Liaison: an open-source tool for
distributed co-simulations

Luis Sanchez-Heres'

Fredrik Olsson?

Jan Osth?

123 Maritime department, RISE Research Institutes of Sweden, Sweden,
11uis.sanchez-heres@ri. se,2 fredrik.x.olsson@ri.se

3jan.osth@ri.se

Abstract

This paper presents Liaison a new open-source tool
designed to address challenges related to portability,
security, and intellectual property when sharing
Functional Mock-up Units. Built on the Functional Mock-
up Interface 3.0 standard, Liaison has a server-client
architecture that leverages Zenoh for communication.
Zenoh is a novel pub/sub/query protocol that supports a
variety of network topologies such as peer-to-peer, routed,
mesh and brokered communication with minimal
configuration, setting Liaison apart from similar tools. An
example of a case that led the authors to develop this tool
is presented.

Keywords: distributed co-simulations, maritime onboard
systems

1 Introduction

The Functional Mock-up Interface (FMI) (Blochwitz et.
al, 2011, Blochwitz et. al, 2012, Junghanns et. al, 2021) is
a widely adopted standard in system simulation, providing
a versatile and vendor-neutral framework for model
exchange (ME) and co-simulations (CS) (Gomes et. al,
2018). At its core, FMI defines a set of conventions and
interfaces that govern how simulation models interact
with simulation environments, allowing for the
encapsulation of models as Functional Mock-up Units
(FMU). A FMU encapsulates a simulation model along
with their associated parameters, inputs, and outputs, as
compiled code black-boxes enabling the exchange and
utilization across simulation tools that has implemented
support for the FMI standard. For ME, the FMU does not
include the model’s solver, whereas for CS, the FMU also
includes the solver of the model.

In practice, several factors can make sharing FMUs
unfeasible. Such factors can include, but are not limited
to:

e Portability issues (e.g. different operating
systems or license requirements for execution of
the FMU)

e Intellectual Property (IP) protection.

e Fear of unintended re-distribution of the FMU

e Fear of a FMU containing malicious code.

To overcome these obstacles, a distributed approach can
be utilized where the FMU stays within the control and
premises of the model owner but connects to a simulation
environment over a network when desired. The
connection can be made over a local area network or a
wide area network such as the Internet.

Table 1 summarizes the issues solved by running
distributed co-simulations locally, in a LAN, and in a
WAN.

Table 1. Potential issues solved by running distributed co-
simulations.

Issue Local LAN WAN
FMU portability X X X
Security X X X
IP protection X

FMU portability can be addressed by running distributed
co-simulations locally, in a LAN, and in a WAN. In both
LAN and WAN setups, a computer with a suitable
operating system, environment, or hardware, can be used
to serve the FMU, while another computer can be used to
run the simulation. Meanwhile, security and IP protection
can be address by running distributed co-simulations on a
WAN across organisations. In this use case, one
organisation creates a client FMU from a source FMU and
delivers it to another organisation. This approach enables
co-simulations without the transfer of intellectual
property or risk of running malicious code.

Several tools for such distributed co-simulations have
been developed. The most relevant for the work presented
in this paper, is the FMU-Proxy (Hatledal et al., 2019)
which is an open-source framework for distributed co-
simulations supporting FMI 1.0 and 2.0. The original
FMU is wrapped into a proxy FMU that is accessed
through Remote Procedure Calls (RPCs). In this way, the
platform becomes independent of both the FMU
implementation language as well as the platform it runs
on. FMU-Proxy relies on a combination of different

DOI
10.3384/ecp218639

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

639

mailto:luis.sanchez-heres@ri.se
mailto:fredrik.x.olsson@ri.se

Liaison: an open-source tool for distributed co-simulations

communication protocols such as HTTP, HTTP2,
Websockets and TCP/IP.

In this paper we present Liaison (Liaison 2025), a new
open-source tool for distributed co-simulations based on
the FMI 3.0 standard and the Zenoh communication
protocol (Corsaro et al., 2023). The decision to develop a
new tool for distributed co-simulations was motivated by
that existing tools at the time of project start did not
support FMI 3.0, and that the adoption of Zenoh promised
a simple and efficient communication framework (Palma,
2024) supporting also geographically distributed nodes
deployed across wide area networks with minimal
required network settings configuration (such as opening
ports on host and client computers, etc). Zenoh runs on
top of traditional communication protocols such as
TCP/IP and UDP/IP and transparently bridge across
different protocols. It is a pub/sub/query protocol and
supports a variety of network topologies such as peer-to-
peer, routed, mesh and brokered communication.

This introduction is followed by Section 2 where we
present the high-level architecture of Liaison, network
topologies and describes its implementation. In Section 3
we present an example case that led the authors to develop
this tool (Software-in-the-Loop testing of sail control
systems for wind assisted propulsion of ships (Laursen et
al. 2023)). Section 4 presents some results connected to
the computational overhead for the different use cases and
Section 5 presents the outlook and future work.

