A Tool for the Implementation of Open Neural Network Exchange
Models in Functional Mockup Units

Michele Urbani’

Michele Bolognese

1

Luca Pratticd! Matteo Testi!

"Hydrogen Technologies and Resilient Energy Systems Unit, Sustainable Energy Centre, Fondazione Bruno Kessler,
Via Sommarive 18, 38123, Trento, Italy, {murbani, mbolognese, prattico, testi}@fbk.eu

Abstract

The Functional Mock-up Interface (FMI) standard is a
flagship in the co-simulation and model exchange do-
main. However, the integration of graph-based computa-
tional models—particularly neural networks—into Func-
tional Mock-up Units (FMUs) has remained a techni-
cal challenge due to interoperability and platform-specific
limitations. To address this, we propose ONNX2FMU,
a’command-line Python tool that facilitates the deploy-
ment of Open Neural Network Exchange (ONNX) mod-
els into FMUs. According to FMI’s good practices,
ONNX2FMU generates C source code to wrap ONNX
models in Functional Mockup Units, supports FMI ver-
sions 2.0 and 3.0, and provides multi-platform compila-
tion capabilities. The tool simplifies the mapping process
between model description and ONNX model inputs and
outputs via JSON files, ensuring accessibility and flexibil-
ity. This paper presents the tool architecture and method-
ology and showcases its applicability through illustrative
examples, including a reduced-order model powered by a
recurrent neural network.

Keywords: ONNX, FMI, FMU, ML, Al

1 Introduction

Machine learning (ML) and deep learning (DL) have
gained momentum in engineering and science in recent
years. There are countless applications of inferential
models in engineering: For example, in engineering and
manufacturing (Malik et al. 2018), process system en-
gineering (Lee, Shin, and Realff 2018), chemical engi-
neering (Schweidtmann et al. 2021), smart energy sys-
tems (Lund et al. 2017), and fluid mechanics (Brunton,
Noack, and Koumoutsakos 2020). Better and more effi-
cient computational infrastructures, together with a never-
seen-before amount of data, call for the exploitation of
these sources of information in simulations (Rueden et
al. 2020; Bertsch, Jarmolowitz, and Lenord 2024). How-
ever, incorporating ML models into FMUs requires spe-
cialised tooling. The existence of several ML frameworks,
each with its own scope and peculiarities, advocates for a
standard model exchange format. The Open Neural Net-
work Exchange (ONNX) format (Open Neural Network
Exchange 2025) enables one to describe an ML model
through a set of standard operators and ships with its run-

time. Several ML frameworks implement their methods
to export a model to the ONNX format, thus partly bridg-
ing the gap of model interoperability. Therefore, the chal-
lenge is developing a tool to write the C code that maps
the model’s input and outputs to the FMI’s C API specifi-
cations. Software licensing must guarantee the usability of
the tool for many purposes to foster the widespread adop-
tion of inferential models in simulations.

Commercial tools that can wrap ML models into FMUs
already exist. Simcenter ROM (Simcenter Reduced Order
Modeling software 2025) is a software for developing Re-
duced Order Models (ROM) that presents the FMU export
feature, which allows a user to wrap an ML-based ROM
in an FMU. Since ML is simply a model order reduction
technique (among a few others) in Simcenter ROM, the
choice of the ML framework is arbitrary and, to the eye
of the user, it is irrelevant as far as the model’s accuracy
is satisfactory. The generation of an FMU is, therefore,
purely functional and does not allow the user any cus-
tomisation. SimuLink (Simulink - Simulation and Model-
Based Design 2025) is a commercial software that exports
simulation models as FMUs by generating the C code
from a set of proprietary primitives. Neural networks, a
type of ML model, can be included in a Simulink sim-
ulation workflow and shipped in an FMU. The software
suite (NEURECO: Automatic Parsimonious Neural Net-
works Generation 2025) presents itself as the automatic
parsimonious neural networks factory. It can produce
neural network-based models and export them to C code,
ONNX, and FMUs.

