
On the precise and efficient representation
of industrial controllers in Modelica

Alberto Leva1

1DEIB, Politecnico di Milano, Italy alberto.leva@polimi.it

Abstract
This paper highlights some still-open issues in the Mod-
elica representation of industrial controllers, particularly
when simulation efficiency must balance with fidelity to
their real-world implementation as digital components of
cyber-physical systems. The treatise focuses on PID con-
trollers due to their predominant role, though the ideas
readily extend to virtually any other control structure. The
aim is to stimulate discussion around this important yet of-
ten overlooked topic, while also suggesting directions for
future development.
Keywords: Modelica, industrial controllers, PID con-
trollers, digital control, digital twins, cyber-physical sys-
tems.

1 Introduction
Over the last decades, the Modelica ecosystem has grown
to embrace a wide range of domains where control sys-
tems play a fundamental role. In many of those do-
mains – process systems being a notable example – control
blocks are combined to form articulated structures (Sko-
gestad 2023). These structures are then deployed onto
heterogeneous hardware/software architectures, resulting
in complex cyber-physical systems. The realistic simu-
lation of such systems is still a non completely solved
open problem, as conventional “textbook” controller mod-
els fall short in terms of completeness, flexibility, and – if
fidelity in the digital part matters – of computational effi-
ciency (Cimino et al. 2023).

In the following we discuss the problem just evidenced,
referring to the PID controller due to its generality and dif-
fusion — though the underlying ideas are evidently gen-
eral. After the brief motivating example in Section 2, Sec-
tion 3 deals with completeness, illustrating the I/O struc-
ture required to manage a control block in a realistic appli-
cation setting; Section 4 describes the various forms that
a linear (PID) control law can take, while Section 5 ad-
dresses nonlinear functionalities like saturation manage-
ment and shows how differently they can be realised.

The compound of the above should give the reader an
idea of how flexible a controller model should be in or-
der to put the analyst in the position of representing what
will be really implemented, precisely enough and with an
acceptable effort. Section 6 spends just a very few words
on the important problem of simulating a control block

accounting for its digital realisation, i.e., of balancing fi-
delity with computational efficiency. Finally, Section ??
draws some conclusions and sketches out the desired ef-
fects of the discussion we aim to trigger.

Throughout the paper, key design decisions are high-
lighted. While some recommendations are offered, no
definitive solutions are proposed, as the complexity and
criticality of the overall problem make it difficult to pre-
dict the long-term consequences of present choices. The
aim of this work, as just said, is in fact primarily to foster
informed discussion within the community, so as to pro-
mote thoughtful and effective decisions going forward.

2 A motivating example
First of all, before entering the problem, the reader might
ask whether we really need to bother. The answer could
take more than one paper, but suffice a toy example. Con-
sider a control loop with a process and a PI controller, re-
spectively described by

P(s) =
µ

(1+ sT1)(1+ sT2)
, C(s) = K

(
1+

1
sTi

)
(1)

with µ = 2, T1 = 2, T2 = 0.25, K = 2, Ti = 2. Build
for it five simulation models, all fully continuous-time,
with different antiwindup strategies: actuation error feed-
back, also known as integral recomputation, with track-
ing time Tt (denoted by aerr1 for Tt = 2.5 and aerr2
for Tt = 0.5); conditional integration (denoted by cint);
clamping (clamp), internal feedback (ifb).

In the absence of saturation all models behave exactly
the same, as expected; we omit plots for brevity. We con-
versely show in Figure 1 what happens of the controlled
variable (PV_*) vs. the set point (ref) and of the con-
trol signal (CS_*) in the presence of [0,1] saturation. It
is evident that realism requires the simulated antiwindup
mechanism to match the implemented one.

Antiwindup aside, several PID functionalities are man-
aged by industry-standard controllers in heterogeneous
ways, often involving additional inputs and outputs, both
modulating and logic, with respect to the minimal inter-
face of a controller. And to top, all of the above inter-
twines with the form chosen for the PID control law, as
well as with its realisation as digital algorithm.