2 Liaison

Figures 1 to 3 present the three basic configurations on
which Liaison can be used. In all the figures, an “original”
FMU is made available to a simulation software (co-
simulation engine) with a Liaison FMU and a Liaison
Server. A Liaison FMU is a client application that
substitutes the original FMU and communicates with a
Liaison Server. A Liaison Server is a server application
that forwards the function calls made to the Liaison FMU
by the simulation software to the original FMU.

Figure 1 and 2 present the configurations for running a
distributed co-simulation locally and over a LAN. Both
configurations are useful for addressing security and
portability issues. For example, the FMU can be run inside
of a sandbox/Docker environment or in another computer
with the appropriate operating system or hardware
resources. Meanwhile, Figure 3 corresponds to running a
distributed co-simulation in a WAN. In addition to
addressing portability and security issues, this
configuration also enables running co-simulation without
sharing IP across organizations, avoiding the need for
non-disclosure agreements, software licenses,
obfuscation, and similar practices.

Organisation 1

» 7 Ccomputer 1 T
d / Execution env. \ \l
| LR TR
| H |
I : Simulation | '
[FMU Software | !
I i : I
| |
[T l [
I . : » I
| Liaison " i Ligison H |
| Server [! FMU |
A)]
v N]

hY &

Figure 1. Configuration for running a distributed co-simulation
locally with Liaison.

QOrganisation 1

r S
f Computer 1 Computer 2 \I
l / A / \
| |
I Simulation !
I FMU Software !
| |
I T l I
| |
| . . |
| Liaison | Liaison |
| Server | FMU |
| |
A \\.—./) \.—./) J

Y &~

Figure 2. Configuration for running a distributed co-simulation
over a LAN with Liaison.

- . e .
i Yoy !
| Computer 1 Ly Computer 2 |
I v y !
[b :
| Simulation |
: FMU | : Software |
| b '
[T b i :
[b :
| Liaison I Liaison I
| Server I FMU I
I I
I I
N J N :

Figure 3. Configuration for running a distributed simulation
over a WAN with Liaison.

2.1

Liaison uses Zenoh for communication. By default,
Liaison operates using the “peer” mode in Zenoh which
entails that:
e Every node discovers other nodes through a
discovery mechanism.

Networking

640

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218639

Session: FMI Tool Development in Track for FMI and Related

e Every node connects to and maintains a
connection to all other nodes found through the
discovery mechanism.

A schematic of this setup is illustrated in Figure 4. This
setup is a convenient default as it allows for seamless,
zero-configuration connections in a LAN.

Node Node
A A
Y Y

Node Node

Figure 4. Schematic of 4 nodes connected in peer-to-peer mode.
I.e. every node has a direct connection with every other node.

Further, Liaison allows for unimpeded configuration of
the underlying Zenoh library. This allows for a range of
different network topologies to be used, for details see
(Corsaro et al., 2023). The most interesting one for the use
of Liaison is the “client” mode which entails that:
e Every node connects to a well-known router on
startup.
e The router ensures end-to-end connectivity in
between all nodes connected to it.
A schematic of this setup is illustrated in Figure 5.

Figure 5. Schematic of two nodes connected in client mode via
a (software) router. Each node maintains only a single
connection to the router and the router ensures end-to-end
connectivity in between nodes.

Although the “client” mode of communication in Zenoh
requires every node to make an initial connection to a
well-known router, it does not require every node to know
the connectivity details (such as IP number and port) of
all the other nodes in the network. Effectively, this allows
for nodes in different LANs, possibly geographically
distributed, to interconnect via a router deployed on a
well-known address accessible over a WAN (such as the
internet) without the need of knowing the connectivity

details of each other. A schematic of this setup is outlined
in Figure 6.

Deployed at
router.example.com

P
Eme

Figure 6. Schematic of 2 nodes connecting across a WAN from
two separate LANs in client mode via a (software) router
deployed on a well-known address.

LAN 1

Further, the underlying Zenoh library may be configured
for secured communication channels, regardless of
network topology, using either client/server TLS or
mutual TLS.

2.2

Liaison is an application written in C++ and compiled for
Windows and Linux. It is released as open source under
the Apache 2.0 license and is available for download at
http://github.com/rise-maritime/liaison. While it depends
on standard system libraries, third-party dependencies are
bundled with the release, requiring no additional
installation.

Implementation

Liaison consists of a platform specific executable and a
set of dynamic libraries that encapsulate the client logic
for different platforms. The executable performs two main
functions: 1) making a ,,.Liaison FMU* from a standard
FMU, and 2) serving an FMU. When making a Liaison
FMU, the executable extracts the model description XML
file from the source FMU, renames the dynamic libraries
according to the model’s name, and re-packages it all. In
turn, when serving an FMU, the executable loads the
source FMU and forwards to it all the incoming queries
from the Liaison FMU as seen in Figures 1 to 3.