Software licensing is a key feature when selecting a
tool. The availability of open-source, open-access soft-
ware is always valuable to the community. Most open-
source software is hosted on platforms like GitHub and
GitLab, where we carried out a structured search for ML
to FMU wrapping tools. The keywords used for the search
were “ONNX” and “FMU”, which returned only one rel-
evant result on the GitHub platform. The search results
are confirmed by a check of the “Tools” section of the
FMI website. MLFMU (mlfimu 2025) is the only open-
source, open-access tool that enables wrapping ML mod-
els to FMUs, and a team of contributors from DNV devel-
ops it. The MLFMU’s workflow foresees the possibility
of exporting an ONNX model with only one input and one
output array, to which the physical model quantities need

DOI
10.3384/ecp218645

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

645

A Tool for the Implementation of Open Neural Network Exchange Models in Functional Mockup ...

to be mapped. Input and output mapping is declared using
a JSON file, which plays the role of a user interface. The
core functionality of MLFMU is the generation of the FMI
model description and the C++ code generator to link the
ONNX runtime to the FMU. For the generation of C++
code, MLFMU rely on another open source project called
“cppfmu”. Conan is used as a package manager.

Proposing a new tool for integrating ML models in
FMU co-simulation is important because it enables the
use of graph-based computational models, e.g., ML mod-
els and neural networks. Furthermore, the proposed tool
would be a valuable open-access, open-source resource to
the Modelica community.

We introduce ONNX2FMU, a command-line interface
(CLI)-based Python tool that generates C source code for
embedding ONNX models into FMUs, which can be com-
piled on any target platform. The tool bridges the gap be-
tween ML model deployment and FMI-compliant simula-
tion, offering an efficient and user-friendly pipeline. Com-
pared to the existing alternatives, ONNX2FMU:

* Directly generates C source code, improving perfor-
mance and control over the generation process. Al-
though the use of the C programming language is
not mandatory, we preferred to stick with the FMI
Standard’s indication that the “FMI API is written
in C, not C++, to avoid problems with compiler and
linker dependent behaviour, and to enable the use
of FMUs on embedded systems” (Modelica Associ-
ation 2025).

¢ In addition to the FMI 2.0, it supports FMI 3.0, in-
cluding extended data types.

* Handles models with multiple inputs and outputs
mapped to the FMU model according to an arbitrary
naming convention.

Generating C code directly exposes the user to the source
code in a single file where FMI “get” and “set” func-
tions are declared together with the link to the ONNX run-
time. ONNX2FMU is designed for developers who want
to bootstrap the creation of FMUs to deliver graph-based
computational models, data scientists and researchers op-
erating in model order reduction, and DevOps who need
to automate the creation of pipelines of tools. Being dis-
tributed as open-source, the tool is highly customizable,
and it allows the separation of the C code generation stage
and the compilation stage, thus enabling the inspection
and modification of the FMU source code. The tool comes
with a set of unit tests and a pipeline for continuous inte-
gration that guarantees the integrity of the code and its
cross-platform compatibility.

An analysis of requirements for the proposed tool and
the adopted methodology for creating the tool is outlined
in Section 2. Section 3 presents the results and shows two
examples where ONNX2FMU is applied. Conclusions
close the paper in Section 4.

2 Methodology

Requirements analysis The inspiring principle for the
creation of ONNX2FMU was the simplicity of use. This
means relieving the user from making many decisions dur-
ing the tool usage, reducing the number of steps to the final
result, and designing a clear interface for mapping ONNX
model inputs and outputs to the FMI model description.

