), and the error of traditional Navier
Stokes equations in a ship motion case is significant.

2. Black box model risk: the pure neural network
prediction may violate the law of conservation of
physics, and the non-conservation of energy in the
trajectory prediction of a manipulator leads to
simulation collapse.

The differential equation level fusion of physical

equations and neural networks is realized through the

PINN interface syntax. The extended syntax includes:

Listing 2. PINN interface

equation
<OutputVariable> = PINN _Interface(
inputs = {<InputVariablel>,
<InputVariable2>, ...},
modelFile = "pinn_model.onnx")
<PhysicalVariable> = <PhysicsEquation>
+ PINN_CorrectionTerm ;

e  physical constraint Reinforcement Learning Library.
Develop physical component library and provide DRL
algorithm with physical residual regularization (such as
PPO Physics). Its loss function is defined as:

=a- +B-1 ()= O)IP 6]
Define DRL algorithm class with physical constraints.
Take PPO physics algorithm as an example:

Listing 3. PPO physics

package PhysicsRL
model PPO_Physics
extends DRL.BasePPO,;
parameter Real lambda_physics = 0.5 ;
protected
function compute loss
input Real[:,:] trajectories;
input PhysicalModel physics_model;
output Real total loss;
algorithm
Real policy loss =
compute_policy loss(trajectories);
Real value loss :=
compute value loss(trajectories);
Real physics_residual :=
physics_model.evaluate residual(
states = trajectories[:,1:state_dim],
actions =
trajectories[:,state_dim+1:end]);
total loss := policy loss + value loss +
lambda_physics * physics_residual™2;
end compute loss;
end PPO_Physics;
end PhysicsRL;

The specification provides the underlying support for
industrial 4.0 core scenarios such as digital twins and
agent group collaboration, and promotes the leap of
embodied intelligence from theoretical verification to
engineering implementation.

The embodied space architecture based on Modelica

mainly includes four core modules:

¢  Physical domain modeling layer: build a 6-DOF
ship dynamics model based on
Modelica/MultiBody, integrate wave disturbance
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Figure 2. Embodied space architecture diagram based on Modelica.

(JONSWAP spectrum generator) and propulsion
system (propeller actuator joint model);

e  Embodied domain interface layer: extend Modelica
language to define the embodied agent base class,
support sensor actuator interface (SSP protocol) and
physical constraint description syntax;

e  Information domain decision-making layer: call the
DRL policy network implemented by PyTorch
through Python Modelica bidirectional interface
(FMI standard) to dynamically generate control
instructions;

e Virtual and real collaborative verification layer:
build a high fidelity marine virtual environment
based on unity engine, and realize millisecond data
synchronization with Modelica simulation through
DDS (data distribution service).

2.3 Modelica Embodied Space Architecture

2.3.1Technical route

Traditional engineering often faces problems such as The
main design idea of the embodied space based on
Modelica is to achieve the two-way cognitive coupling
between intelligent agents and the dynamic environment
through the physical-information fusion mechanism,
forming a three-layer architecture of "physical entity-
digital twin-embodied intelligence". For different
physical entities of autonomous systems, a system model
and control algorithm are constructed based on the multi-
disciplinary unified modeling software
MWORKS.Sysplorer to achieve a control closed loop
between the system model and the control algorithm. A
visualization environment for the autonomous system is
built based on the Unity 3D virtual engine to form a
digital prototype of the autonomous system. Based on

the virtual-real collaborative verification protocol stack
of API interfaces, the SSP protocol, and the FMI
standard, a unified solution architecture for physical
models and autonomous decision-making algorithms is
realized, breaking down the barriers between the virtual
world and the physical world, expanding the boundary
conditions of the digital prototype, and enhancing the
ability of the physical entities of the autonomous system
to learn independently and adapt to complex
environments, thus forming a digital twin in the
embodied space. Based on the PINN-Modelica gradient
interaction protocol, an embodied intelligence training
environment is added on the basis of the digital twin of
the autonomous system, integrating key technologies
such as perception fusion and decision-making reasoning
to improve the intelligent characteristics of the embodied
entity. The overall technical roadmap and framework
diagram of the embodied space are as shown in the
figure 2.