At the time of writing, only a subset of the FMI 3.0
standard is implemented. For an up to date list of the
implemented functions the readers are referred to the
project’s online repository (Liaison, 2025).

3 Example: Software-In-The-Loop
(SIL) for control of a Wind-
Assisted Propulsion System

DOI
10.3384/ecp218639

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

641

http://github.com/rise-maritime/liaison

Liaison: an open-source tool for distributed co-simulations

Consider the following made-up example: A ship owner
is interested in retrofitting one of its vessels with a wind-
assisted propulsion system (Laursen et al. 2023) and is
particularly interested in rigid wings as suggested by a
potential provider. But, prior to signing a deal, the
shipowner wants to ensure the interoperability of the
proposed wing sail system (and its controller) with the
existing autopilot used on the ship. For that purpose, the
ship owner demands a set of co-simulations to be
performed to verify the interoperability in a Software-in-
the-Loop (SIL) setup.

In this paper we will use the example above to exemplify
the usefulness of Liaison in overcoming technical as well
as organizational obstacles in sharing software, especially
control systems, in the design process of ships. Further,
we will use the same setup to investigate the performance
penalty introduced by Liaison through different scenarios.

3.1

Figure 7 presents the simulation setup with the following
components:

Simulation setup

e Vessel FMU: an FMU that encapsulates a
hydrodynamic model of a cargo vessel as well as
an aerodynamic model of a set of rigid wings
mounted on said cargo vessel. The models used
in this FMU are built using the RISE in-house
ship dynamics solver SEAMAN (Ottosson and
Bystrom, 1991).

e Controller FMU: an FMU that encapsulates the
controller logic for the wing controller system.

e Co-simulation engine: A co-simulation engine
that is responsible for stepping the co-simulation
forward and handling connections between the
two FMUs. The co-simulation engine used for
these simulations is Ecos, for details see (Ecos

2025).
Co-Simulation
Engine
A Y
Vessel FMU Controller FMU

Figure 7. Simulation setup for the example.

The FMUs used in the simulation setup are deliberately
kept at minimum level of complexity, using only the bare
minimum of the FMI 3.0 specification, to ensure fair
comparisons focusing on the performance penalty
introduced by Liaison.

3.2

The simulated setup is used in the following scenarios:

Scenarios

- Reference scenario: the FMUs are loaded
directly by the co-simulation engine, i.e. Liaison
is not used.

- Local scenario: the FMUs and the co-simulation
engine runs on the same physical computer, but
Liaison is used as the means of communication.

- LAN scenario: the FMUs and the co-simulation
engine run on different physical computers (3
computers in total), but in the same LAN.

- WAN scenario: the FMUs and the co-simulation
engine all run on different physical computers (3
computers in total) on different LANs
interconnected via a WAN (the Internet). The
communication channels are secured using
mTLS.

To investigate the performance penalty of using Liaison,
each of the scenarios are run for 600 seconds with three
different step sizes: 0.1, 1.0, and 10.0 seconds. To account
for variations in execution time, each scenario and step
size combination is simulated 10 times, and the average
time is recorded.

4 Results
Figure 8 presents the performance penalty associated with
using Liaison across various configurations and

communication step sizes.

For a communication step size of 0.1 seconds:

- The reference scenario has an average execution
time of about 25 seconds.

e The local scenario has an average execution time
of 1.4 times that of the reference scenario.

e The LAN configuration scenario has an average
execution time that is more than double (2.4
times) that of the reference scenario.

e The WAN scenario has a significantly higher
average execution time, 7.6 times that of the
reference scenario.

For a communication step size of 1.0 second:
e The reference, local, and WAN scenarios have
similar execution times at about 25 seconds.
e The WAN scenario has a higher average
execution time, about 1.7 times that of the other
scenarios.

For a communication step size of 10.0 seconds:
e All cases exhibit similar average execution times,
approximately 25 seconds.

642

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218639

Session: FMI Tool Development in Track for FMI and Related

200 -

175 -

150 -

125 -

Case
mmm Reference
Local
I LAN
. WAN

100 -

Average execution time [s]

75 -

50 -

-
E.E--l

_N

1 10
Communication step size [s]

o
=

Figure 8. Performance results from different co-simulation
scenarios and configurations.

These results indicate that the communication step size
has a substantial impact on execution time, particularly in
the WAN scenario. The performance is notably better in
scenarios with larger communication step sizes and when
the components are either on the same physical computer
or within the same LAN.