FMI standard compliance. The FMI Standard is now
in its third major release (Junghanns et al. 2021), the FMI
3.0 version, which differs from the FMI 2.0 version in
several aspects. In FMI 3.0, the scheduled execution in-
terface type has been added to the model exchange and
co-simulation types, allowing the activation of individual
model partitions by an external scheduler. Model parti-
tioning capabilities for concurrency on single-core CPUs
are not of interest for executing ML models in a simu-
lation; therefore, we excluded the possibility of generat-
ing the scheduled execution interface type. In general,
the execution of ML models does not require the FMU
to be equipped with a solver. A straightforward choice
is hence to implement the model exchange interface type.
Since a few modelling environments, e.g., Modelon Im-
pact, allow us to import only co-simulation FMUs, the
usability range of a tool for ML model encapsulation is
significantly widened by implementing the co-simulation
interface. The co-simulation interface brings the burden
of having a solver within it that remains unused.

In the first version of ONNX2FMU, we focus on the
FMI 2.0 and 3.0 Standard versions. The FMI 2.0 is the in-
dustry standard, supported by more than 90% of the tools
published on the FMI Standard website!. Supporting the
FMI 3.0 contributes to the state of the art in ML model im-
plementation in the FMI standard. The two versions of the
standard present meaningful differences in the data types
that can be specified in the model description: The FMI
2.0 supports only four data types, i.e., float, integer, string,
and boolean, whereas the FMI 3.0 extends these data types
to support a broader spectrum of data precision and sig-
nature. Relevant data types to the scope of this project
are the float type for the FMI 2.0 and the Float32
and Float 64 types for the FMI 3.0. All other data types
are considered according to the ONNX specifications dis-
cussed in the next paragraph. The variability and causality
of variables are restricted to the combinations allowed by
the standard. If not specified by the user, the causality
of model entries is determined by their connections in the
ONNX graph model, which divides entries into inputs and
outputs. The available variability options for input and
output causalities are “discrete” and “continuous”. The
FMU developer should carefully set the appropriate vari-
ability according to the behaviour of the model to be en-
capsulated; in the co-simulation mode, the capability flag
providesIntermediateUpdate should be set ac-
cordingly. The combinations of platforms and operating

Uhttps://fmi-standard.org/tools/

646

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218645

Session: FMI Tool Development in Track for FMI and Related

systems in the following are generally supported:

e win32, win64, linux32, linux64, and aarch64-darwin
for the FMI 2.0;

¢ x86_64-darwin, aarch64-darwin, x86-linux,
x86_64-linux, aarch64-linux, x86-windows,
x86_64-windows, and aarch64-windows for the FMI
3.0.

ONNX standard. The Open Neural Network Ex-
change (Open Neural Network Exchange 2025) is a stan-
dard for the interoperability and exchange of ML models.
It defines a set of operators typically used in ML and DL
models and a common format for moving models through
different ML frameworks, tools, runtimes, and compilers.

Deploying an ML model to production requires repli-
cating part of the ecosystem used to train the model. We
refer to this ecosystem using the word runtime, that is,
the code that enables running inference (and training) on
a target hardware platform. In addition to guaranteeing
interoperability, converting a model to the ONNX format
allows developers to use optimised runtime libraries from
different providers, see, e.g., those listed in (Open Neu-
ral Network Exchange 2025). A runtime can be defined
in any language suitable for the production application,
C, Java, Python, JavaScript, C#, WebAssembly, or ARM.
We chose the ONNX runtime among the many available
options because of its licensing, the large community of
contributors to the project, and the availability of C code
examples that allowed us to bootstrap the development of
the tool.

Data types conversions. ML models require support for
floating point numbers in single or double precision, and
eventually, they may include other data types. An ML
model supporting single-precision floating point numbers
requires casting double-precision inputs/outputs, with a
potential loss of accuracy of the model. The model data
type dictates how the tool must manage data types inter-
nally: If a model is single-precision, a double-precision
float must be converted before and after inference; other-
wise, no casting operations are required. The same be-
haviour is adopted for integers.