Summing up, if industrial realism is required, there is
no single “reference” controller model implementation —

DOI Proceedings of the 16th International Modelica&FMI Conference 603
10.3384/ecp218603 September 8-10, 2025, Lucerne, Switzerland

RRR

Figure 1. Motivating example: set point and controlled variable
(top), control signal (bottom).

but at the same time, attempting to replicate the whole zoo
of available products would not be practical. Indeed, a
systematic design approach needs devising.

3 Interface and functionalities
Figure 2 illustrates a typical set of I/O signals for an indus-
trial (PID) controller, adopting the Modelica colour cod-
ing, together with a brief description of their meaning.
These signals refer to functionalities that are crucial for
using PIDs in control structures; a few examples follow.

First, without a Bias input one cannot realise feedfor-
ward compensation, decoupling, or any structure where
the output of a controller must receive an additive correc-
tion, as failure to account for that correction in the compu-
tation of the controller state may cause highly undesired
behaviours. A notable case is backward decoupling, il-
lustrated in Figure 3 by comparing the “textbook” model
(top) and one in which the additive correction is duly in-
troduced upstream saturation management (bottom).

Second, one cannot manage saturation in cascade con-
trols without increment and decrement locks, as the satu-
ration values for the inner controller come from the actu-
ator, while those for the outer controller are substantially
unknown. Assuming all gains positive for simplicity, one
has to respectively connect the HI and LO saturation sig-
nals from the inner controller to the increment and decre-
ment locks F+ and F- of the outer controller, so as to pre-
vent it from pushing the inner one further into saturation
if this occurs.

Third, and again about cascade controls, if the inner
controller is set to tracking mode, the outer one must be
forced into tracking as well. More in general, whenever
a modulating control block is set to operate in any mode
but automatic, all the blocks whose loops are consequently
open cannot be in automatic mode (particularly if they are
not asymptotically stable, as is the case when integral ac-
tion is present). Enforcing this constraint requires logics
to conveniently manipulate the TS and TR signals of the

involved blocks. Figure 4, where the notation should be
self-explanatory, provides an example of how the second
and third point can be handled; variants are possible but
discussing them is not our point here.

Fourth, TS and TR are necessary also to manage the
switchover among two or more controllers: to avoid unde-
sired bumps in the control signal applied to the rest of the
system, all controllers must receive that signal as TR, the
active one must be in automatic mode (TS=false) and all
the others in tracking mode (TS=true). We omit a block
diagram for this case given its simplicity.

More examples could be given – a longer discussion
can be found in (Leva 2024) – but the point for this
paper is that handling the above matter requires critical
model design choices. Should we provide several PID
blocks (from “basic” to “complete”)? Or just one with
flags (named for example hasTracking, has Locks and so
forth) to enable/disable the required functionalities, plus
the necessary conditional connectors? Or any combina-
tion thereof?

4 The LTI control law
The variety of forms or structures that the LTI (linear,
time-invariant) control PID control law can take is large
indeed (O’Dwyer 2009) but some “families” can be iden-
tified; with no exhaustiveness claim we could mention
one degree of freedom (1-dof) forms, described as transfer
functions C(s) from the error e := SP−PV to the control
output CS, i.e.,

C(s) = K
(

1+
1

sTi

)
1+ sTd

1+ sTd/N
; (2)

non-interacting (aka parallel), i.e.,

C(s) = K
(

1+
1

sTi
+

sTd

1+ sTd/N

)
; (3)

two degree of freedom (2-dof) forms characterised by dif-
ferent SP → CS and PV → CS signal paths, most notably
the ISA one

CS(s) = K
(

bSP(s)−PV (s)+
1

sTi
(SP(s)−PV (s))

+
sTd

1+ sTd/N
(cSP(s)−PV (s))

)
(4)

with the notable “output derivation” case (c = 0), as well
as other analogous ones realised by pre-filtering the set
point signal.