2.3.2Implementation framework

The embodied space architecture based on Modelica

mainly includes four core modules, as shown in the

figure 3:

¢  Physical domain modeling layer: build a 6-DOF
ship dynamics model based on
Modelica/MultiBody, integrate wave disturbance
(JONSWAP spectrum generator) and propulsion
system (propeller actuator joint model);

¢  Embodied domain interface layer: extend Modelica
language to define the embodied agent base class,
support sensor actuator interface (SSP protocol) and
physical constraint description syntax;
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e  Information domain decision-making layer: call the
DRL policy network implemented by PyTorch
through Python Modelica bidirectional interface
(FMI standard) to dynamically generate control
instructions;

e Virtual and real collaborative verification layer:
build a high fidelity marine virtual environment
based on unity engine, and realize millisecond data
synchronization with Modelica simulation through
DDS (data distribution service).
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Figure 3. PINN enhanced DRL framework.

2.3.3Virtual-Physical Co-Simulation Protocol Stack

The virtual real collaborative verification protocol stack
of embodied space is the core module to realize the
system integration and co-simulation of embodied
information physical system. On the one hand, the
virtual real collaborative verification protocol stack can
organically integrate the digital sample ship and
intelligent algorithm to form an intelligent ship model
for virtual simulation verification; On the other hand, the
virtual and real collaborative verification protocol can
complete the data interaction between the virtual model
and the physical ship, forming the virtual and real
collaborative verification of unmanned ship.

1.  Cross-Platform Interface Design.

The interface design of embodied information physical
system needs to consider three levels of platform data
interaction: physical modeling system, virtual training

the virtual environment interface is formed for the
physical simulation interface, and the theoretical
calculation is introduced as the constraint boundary in
the three-dimensional visual environment and the large
data sample training environment, so as to form a
decision-making strategy model suitable for the actual
unmanned ship. For the physical deployment
environment of unmanned ship, the strategy deployment
interface is constructed, and the algorithm model of
rapid deployment training is completed, so as to realize
the virtual real combination of unmanned ship and build
a complete unmanned ship body space.

Physical simulation interface: a collaborative simulation
interface for building physical models based on the
MWORKS platform API interface or the general
communication protocol standard. By analyzing the
differential algebraic equation (DAE) generated by
Modelica multi domain unified modeling language, the
6-DOF model of the unmanned ship can realize data
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interaction on different platforms, and finally realize the
decoupling deployment of the physical simulation unit.
Through the topology description file based on the
physical simulation interface, the port connection
relationship and parameter metadata are automatically
maintained, which significantly reduces the repeated
modeling cost of data collaboration.

Virtual environment interface: Based on the ROS2
distributed  communication  framework, develop
customized TCPN (timed colored Petri net) plug-in to
build a deterministic data channel. The high fidelity 3D
visualization model is embedded in unity virtual
environment, and the status synchronization with
Physical model of unmanned ship is realized through
ROS2-TCPN middleware. A 10ms fixed cycle hard real-
time communication link is established.

Policy deployment interface: build Al policy deployment
interface based on ONNX (Open Neural Network
Exchange) open format. After compatibility check and
optimization, the deep reinforcement learning strategy
network trained by PyTorch/TensorFlow is transformed
into a lightweight ONNX model. By integrating the
ONNX algorithm engine, the end-to-end reasoning
strategy deployment is realized on embedded controllers
(such as NVIDIA Jetson AgX Xavier), which meets the
real-time control requirements of edge devices under
complex conditions.

2. Multi-Temporal Scheduling Mechanism.

The interface design of embodied information physical
system under different platform levels and scenarios, the
interface scheduling frequency is different, so it is
necessary to add multi time scale scheduling module to
the virtual and real collaborative verification protocol
stack, including hard real-time layer, soft real-time layer
and asynchronous event layer.