Inputs, outputs, and naming conventions. A generic
ML model can have multiple inputs and output nodes,
whose elements must be mapped to the FMI model de-
scription. The FMI 2.0 version foresees only scalar vari-
ables in the model description. Therefore, arrays must
be flattened, and a naming convention is required to map
scalars to their original position. A logical choice seems
to use the array name suffixed with the element indexes
separated by a specific character. Conversely, the FMI 3.0
allows both the declaration of scalar and array variables in
the model description. Declaring array variables produces
a more compact and comprehensible model description,
but poses a hurdle to mapping variables to their physical
meaning.

User experience. The interaction with the tool should
consist of two subsequent stages. The mapping of the
ONNX model entries to the FMI model description occurs
first. During this stage, the user can define the variabil-
ity associated with ONNX model arrays, if different from
continuous, and, optionally, a description of each el-
ement of an array. The latter will likely be shown by the
graphical user interface (GUI) of the importer software,
thus easing the connection of the model with other com-
ponents of the simulation.

Once a model mapping scheme and an ONNX model
are available, an FMU model can be generated. There
are many possible approaches to FMU generation, rang-
ing from a GUI to Python scripting. A GUI would consist
of only a few buttons to trigger the generation process, and
it would be more effective if it integrated the model map-
ping declaration. Interaction via CLI is simple to develop
and effective in integrating within a pipeline of operations.
FMU generation via Python scripting is always possible
by calling the tool’s functions directly.

3 Results

The result of this research is ONNX2FMU. The design
choices are explained in the following with examples.

3.1 Getting started

ONNX2FMUis written in Python to ease code usability,
interaction with ONNX models, and to exploit a suite
of available open source tools. A Python interpreter is
required, and ONNX2FMU has been tested for versions
greater than or equal to 3.10. ONNX2FMU is distributed
as a Python package available in PyPI (PyPI, Python Pack-
age Index 2025), and can be installed with

pip install onnx2fmu

from the command line. To generate FMUs,
ONNX2FMU requires a C compiler for the target
platform to be installed on the machine and added to the
system PATH variable.

3.2 FMU model mapping

ONNX2FMU can handle ONNX models presenting mul-
tiple input and output nodes. The description of en-
try variables is organised hierarchically, including global
model information and input/output node descriptions.
The JSON file format has been chosen for model mapping
due to its suitability in representing hierarchically organ-
ised information. In the input and output sections, nodes
are identified using the same name used in the ONNX
model; this allows ONNX2FMU to map the information
correctly. A user can specify the variability of each node,
which is set to continuous by default. Node variabil-
ity should be handled carefully because it might cause
sequence-based models to return wrong results when they
are not called with the right time step. Array elements can
be enriched with a description, which is shown in the FMI

DOI
10.3384/ecp218645

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

647

A Tool for the Implementation of Open Neural Network Exchange Models in Functional Mockup ...

model description and might be shown by the importer UL
Descriptions of entries help the user to link them with their
physical meaning. If the list of descriptions is provided, it
must match the elements in the array; otherwise, a warn-
ing is returned, and no description will be present for the
elements of that array. The array notation provided by
the FMI 3.0 Standard is left out of the scope of this work
because it makes it difficult to connect array entries with
their physical meaning. However, the authors acknowl-
edge that array notation could be useful when an ONNX
model presents several inputs and outputs; for this reason,
it will be addressed in a future release of ONNX2FMU.

3.3 FMU build

The FMU build workflow starts with the target model to
encapsulate and the model mapping JSON file. If not
specified, the target platform is that of the system where
the build process is carried out. A template of files and
folders to be populated with ONNX model information
was developed. The Python interpreter generates the C
code by creating a copy of the FMU template and fill-
ing it using Jinja2 (Jinja Project 2025), a template engine
that populates special placeholders in text files with con-
text variables and renders the final document. The CMake
build system (CMake: A Powerful Software Build Sys-
tem 2025) is used to build the project, download the lat-
est ONNX runtime version, compile the library, and zip it
to an FMI-compliant archive. For separation of concerns,
ONNX2FMU takes care of template filling and ONNX
model information retrieval using Python, whereas compi-
lation issues and packaging are handled by CMake, which
natively supports the build and compilation toolchain.