A source of confusion here comes from a certain ten-
dency of the product literature to give different names to
the same concept, but this is quite easy to cure with a
proper documentation — and here too, a design equilib-
rium needs finding. More serious problems can arise from
the different meanings of the PID parameters, as the reader
can immediately guess from the small sample of possible
structures in Figure 5.

On the precise and efficient representation of industrial controllers in Modelica

604 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218603

SP
PV

 CS

TS
TR

Hold

Bias

F+
F-

 TrkErr

 LOsat
 HIsat

OVRmax

PID
Instance name

OVRmin

CSrdbk

OVR

SP Set point.
PV Process (controlled) variable.
CS Control signal.

Bias Additive correction to CS (state consistency enforced).
TS Track Switch: when true makes CS follow TR (state consistency enforced).
TR Track Reference: followed by CS when TS is true.

TRkErr Tracking Error: true if TS is true but for any reason (e.g., range) CS is not following TR.
HIsat True when CS hits the high saturation value.

LOsat True when CS hits the low saturation value.
Hold When true causes CS to remain constant (state consistency enforced).

F+ Freeze plus: when true prevents CS from increasing (state consistency enforced).
F- Freeze minus: when true prevents CS from decreasing (state consistency enforced).

OVRmax Override max: takes over CS if greater than the computed value (state consistency enforced).
OVRmin Override max: takes over CS if smaller than the computed value (state consistency enforced).

OVR True if CS is overridden by OVRmax or OVRmin.
CSrdbk Actuator readback for some antiwindup strategies (not discussed herein).

Figure 2. Typical I/O connections in an industrial (PID) controller.

In this case the problem will be finding a set of struc-
tures as small as possible but capable of accommodating
for all the relevant LTI law variants. One structure can-
not be enough because some have limitations and some do
not (e.g., a series form like the topmost in Figure 5 can-
not have complex zeroes), in some forms N modifies the
zeroes with respect to the ideal PID form while in some
others it does not, and there are other “system-theoretical”
reasons to account for.

Furthermore, though in this paper there is not the space
for addressing the subject with the required depth, the said
set will need to encompass representations of biasing and
direct/reverse action, as well as of velocity (as opposed
to positional) forms; and moving toward non-LTI facts as
we are going to do in the next section, of overriding and
control signal rate limits.

5 Nonlinearities
The first item in this list is clearly saturation management
or antiwindup, and here the author takes the occasion to
suggest removing the adjective “integral” as for windup to
occur a controller just needs to have a large enough gain
and a slow enough mode with respect to the loop cutoff
frequency. The point, in any case, is that here arbitrary
choices are inevitable: denoting by xc(t) be the controller
state and writing its output equation as

u(t) = ccxc(t)+dce(t); (5)

when u(t) is stuck into saturation, any xc fulfilling (5)
is I/O consistent and therefore fits — and notice that the
same applies every time u(t) is anyhow “altered” with re-
spect to the value coming from the LTI law (whatever its
form), that is with tracking, increment/decrement locks,
holding, and so on.

There are other nonlinear functionalities in the list, and
they interact with one another, and they could even conflict
with one another: a few examples follow.

• Shall TR be allowed to violate saturation limits?
• Shall overrides prevail over tracking or vice versa?
• Shall increment/decrement locks be subject to track-

ing/holding or not?
Here too, different products make different choices,

sometimes not immediate to figure out if not by thor-
oughly searching through their documentation. Further
design problems are thus at the horizon, as we need to al-
low the analyst to take knowledgeable decisions because
the behaviour of control structures is heavily impacted by
facts like those just mentioned.

The author tends to prefer a solution in which the con-
troller blocks do not contain any logic if not that entailed
by the definition of I/O signals and their role as per Fig-
ure 2, while the coordination of the above functionalities
(including the way possible conflicts are solved) is re-
alised externally by means of logic blocks. Such a design
approach is in the favour of flexibility and clarity, but on
the other hand requires a certain level of user conscious-
ness as well as modelling language knowledge: another
point for the community to discuss.