Hard real-time layer (1ms level): the hard real-time layer
refers to building a real-time unmanned ship system
model based on Modelica in the physical modeling
system platform, and using the DAE (Differential
Algebraic Equation) implicit solution algorithm to deal
with the coupling effect between the six degree of
freedom motion of the unmanned ship rigid body and
fluid viscosity. By introducing variable step size
integration algorithm or fixed step size integration
algorithm, the real-time simulation control is realized on
FPGA hardware accelerator card, which provides the
bottom constraint boundary for the UAV body space
frame.

Soft real-time layer (10ms level): soft real-time layer
refers to the realization of data interaction between
virtual environment and unmanned ship digital model
based on virtual environment interface when intelligent
strategy  algorithm reasoning and 3D  Virtual
Environment Rendering of unmanned ship are carried
out in virtual environment platform. The soft real-time
layer has no real-time requirements for the embodied

space frame, and its overall delay is stably controlled
within 10ms.

Asynchronous event layer: when unmanned ships handle
discrete events such as obstacle generation and task reset,
it is necessary to design event driven architecture (EDA)
to design discrete event processing mechanism to realize
decoupling scheduling of aperiodic operations such as
obstacle generation and task reset.

3 Case Study: Intelligent USV
3.1 Case Architecture Design

The embodied domain, as an intermediary layer between
the physical domain and the information domain,
realizes the deep integration of physical laws and
information algorithms through the dynamic perception
and adaptive decision - making of embodied agents. The
experimental case selects the FEmbodied Space
Simulation Platform on MoHub (https://mohub.net/).
This platform is built based on MWORKS and is a
comprehensive artificial intelligence platform focusing
on embodied space modeling, unmanned system
modeling, and simulation testing. Through the
integration of multiple spaces and the collaboration of
modular engines, it achieves a full - link closed - loop of
the physical domain - embodied domain - information
domain.

In this case, the USV - 130 unmanned surface vehicle is
taken as the research object. Aiming at its navigation and
obstacle - avoidance problems during rescue and search
operations under uncertain conditions, an embodied
intelligence modeling and training framework based on
the MWORKS platform and PINN is proposed. Through
modeling, simulation, and experimental verification,
PINN is used to provide kinematic and dynamic
constraints that conform to physical laws for the obstacle
- avoidance algorithm. The influence of three
environmental factors, namely wind, waves, and currents,
is considered, and the calculation of the corresponding
disturbing forces and torques is added to the motion
mathematical model to make the algorithm simulation
more consistent with reality.

3.2 Implementation of Embodied Domain
Modeling

In the modeling and simulation of unmanned surface
vehicles, high - precision hydrodynamic modeling is a
key challenge for achieving the "simulation - to - reality"
transfer. Traditional fluid resistance prediction methods

based on empirical formulas, due to simplified
assumptions, struggle to accurately describe the
nonlinear  hydrodynamic  behavior in  complex

environments. In this case, PINN (Physics - Informed
Neural Network) is introduced. By integrating the Navier
- Stokes equations with measured flow field data, a data
- physics dual - driven fluid resistance prediction model
is constructed. In the MoHub Embodied Space
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Simulation Platform, this method has established a multi
- scale hydrodynamic calculation framework. At the
macroscopic level, the fluid motion control equations are
embedded as soft constraints, and at the microscopic
level, the data from the pressure sensors on the hull
surface are used to optimize the network parameters.
This hybrid modeling approach significantly improves
the calculation accuracy of complex flow states, reduces
the error in the hull resistance characteristics between the
virtual and real environments. Moreover, by encoding
the spatio - temporal coupling characteristics of the wind,
wave, and current disturbance fields into the input
dimensions of PINN, the real - time calculation of
dynamic environmental disturbance forces is realized,
providing a basis for the physically reliable training of
motion control algorithms.