The Python CLI is realised using typer (FastAPI 2025),
a Python package that creates simple command line appli-
cations with documentation, autocompletion, and typing
support.

Validation and testing are the last two steps of
ONNX2FMU’s workflow, which is depicted in Figure 1.
The automated validation of the FMU is made possible
by the FMPy (FMPy 2025) package. Testing a generated
FMU can hardly be automated because of the case-specific
nature of ML models, which requires appropriate data.

3.4 Examples

Use cases are presented to show the functionalities and the
potential of ONNX2FMU in the following paragraphs.

A simple model. To showcase the flexibility of
ONNX2FMU, we present how a generic graph-based
model can be wrapped in an FMU. The simple model takes
three scalar inputs x1,x,x3 and returns a vector output y.
In the model, two calculations occur: x4 = x1 +x; and
Xs = x — x3, and the results are concatenated in y = [x4, Xs]
and returned as output. A graphical representation of the
model is depicted in Figure 2, which was obtained using
the Netron web app”. A Python pseudo-code example for

Zhttps://netron.app/

creating the model using the PyTorch framework is re-
ported in Listing 1.

Listing 1. Python code for the creation of a simple graph-based
computational model using PyTorch.

class ExampleModel (nn.Module) :

def _ _init__ (self):
super (ExampleModel, self).__init__ ()

def forward(self, x1, x2, x3):
x4 = x1 + x2
x5 = x2 - x3
torch.cat ([x4, x57,
return x

X = dim=0)

Exporting the model is easy in PyTorch as in other ML
frameworks and usually, it can be done in a few lines of
code. Models can be exported to the ONNX format with
or without weights; ONNX aims to define the model struc-
ture primarily through its set of primitives. ONNX mod-
els are not necessarily shipped with weights either because
they do not need them, as in the case of the model above,
or because weights might be application-specific.

Once the ONNX model has been exported, inputs and
outputs are mapped to the FMU model description. This
is achieved through the JSON schema in Listing 2.

Listing 2. The JSON mapping between inputs and outputs of
the simple model.

{

"name": "simple-model",
"description": "Example description.",
"FMIVersion": "2.0",
"input": [
{"name" . "X 1"
. g— 4
"description": "A scalar input"},
{"name" . "X 2"
. — 4
"description": "A scalar input"},
{"name": "X 3",
"description": "A scalar input"}],
"output": [
{"name": lly",
"description": "The output array",
"names": ["outputl", "output2"]}]

}

Notice that the output array schema presents the
"names" item, which allows users to describe each array
entry in the FMI model description. Finally, FMU gener-
ation is triggered via the command line by providing the
ONNX model and description as follows

onnx2fmu build \\
model.onnx \\
modelDescription. json

Time series prediction. Predicting temperature varia-
tions in a solid exposed to a heat source is a common en-
gineering problem. A partial differential equation (PDE)-
based model (Bergman 2011) can describe a temperature
field variation in, e.g., an ideal 2D solid of interest. The

648

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218645

Session: FMI Tool Development in Track for FMI and Related

onnx

jinja2

ONNX

model

Populate
FMU {

typer CMake FMPy
Generate Compile Validate
source code FMU and test

template

Figure 1. The workflow to embed an ONNX model in an FMU with ONNX2FMU.

Figure 2. A simple graph-based model for summation and sub-
traction of inputs.

temperature field equation is

(PTL P
B oxr = ody? 0

aT 1
5 (D
where T is the temperature, ¢ is the time, ¢ is the thermal
conductivity of the material, and x and y are the coordi-
nates of a point in the solid. Equation 1 is discretised in
time and space and resolved by a custom Python model
that is reported in the ONNX2FMU documentation’. In
the following, we define & = 0.9, an initial temperature
Tp = 100°C, and x,y € [0,1].