6 Digital realisation
When modelling and simulating a digitally controlled pro-
cess – or said in more recent terms, when creating and us-
ing a digital twin for a cyber-physical system (Lee 2008)
– a precise representation of control algorithms is some-
times of relatively low importance but some other times
extremely critical (Åström and Murray 2021; Cimino et
al. 2024).

To effectively support a model-based design toolchain,
especially for complex systems as discussed for exam-

Session: Control Applications in Modelica in Track for Control & AI

DOI Proceedings of the 16th International Modelica&FMI Conference 605
10.3384/ecp218603 September 8-10, 2025, Lucerne, Switzerland

+
+

++

_+

_
+

_
+

_+

X

Saturation of the physical control - not the output of - opens this loop.

As a consequence,
 attempts to act on

through this path.

The result is and competing for the only free control
variable , and both loops are lost.

+
+

++

Bias

Bias

PV

SP

SP

PV

Figure 3. Decoupling control and the need for a Bias input.

ple in (Grieves and Vickers 2017), controller models
must therefore be capable of operating sometimes in a
time-driven manner, allowing for example for the use of
variable-step solvers, and sometimes in an event-based
manner, most typically (but not only) to represent the
multi-clocked nature of industrial control architectures.

The Modelica language offers multiple means to ad-
dress such needs, well known to the reader and not cen-
tral to discuss in this paper. No matter what mix of the
said means is adopted, however, the problem remains of
structuring a controller model base in such a way that
achieving and maintaining consistency between time- and
event-driven (in a more industrial jargon, continuous- and
discrete-time) models be as natural as possible.

To illustrate the ideas above, we report in Listing 1
a possible minimum set of base classes for Continuous-
time (CT) and discrete-time (DT) PI models, and then
in Listings 2 through 5 some elementary examples, re-
ferring to a 1-dof PI controller with antiwindup realised
in the various ways mentioned in the motivating exam-
ple in Section 2. Incidentally, these are the models used
to produce the simulations reported in Figure 1; for the
convenience of the reader willing to replicate he exper-
iments and further investigate the matter, all the neces-

Listing 1. Base classes for continuous-time (CT) and discrete-
time (DT) PI models.
partial model Base_CTPI

parameter Real K "gain";
parameter Real Ti "integral time";
parameter Real CSmax "upper saturation value";
parameter Real CSmin "lower saturation value";

Modelica.Blocks.Interfaces.RealInput SP
"set point";

Modelica.Blocks.Interfaces.RealInput PV
"process (controlled) variable";

Modelica.Blocks.Interfaces.RealOutput CS
"control signal";

end Base_CTPI;

partial model Base_DTPI extends Base_CTPI
parameter Real Ts "sampling time";
// computed by a lgor i thms in de r i ved c l a s s e s
discrete Real cs;

equation
cs = CS; // zero−order ho lde r

end Base_DTPI;

On the precise and efficient representation of industrial controllers in Modelica

606 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218603

SP
PV

 CS

TS
TR

F+
F-

PID
Outer controller

SP
PV

 CS

TS
TR

 LOsat
 HIsat

PID
Inner controller

OR

 SW
s=T

s=F

s

Int loop PV

Int loop TR
Int loop TS

Ext loop SP
Ext loop PV

Ext loop TS
Int loop TS

Int loop PV
Ext loop TR

Actuator cmd

Figure 4. Cascade control and the need for locks and tracking logic (control scheme only, process not shown).

++
+

+ +

+ +

++

(a) series structures

(b) parallel structure

(c) pure internal
 feedback (IFB)
 structure

(d) IFB structure
 with parallel
 D part

Figure 5. Some structures for the 1-dof LTI PID control law.

sary Modelica code is available under a 3-clause BSD li-
cence at https://github.com/looms-polimi/
Modelica_PID_MWEs.

Coming back to the our main subject, te challenge is to
move from extremely simple blocks like those just shown,
where most of the problems mentioned above are not ad-
dressed, to others capable of representing all the needed
functionalities of which we gave a sample in the previous
sections. To undertake this challenge we need a method-
ological and a technological framework, connected to one
another as strictly and rigorously as possible. On the
methodological side a choice could be switching (nonlin-
ear) dynamic systems, written as


CS(t) = gσ(t)

(
xc(t),SP(t),PV (t),T S(t) . . .