3.2.1Physical Domain Modeling

USV130 is an intelligent unmanned surface vehicle
specially designed for scientific research and education.
It integrates multi-source sensing system and has
intelligent control modules such as speed and heading
locking cruise, autonomous return path planning and
obstacle avoidance. The main structure of the equipment
is made of glass fiber composite materials. The whole
ship is 1.3m (L) x 0.64M (W). It is equipped with a dual
water jet propulsion system to achieve mobile control.
The technical parameters show that its navigation
performance includes: 18 cm working draft, 4 m/s peak
speed, and 5 m minimum radius of gyration. The
propulsion system can support high-precision motion
control in complex hydrological environment. As shown
in the following figure 3.

Figure 3. Physical Image of USV130 Unmanned Submarine
USV130 is equipped with Ubuntu 20.04 operating
system and ROS noetic robot framework, and the
underlying motion control adopts PID algorithm. The
driving system supports multimodal operation: it can be
controlled by the physical remote-control device, the
upper computer software and the handle linkage or
executed by the autonomous command based on the
algorithm. The communication system is equipped with
a dedicated base station to achieve stable data
transmission with an effective radius of 200 meters.

The physical parameters required to build the unmanned
ship are as follows:

Table 1. USV130 partial physical parameter table.

physical parameter

Hull mass 30kg
Total length 1.3m
Geometric center 0.45m
Total width 0.64m
Hull width 0.27m
Draft 0.18m

3.2.2 Physics-Information Modeling

In this case, a dynamic model based on MWORKS
platform is constructed to describe the motion behavior
of the unmanned ship under complex hydrodynamic
conditions. The dynamic model framework is divided
into three parts: dynamic modeling framework, dynamic
formula framework and additional mass matrix Mv
framework.

e Dynamic equation modeling: the three degree of
freedom dynamic equation of the system includes
longitudinal velocity, lateral velocity and yaw
angular velocity. The specific expression is as
follows.

+ (Jv+ (=1 )

Where, is the mass matrix, ( ) is the Coriolis force

matrix, ( ) is the resistance matrix, and T is the control

input generated by the water jet propulsion system.

e Adaptive backstepping controller:

1. Speed control: realize the stable control of
longitudinal speed through feedback linearization,
and introduce adaptive compensation term to
eliminate the uncertainty of resistance.

2. Heading control: Lyapunov function is designed to
ensure heading error convergence. The controller
expression is as follows:

=1 * 2 (3

Where, is heading error and is yaw rate.

3. Adaptive parameter estimation.

The adaptive law is introduced to estimate the resistance

coefficient and added mass online, and compensate the

uncertain disturbance of the system in real time to ensure
the robustness and stability of the control system.

4. Improvement of integrated PINN.

In order to further improve the ability of the model to

follow the physical laws, the physical information neural

network (PINN) can be combined with the unmanned
ship dynamics model. The Navier Stokes equation is
embedded into the neural network as a physical
constraint, and the PINN interface is introduced into the
Modelica model to modify the hydrodynamic term in the

598

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218591



Session: Control- and Al-based Methods with FMI for Automotive in Track for Control & Al

dynamic equation of the unmanned ship, so that the
model can strictly follow the hydrodynamic law while
learning the data.

The core of the modeling framework of the dynamic
model is to integrate the physical parameters and
dynamic characteristics of the unmanned ship. The
dynamic equation takes the force and motion state of the
hull as the core, and calculates the motion response of
the unmanned ship through moment balance. The
framework contains the following key inputs:

e physical parameters.

Mass: including the influence of load change on the
inertial characteristics of the hull.

Geometric center (LCG): describes the longitudinal
position of the center of gravity of the hull.

Drag coefficient (CD) and water density (p): affect the
hydrodynamic characteristics of unmanned ships.