In some engineering applications, we may be interested
in predicting the temperature variation at a point of the
solid, e.g., x, = 0.5,y, = 0.5. A surrogate model of the
studied solid would avoid resolving the full-scale model
to know the temperature only in (x,,y,), thus saving a
meaningful computational effort. A simple way to cre-
ate a surrogate model for predicting temperature varia-
tions is to train a neural network using a time series of
heat source variation u(¢) as inputs and temperature varia-
tions y(¢) as outputs. We use a Recurrent Neural Network
(RNN) (Bengio, Goodfellow, Courville, et al. 2017) to ex-
trapolate the temperature in (x,,y,). A dataset of temper-
ature trajectories y() in (x,4,y,) is generated resolving (1)

3 github.com/HyRES-FBK/onnx2fmu/

with the boundary condition
u(t) = (—1)720j sin(¢/8 + j 1t /8) + Tp,

applied on the side with x = 0.0, where j is the index of a
trial input profile, for z € [0,25] seconds. An example of
the applied temperature profile u(¢) and temperature pro-
file y(¢) in (x,,y,) obtained by simulating the system using
the custom Python script is depicted in Figure 3.

T 200 —u(t)
= — ()
o

2 00|]
5

2)

g 0 1

|
0 1,000 2,000 3,000 4,000 5,000

Time [s]

Figure 3. Input temperature profile and the temperature in the
centre of the plate.

The model was trained on a dataset with M = 40 trajec-
tories, each with 5000 time points sampled at a 1/200 s~ !
frequency. Data were organised in tuples (x,y), where x
was a sequence with R = 200 consecutive time points, and
y was the (R + 1)-th time point. The mean squared error

1 Y .
MSE = NZ()’i—)’i)z
i

measures the predictive power of the RNN, where ; is the
value predicted by the RNN, i is the sample index, and N is
the number of samples. The efficiency of the RNN model
improves if normalised data are used for training. How-
ever, it is impractical to deal with normalisation issues in
a simulation environment; it would be more useful to pro-
vide unscaled data directly with the model. This issue can
be easily resolved by adding normalisation and denormal-
isation steps to the network as shown in Listing 3.

Listing 3. Python code of the RNN model.

class HeatRNN (nn.Module) :
def __init__ (self, input_size,
hidden_size, output_size,
num_layers, norm_params) :

DOI
10.3384/ecp218645

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

649

https://github.com/HyRES-FBK/onnx2fmu/

A Tool for the Implementation of Open Neural Network Exchange Models in Functional Mockup ...

super (HeatRNN, self).__init__ ()
x_min, x_max, y_min, y_max =
norm_params

self.register_buffer ("x_min", torch
.tensor (x_min))
self.register_buffer ("x_max", torch
.tensor (x_max))
self.register_buffer ("y_min", torch
.tensor (y_min))
self.register_buffer ("y_max", torch

.tensor (y_max))

self.rnn = nn.RNN (input_size,
hidden_size, num_layers,
batch_first=True)

self.fc = nn.Linear (hidden_size,
output_size)

def forward(self, x, h=None):
X = (x — self.x_min) / (self.x_max
- self.x_min)
out, _ = self.rnn(x, h)
out = self.fc(out)
out = out *x (self.y_max - self.
y_min) + self.y_min

return out

In the code Listing 3, the normalisation parameters are
passed as inputs when the network is initialised and stored
as buffers, that is, they will be part of the network state
when exported to the ONNX format, and they will re-
main untouched by PyTorch optimization algorithms dur-
ing training. The RNN is initialised with 2 hidden layers,
an input size of R, and a 64-unit hidden layer. The RNN
output is further processed by a linear layer that maps the
RNN output to the output scalar. Figure 4 shows the be-
haviour of the average value of MSE calculated over the
training and validation data sets with the number of train-
ing epochs. The effectiveness of the trained model was
satisfactory for this example after 1000 epochs using the
Adam optimiser with a learning rate of 107.