)
ẋc(t) = fσ(t)

(
xc(t),SP(t),PV (t),T S(t) . . .

)
σ(t+) = s

(
σ(t),xc(t),SP(t),PV (t),T S(t) . . .

) (6)

Listing 2. CT and DT PI models with actuation error anti-
windup.
model CTPI_AERR extends Base_CTPI;

parameter Real Tt;
Real uns, ui(start=0);

equation
der(ui) = K/Ti*(SP-PV)-(uns-CS)/Tt;
uns = ui+K*(SP-PV);
CS = max(CSmin, min(CSmax, uns));

end CTPI_AERR;

model DTPI_AERR extends Base_DTPI;
parameter Real Tt;
discrete Real csp, csi, csi1(start=0);

algorithm
when sample(0, Ts) then
csp := K*(SP-PV);
csi := csi1+K*Ts/Ti*(SP-PV);
cs := max(CSmin,min(CSmax,csp+csi));
csi1 := csi-(csp+csi-cs)*Ts/Tt;

end when;

end DTPI_AERR;

in the continuous time (aka time-driven) context and as
CS(tk) = g∗

σ(tk)

(
xc(tk),SP(tk),PV (tk),T S(tk) . . .

)
CS(tk+1) = f ∗

σ(tk)

(
xc(tk),SP(tk),PV (tk),T S(tk) . . .

)
σ(tk+1) = s∗

(
σ(tk),xc(tk),SP(tk),PV (tk),T S(tk) . . .

)
tk+1 = tk +q

(7)
in the discrete time (aka periodic event-driven) one.

In both (6) and (7) the σ subscript indicates that the
state and the output equation can take a finite number of
forms, for example to match the operating modes of a
block in each of which the unique state vector xc is man-
aged in a different manner. In (6) t is the continuous time
and the + superscript denotes values after a σ switching;
in (7) q is a time quantum such that switching events can
only occur at its multiples. The reader interested in more
detail on these aspects can refer to (Miskowicz 2018) and
the works quoted therein.

As for the technological side, a starting point could be
the IEC 61499 standard (Lyu and Brennan 2020; Wies-

Session: Control Applications in Modelica in Track for Control & AI

DOI Proceedings of the 16th International Modelica&FMI Conference 607
10.3384/ecp218603 September 8-10, 2025, Lucerne, Switzerland

https://github.com/looms-polimi/Modelica_PID_MWEs
https://github.com/looms-polimi/Modelica_PID_MWEs

Listing 3. CT and DT PI models with conditional integration
antiwindup.
model CTPI_CINT extends Base_CTPI;
Real ui(start=0);

protected
// numer ica l workaround , might be c r i t i c a l
parameter Real CSeps = (CSmax-CSmin)*1e-6;

equation
der(ui) = if CS>CSmin+CSeps and CS<CSmax-CSeps

then K/Ti*(SP-PV) else 0;
CS = max(CSmin, min(CSmax,K*(SP-PV)+ui));

end CTPI_CINT;

model DTPI_CIN extends Base_DTPI;
discrete Real csp,csi0(start=0),csi,csi1;

algorithm
when sample(0, Ts) then

csp := K*(SP-PV);
csi0 := csi1+K*Ts/Ti*(SP-PV);
csi := if csp+csi0>CSmin and csp+csi0<CSmax

then csi0 else csi1;
cs := max(CSmin, min(CSmax,csp+csi));
csi1 := csi;

end when;

end DTPI_CINT;