Hull size parameters: including length (L), draft (T), and
hull width (Bhull).

e  function and modeling of hydrodynamic coefficient.
Hydrodynamic coefficients (HC) are the key parameters
connecting hydrodynamic characteristics and motion
equations, and their accuracy directly affects the
prediction ability of the simulation model. For the
catamaran USV, the hydrodynamic coefficients are
divided into linear and nonlinear categories: linear
damping coefficient (such as) represents the viscous
resistance at low speed; The nonlinear damping
coefficient (such as) describes the resistance
characteristics dominated by the square term of speed
under high-speed conditions. In addition, the additional
mass coefficient (such as) reflects the inertial effect of
the surrounding fluid when the hull accelerates.

3.3 Embodied Domain Simulation Analysis

After constructing the physical model of the unmanned
ship based on the MWORKS.Sysplorer platform and
implementing the virtual-real collaborative verification
protocol stack based on the ROS framework, by
randomly setting routes and obstacles, multi-level and
multi-scenario data simulation can be carried out within
the embodied space. The simulation data can further
improve the training samples, enabling the self-
improvement and autonomous learning of the PINN
algorithm.

Environmental factors are one of the main factors that
separate the unmanned ship model from the actual
unmanned ship. By setting dynamic environmental
parameters in the virtual environment engine, the ROS
framework can transform the perception of disturbance
factors such as wind, waves, and currents, achieving the
deep coupling between the additional disturbances of the
dynamic environment and the physical model of the
unmanned ship. This adds physical boundary constraints
on the basis of the real embodied training environment.
The figure 4 below shows the disturbances transmitted to

the physical model of the unmanned ship through the
ROS framework.

FRERIREN

—— [2] uSV130_3DOF_Dynamic_Model.disturbX
— [2] uSV130_3DOF_Dynamic_Model.disturby

Figure 4. Dynamic Environmental Disturbances of the
Unmanned Ship

After setting the route, the entire unmanned ship
automatically locates its current position and the target
route landmarks. It conducts navigation control by
adopting the approach of global path planning and local
obstacle avoidance, thus achieving the automatic
navigation of the unmanned ship. After the simulation
runs, the path changes of the unmanned ship in the
dynamic environment can be observed, as shown in the
figure 5 below.

FABHRRBIEE

—— uSV130_3DOF_Dynamic_Model.n_globall1]

= S
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uSV130_3DOF Dynamic_Model.n_global[2]

Figure 5. Response Path of the Unmanned Ship

3.4 Simulation Training in the Embodied
Space

Traditional physical - based modeling methods have
always been unable to clearly describe the hydrodynamic
laws of the unmanned ship system. To achieve more
accurate virtual - real collaborative verification, the
Physics - Informed Neural Network (PINN) is
introduced. It corrects the additional hydrodynamic
effects in the unmanned ship system, further enhancing
the model's ability to follow physical laws and adapt to
dynamic environments, and ensuring the accuracy and
reliability of the simulation results.

3.4.1 Hydrodynamic Laws

e Navier - Stokes Equation

The N-S equation, as the governing equation for
describing the motion of viscous fluids, has its
conservation form embedded in the loss function of the
Physics - Informed Neural Network (PINN):
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(C)
By forcing the prediction results of the neural network to
minimize the equation residuals, it ensures that the flow
field predictions (such as the flow velocity around the
hull and the pressure distribution) conform to the
principles of viscous fluid mechanics.

e Added Mass Effect

Based on potential flow theory, the inertial effect of the
surrounding fluid when the hull accelerates is calculated
as follows:

= C. ) O]
The added mass coefficients are determined by empirical
formulas based on the hull's geometric parameters,
reflecting the coupling characteristics of the hull shape
on the fluid inertial response.
e Nonlinear Viscous Resistance Model
A resistance decomposition dominated by the velocity -
squared term is adopted:

O
Hil 0 0

0 gl b+ [ | +

The longitudinal resistance coefficient ( { | |}) s
calibrated according to the wetted surface area of the hull
and the Reynolds number, and the lateral/rotational
damping coefficients ( { | }, ) are fitted from the
ship model towing test data.