100 - — Train‘in 1 ‘
g loss
—— Validation loss
1072 g
3]
% -4 | |
< 10
106 y
1078 & \ \ \ \ \ [
0 200 400 600 800 1,000
Epoch

Figure 4. The MSE behavior through training epochs.

Finally, the trained RNN model is exported in ONNX
format and encapsulated in an FMU for testing. The FMU

was tested using FMPy (FMPy 2025), a Python toolkit for
FMU validation and simulation. An example of the pre-
diction produced by the RNN model is shown in Figure 5.
In FMPy, a model can be simulated by providing inputs

100 -

Temperature [°C]
N
S
[

|
0 1,000 2,000 3,000 4,000 5,000

Time [s]

Figure 5. An example of the predicted and analytically obtained
temperature profiles in (x4,y,).

directly from a text (CSV) file, which simplifies simula-
tion setup when the RNN model presents R = 200 inputs.
The recursion in the RNN model is carried out by provid-
ing R times the number of model variable values at each
time step. However, we acknowledge that:

* the length of the input array, R = 200, makes the
initialisation of such a model impractical and time-
consuming in a GUI-based simulator, and

* the repetition of values along rows is memory-wise
inefficient.

This aspect will be improved in the next major release of
ONNX2FMUby implementing feedback loops declared in
the model description.

In this simple example, we showed how a powerful
model such as an RNN can be wrapped in an FMU with a
few lines of code. The code of the example is released in
GitHub®.

4 Concluding remarks

We presented ONNX2FMU, a tool for converting ONNX
models into FMI-compliant FMUs. The tool supports
multiple FMI versions and cross-platform compilation and
simplifies the deployment of ML models in simulation en-
vironments. Future work includes optimising runtime per-
formance, integrating a GUI to favour a broader tool adop-
tion, implementing FMI 3.0 array notation, and develop
support for stateful models using feedback loops directly
through the model declaration file.

“github.com/HyRES-FBK/onnx2fmu/blob/master/tests/
example3/generate-example-model.ipynb

650

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218645

https://github.com/HyRES-FBK/onnx2fmu/blob/master/tests/example3/generate-example-model.ipynb
https://github.com/HyRES-FBK/onnx2fmu/blob/master/tests/example3/generate-example-model.ipynb

Session: FMI Tool Development in Track for FMI and Related

References

Bengio, Yoshua, Ian Goodfellow, Aaron Courville, et al. (2017).
Deep learning. Vol. 1. MIT press Cambridge, MA, USA.
Bergman, Theodore L (2011). Fundamentals of heat and mass

transfer. John Wiley & Sons.

Bertsch, Christian, Fabian Jarmolowitz, and Oliver Lenord
(2024). “Using the Functional Mock-up Interface (FMI) for
Al applications”. In: Center for Model-Based Cyber-Physical
Product Development 33.18. DOI: 10.13140/RG.2.2.35730.
47043.

Brunton, Steven L., Bernd R. Noack, and Petros Koumoutsakos
(2020). “Machine Learning for Fluid Mechanics”. In: Annual
Review of Fluid Mechanics 52.Volume 52, 2020, pp. 477-
508. 1SSN: 1545-4479. por: 10.1146/annurev-fluid-010719-
060214.

CMake: A Powerful Software Build System (2025). URL: https:
/lcmake.org/ (visited on 2025-03-26).

FastAPI (2025). Typer: A library for building CLI applications.
URL: https://typer.tiangolo.com/. (accessed: 28.04.2025).
FMPy (2025). URL: https://fmpy.readthedocs.io/en/latest/ (vis-

ited on 2025-03-27).

Jinja Project (2025). URL: https://jinja.palletsprojects.com/en/
stable/ (visited on 2025-03-26).

Junghanns, Andreas et al. (2021). “The functional mock-up in-
terface 3.0-new features enabling new applications”. In: Mod-
elica conferences, pp. 17-26. DOI: 10.3384/ecp2118117.