Listing 4. CT and DT PI models with clamping antiwindup.
model CTPI_CLAMP extends Base_CTPI;
Real xde(start=0), de, du;

protected
parameter Real tau = Ti/1000;

equation
xde+tau*der(xde) = SP-PV;
de = (SP-PV-xde)/tau;
du = K*de+K/Ti*(SP-PV);
der(CS) = if CS < CSmin and du < 0

or CS > CSmax and du > 0
then 0 else du;

end CTPI_CLAMP;

model DTPI_CLAMP extends Base_DTPI;
discrete Real csp, csi(start=0), csi1;

algorithm
when sample(0, Ts) then

csp := K*(SP-PV);
csi := csi1+K*Ts/Ti*(SP-PV);
cs := max(CSmin,min(CSmax,csp+csi));
csi1 := cs-csp;

end when;

end DTPI_CLAMP;

Listing 5. CT and DT PI models with internal feedback anti-
windup.
model CTPI_IFB extends Base_CTPI;

Real x(start=0);

equation
CS = x+Ti*der(x);
CS = max(CSmin,min(CSmax,K*(SP-PV)+x));

end CTPI_IFB;

model DTPI_IFB extends Base_DTPI;
discrete Real x(start=0), x1;

algorithm
when sample(0,Ts) then
x := (Ti*x1+Ts*cs)/(Ti+Ts);
cs := max(CSmin,min(CSmax,K*(SP-PV)+x));
x1 := x;

end when;

end DTPI_IFB;

Algorithms

Internal data

Execution Control
Chart (ECC)

Events
in

Data
in

Events
out

Data
out

HEAD

BODY

Figure 6. The concept of Function Block as per the IEC 61499
standard.

mayr, Mehlhop, and Zoitl 2023) and most notably its def-
inition of Function Block (FB) exemplified in Figure 6.
An FB is a modular, reusable component representing a
functional unit in a distributed automation system. It of-
fers data I/O to receive and produce information, and event
I/O to execute and trigger actions.

Also, an FB is made of two main components, namely
the Event-Condition-Action (ECA) automaton – or Exe-
cution Control Chart (ECC) – and the dynamic system.
The ECA automaton governs the FB evolution based on
events and conditions, triggering actions in response to
specific events; the dynamic system is responsible for han-
dling internal data, processing algorithms, and managing
system state transitions over time.

The relationships between the two frameworks –
methodological and technological – seem to the author
quite evident and potentially capable of grounding the
sought design and development process, yet they are not
totally unambiguous, and in their application to the ad-
dressed domain decisions need taking. For example,
continuous-time state/output equations naturally corre-
spond to conditional DAEs, and discrete-time state/output

On the precise and efficient representation of industrial controllers in Modelica

608 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218603

equations to (branching) FB algorithms. Also, a sequen-
tial logic conceptually modelled as automaton naturally
corresponds to an FB ECC in which one could talk about
“mode σ” where σ takes values like AUTO, TRACKING,
HIsat and so forth.

But coming back to our design-centric attitude, how
could we efficiently implement this? By algorithm(s) with
when clauses? With which event management policy?
And most important, could we use the same automaton
for time- and event-driven representations? Might we
need (for the time-driven context) to represent as DAEs
functionalities that were natively created as algorithms?
Might we also need additional state variables for that pur-
pose? Could this evidence numerical, solver-related is-
sues/choices/precautions? As can be seen, we have a lot
to discuss also on this front.

7 Conclusions and future work
Despite the numerous existing controller simulation mod-
els, also and particularly within the Modelica ecosystem,
this paper has highlighted that substantial conceptual de-
sign choices remain to be made in the field. While many
controller models – especially PID ones – are widely used,
there is in fact a clear need for more flexibility to better re-
flect the complexities of real industrial systems, and most
important, to allow an analyst to easily ensure that the sim-
ulated controls will match the particular implementation
to consider. It is also important to stress that these choices
are not merely technical; on the contrary, they involve a
methodological shift that has yet to be fully realised.