5 Conclusion and future work

Liaison is a general open-source tool for distributed co-
simulations and model exchange based on FMI 3.0. The
workflow when using Liaison starts with an existing
FMU. In the first step, Liaison is used to produce a
“Liaison FMU?”, that can be included in any simulation
tool that supports FMI 3.0. For the simulation tool, the
Liaison FMU appears as a standard FMU. The Liaison
FMU acts as a client and includes all information it needs
to communicate with a Liaison server over LAN or WAN
(such as the Internet). The communication protocol in
Liaison is the Zenoh protocol, which ensures a simple
communication configuration by the user and versatile
network topologies.

Results presented in this paper shows that running
simulations in a distributed fashions with Liaison can
have a negative impact on simulation time due to
communication events between the distributed Liaison
FMUs that are part of the distributed co-simulation.
However, this performance drawback can be mitigated by
selecting appropriate communication step sizes.

Future work will focus on achieving full compatibility
with FMI 3.0 and include support for FMI 2.0, as well as
testing Liaison in various simulation software
environments. Contributions are welcome!

Acknowledgements
This work is part of the project “Virtual Wind Ship”,
carried out within the Swedish Transport

Administration’s industry program Sustainable Shipping,
operated by Lighthouse”.

References

Blochwitz, Torsten; Martin Otter; Martin Arnold, et al.
(2011-03). "The functional mockup interface for tool
independent exchange of simulation models."

In: Proceedings of the 8th International Modelica
Conference. Linkoping University Press, pp. 105-114.

Blochwitz, Torsten; Martin Otter; Johan R. Akesson; et
al. (2012-09). “Functional mockup interface 2.0: The
standard for tool independent exchange of simulation
models”. In: Proceedings of the 9th International
Modelica Conference. The Modelica Association, pp.
173-184.

Corsaro, Angelo; Luca Cominardi; Olivier Hecart; et al.
(2023-09) "Zenoh: Unifying communication, storage and
computation from the cloud to the microcontroller." In:
26th Euromicro Conference on Digital System Design
(DSD). IEEE pp. 422-428.

Ecos (2025). Ecos co-simulation platform. Code
repository. URL: https.//github.com/Ecos-platform/ecos
(visited on 2025-07-30)

Gomes, Claudio; Casper Thule; David Broman; et al.
(2018). "Co-simulation: a survey”. In: ACM Computing
Surveys (CSUR) 51(3):49, pp. 1-33.

Hatledal, Lars; Ivar Arne Styve; Geir Hovland and
Houxiang Zhang (2019). "A language and platform
independent co-simulation framework based on the
functional mock-up interface”. IEEE Access, Vol. 7 pp.
109328-109339. DOI: 10.1109/ACCESS.2019.2933275

Giese, Holger Giese; Dominique Blouin; Rima Al-Ali; et
al. (2021). “Chapter 4 - An ontology for multi-paradigm
modelling.” Multi-Paradigm Modelling Approaches for
Cyber-Physical Systems, Elsevier. ISBN; 978-0-12-
819105-7

Junghanns, Andreas; Claudio Gomes; Christian Schulze;
et al. (2021-09). "The functional mock-up interface 3.0-
new features enabling new applications." In:
Proceedings of the 14th Modelica Conference,
Linkdping University Electronic Press, pp. 17-26.

DOLI: 10.3384/ecp2118117

Kolodziejski, Michal and Marcin Sosnows;ki (2025).
“Review of Wind-Assisted Propulsion Systems in

DOI
10.3384/ecp218639

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

643

https://github.com/Ecos-platform/ecos

Liaison: an open-source tool for distributed co-simulations

Maritime Transport”. Energies, 18(4):897. DOI:
10.3390/en18040897

Laursen, Rasmus; Hitesh Patel; Dimitra Sofiadi; et al.
(2023). “Potential of Wind-Assisted Propulsion for
Shipping.” Tech. rep. European Maritime Safety Agency
(EMSA Report EMSA/OP/43/2020), pp. 1-271

Liaison (2025). Liaison co-simulation tool. Code
repository. URL: https.//github.com/RISE-
Maritime/liaison (visited on 2025-07-30).

Ottosson, Peter and Lars Bystrom (1991). “Simulation
of the Dynamics of a Ship Manoeuvring in Waves”.
Transactions of the Society of Naval Architects and
Marine Engineers (Trans. SNAME) 99, pp. 281-298

Palma, Steven (2024), “Transforming the robotics
industry: A sustainable communication protocol”.
Control Engineering. URL:
https://www.controleng.com/transforming-the-robotics-
industry-a-sustainable-communication-protocol (visited
on 2025-07-30).

644 Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218639

https://doi.org/10.3390/en18040897
https://doi.org/10.3390/en18040897
https://github.com/RISE-Maritime/liaison
https://github.com/RISE-Maritime/liaison
https://www.controleng.com/transforming-the-robotics-industry-a-sustainable-communication-protocol
https://www.controleng.com/transforming-the-robotics-industry-a-sustainable-communication-protocol