Coriolis - Centrifugal Force Coupling Effect

It is explicitly expressed in the hull motion equation as:

)

(6)

0 0 e + )
= 0 0 ( -) @)
«c +) —C =) 0
where (X , ) is the position of the center of gravity,

which directly affects the dynamic coupling of the roll -
yaw motion.

3.4.2 Application of the PINN Algorithm

e PINN - corrected Resistance Prediction
Since the traditional resistance model has significant
errors in turbulent flow conditions, for the calculation of
the fluid resistance of the unmanned ship, the N - S
equation is embedded as a soft constraint in the PINN
algorithm for training, and a hybrid resistance model is
constructed as follows:

()= ()+ ()
e Dynamic Compensation of Added Mass
Considering that the added mass coefficient of the
unmanned ship changes with the draft (load fluctuations
cause the draft to change by £10 c¢cm), a PINN surrogate
model = (, ) is established for real - time
online estimation:
e  Fluid - Motion Coupling Decision - making

®)

Traditional DRL strategies tend to generate actions
beyond the feasible domain of fluid dynamics (for
example, a sharp turn causing the lateral velocity to
exceed the limit). Therefore, it is necessary to introduce
a fluid - constraint reward term in the PPO algorithm:

== -nd = )-mwnar
> )

and calculate the gradient penalty of the Navier - Stokes
equation on the policy parameters through automatic
differentiation.
e Wave Disturbance Modeling
Considering the phase lag of the heave/pitch excitation
force generated by the JONSWAP wave spectrum, a
wave force transfer function is established based on
potential flow theory:

= () ()

—o00

(10)

Where is calculated by the hull strip theory, and ( )
is the wave spectrum density.

3.4.3Deployment and Operation of the Unmanned
Ship System

In the deployment and operation phase, the preset water
scene and the digital prototype of the ship are loaded
based on the unity virtual simulation environment, and
the sensor data stream (lidar, visual camera) and physical
engine parameters are bound through the ROS-TCP
communication protocol; Start the obstacle avoidance
algorithm node within the ROS framework, load the pre
trained PPO/TD3 reinforcement learning model and
supervised learning strategy, and run MWORKS
Sysplorer carries out ship dynamics calculation; The
motion control module drives the digital sample ship
model according to the real-time decision-making
instructions (path planning, obstacle avoidance angular
speed), and feeds back the ship position and attitude,
environment interaction status to the simulation interface
through ROS Topic; Finally, a real-time closed loop of
"perceptual data acquisition - algorithm online reasoning
- control instruction execution - physical state return" is
formed. During operation, the system supports dynamic
adjustment of environmental parameters (wind wave
current intensity, obstacle distribution), and continuously
optimizes the strategy network through PyTorch's online
learning mechanism to ensure the autonomous
navigation robustness and task adaptability of unmanned
craft in complex scenes.

AAURURES ‘e

Figure 6. Digital prototype and physical prototype
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4 Conclusion

This study proposes an innovative framework of
embodied information physical system (ECPS) based on
Modelica/ MWORKS, and constructs a "physical
information embodied" ternary collaborative architecture
through the extension of modeling language, which
breaks through the separation limitations of physical
laws and intelligent decision-making in traditional tools.
The framework innovatively integrates the physical
information neural network and multi domain modeling
theory, and realizes the deep coupling of physical
simulation and autonomous decision-making in the field
of intelligent unmanned system. By constructing the
reinforcement learning paradigm enhanced by PINN, the
fluid dynamics equation constraint is embedded in the
strategy network training, which significantly improves
the ability of the agent to follow the physical laws;
Relying on the FMI/SSP standardized protocol, a virtual
and real collaborative verification system is built to
effectively solve the timing conflict between high-
precision simulation and real-time decision-making. The
research results provide an integrated methodology of
interpretable modeling, verifiable decision-making and
scalable deployment for the upgrading of industrial
intelligence, promote the leap of embodied intelligence
from  theoretical  verification to  engineering
implementation, and establish a new benchmark for the
development of independent systems in the era of digital
transformation.
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