In fact, at least to the best of the author’s knowledge,
no existing (Modelica) controller model has been entirely
developed along the approach proposed here, and premis-
ing that the approach itself is still in its infancy and most
likely contains several imperfections, nonetheless the ob-
served scenario suggests that several critical design as-
pects are still unresolved. The challenge lies in synthesis-
ing the scattered and often fragmented knowledge avail-
able, alongside the need to adhere to industrial standards
(the IEC ones being a paradigmatic but certainly not the
unique example). Moreover, the development of such con-
troller models requires careful and accurate planning, es-
pecially given the wide range of knowledge and exper-
tise required. These conceptual and methodological gaps
should be seen not just as challenges but also as oppor-
tunities for future research and innovation in the field of
digital twinning for cyber-physical systems.

As an aside, though the matter could not find space in
this paper, we have to notice that in addition to their rele-
vance for industrial applications, flexible controller mod-
els also hold significant potential for educational purposes.
These models could be particularly valuable in undergrad-
uate and graduate programs, as well as in the context of
continuing education, where they can bridge the gap be-
tween theoretical understanding and practical, real-world
applications.

For the future, the hope is that this paper can stimulate
a discussion on the problems here evidenced and (briefly)
discussed, which he believes to be very relevant for the ef-
fective simulation of industrial (and particularly process)
controls. Indeed, while the examples presented are in-
tended – as said – to spark discussion, they could also
mark a concrete first step toward a shared open-source ini-
tiative aimed at developing a structured, extensible library
of industrial controllers, coordinating time- and event-
based descriptions (here too, as exemplified above) to con-
jugate precision and efficiency. Yet, defining a coherent
architecture and sustainable development – and particu-
lary, maintenance – practices demands collective input,
which is why the author warmly invites the community
to engage in shaping both the technical direction and gov-
ernance needed to realise such an initiative.

References
Åström, Karl Johan and Richard M Murray (2021). Feedback

systems: an introduction for scientists and engineers. Prince-
ton, NJ, USA: Princeton University Press.

Cimino, Chiara et al. (2023). “Efficient control representation
in Digital Twins: An imperative challenge for declarative
languages”. In: IEEE Transactions on Industrial Informatics
19.11, pp. 11080–11090.

Cimino, Chiara et al. (2024). “Scalable and efficient digital twins
for model-based design of cyber-physical systems”. In: In-
ternational Journal of Computer Integrated Manufacturing
37.10-11, pp. 1232–1251.

Grieves, Michael and John Vickers (2017). “Digital twin: miti-
gating unpredictable, undesirable emergent behavior in com-
plex systems”. In: Transdisciplinary Perspectives on Complex
Systems, pp. 85–113.

Lee, Edward A (2008). “Cyber physical systems: design chal-
lenges”. In: Proc. 11th IEEE International Symposium on
Object Oriented Real-Time Distributed Computing. Orlando,
FL, USA, pp. 363–369.

Leva, Alberto (2024). “Teaching PID to future professionals as a
contribution to fill a historical gap”. In: IFAC-PapersOnLine
58.7, pp. 79–84.

Lyu, Guolin and Robert William Brennan (2020). “Towards
IEC 61499-based distributed intelligent automation: a litera-
ture review”. In: IEEE Transactions on Industrial Informatics
17.4, pp. 2295–2306.

Miskowicz, Marek (2018). Event-based control and signal pro-
cessing. Boca Raton, FL, USA: CRC press.

O’Dwyer, Aidan (2009). Handbook of PI and PID controller
tuning rules. Singapore: World Scientific.

Skogestad, Sigurd (2023). “Advanced control using decomposi-
tion and simple elements”. In: Annual Reviews in Control 56,
100903:1–100903:44.

Wiesmayr, Bianca, Sven Mehlhop, and Alois Zoitl (2023).
“Close enough? Criteria for sufficient simulations of IEC
61499 models”. In: Proc. 19th IEEE International Confer-
ence on Automation Science and Engineering. Auckland,
New Zealand, pp. 1–7.

Session: Control Applications in Modelica in Track for Control & AI

DOI Proceedings of the 16th International Modelica&FMI Conference 609
10.3384/ecp218603 September 8-10, 2025, Lucerne, Switzerland

	Introduction
	A motivating example
	Interface and functionalities
	The LTI control law
	Nonlinearities
	Digital realisation
	Conclusions and future work