Lee, Jay H., Joohyun Shin, and Matthew J. Realff (2018). “Ma-
chine learning: Overview of the recent progresses and im-
plications for the process systems engineering field”. In:
Computers & Chemical Engineering 114. FOCAPO/CPC
2017, pp. 111-121. 1SSN: 0098-1354. por: 10. 1016/ .
compchemeng.2017.10.008.

Lund, Henrik et al. (2017). “Smart energy and smart energy sys-
tems”. In: Energy 137, pp. 556-565. ISSN: 0360-5442. DOTI:
10.1016/j.energy.2017.05.123.

Malik, Hasmat et al. (2018). “Applications of artificial intelli-
gence techniques in engineering”. In: Sigma 1. DOI: https:
//doi.org/10.1007/s10845-021-01771-6.

mlfimu (2025). URL: https://github.com/dnv-opensource/mlfmu
(visited on 2025-04-06).

Modelica Association (2025). Functional Mock-up Interface
Specification. URL: https://fmi- standard.org/docs/3.0/. (ac-
cessed: 24.03.2025).

NEURECO: Automatic Parsimonious Neural Networks Genera-
tion (2025). URL: https://www.adagos.com/neureco (visited
on 2025-03-27).

Open Neural Network Exchange (2025). URL: https://onnx.ai/
(visited on 2025-04-06).

PyPI, Python Package Index (2025). URL: https://pypi.org/ (vis-
ited on 2025-03-26).

Rueden, Laura von et al. (2020). “Combining Machine Learning
and Simulation to a Hybrid Modelling Approach: Current and
Future Directions”. In: Advances in Intelligent Data Analysis
XVIII. Ed. by Michael R. Berthold, Ad Feelders, and Georg
Krempl. Cham: Springer International Publishing, pp. 548—
560. ISBN: 978-3-030-44584-3.

Schweidtmann, Artur M. et al. (2021). “Machine Learning in
Chemical Engineering: A Perspective”. In: Chemie Ingenieur
Technik 93.12, pp. 2029-2039. Dor1: 10.1002/cite.202100083.

Simcenter Reduced Order Modeling software (2025). URL:
https://plm.sw.siemens.com/en- US/simcenter/integration-
solutions/reduced-order-modeling/ (visited on 2025-03-27).

Simulink - Simulation and Model-Based Design (2025). URL:
https://www.mathworks.com/products/simulink.html (visited
on 2025-03-27).

DOI
10.3384/ecp218645

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

651

https://doi.org/10.13140/RG.2.2.35730.47043
https://doi.org/10.13140/RG.2.2.35730.47043
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1146/annurev-fluid-010719-060214
https://cmake.org/
https://cmake.org/
https://typer.tiangolo.com/
https://fmpy.readthedocs.io/en/latest/
https://jinja.palletsprojects.com/en/stable/
https://jinja.palletsprojects.com/en/stable/
https://doi.org/10.3384/ecp2118117
https://doi.org/10.1016/j.compchemeng.2017.10.008
https://doi.org/10.1016/j.compchemeng.2017.10.008
https://doi.org/10.1016/j.energy.2017.05.123
https://doi.org/https://doi.org/10.1007/s10845-021-01771-6
https://doi.org/https://doi.org/10.1007/s10845-021-01771-6
https://github.com/dnv-opensource/mlfmu
https://fmi-standard.org/docs/3.0/
https://www.adagos.com/neureco
https://onnx.ai/
https://pypi.org/
https://doi.org/10.1002/cite.202100083
https://plm.sw.siemens.com/en-US/simcenter/integration-solutions/reduced-order-modeling/
https://plm.sw.siemens.com/en-US/simcenter/integration-solutions/reduced-order-modeling/
https://www.mathworks.com/products/simulink.html

	Introduction
	Methodology
	Results
	Getting started
	FMU model mapping
	FMU build
	Examples

	Concluding remarks

