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Abstract

We present two methods for speeding up co-simulations
under the FMI standards. By smoothing the input sig-
nals inside each FMU, the internal integrator may avoid
re-initialization. This can significantly reduce the number
of model and Jacobian evaluations. To further help the
integrator we also propose a predictor compensation tech-
nique tailored to the input smoother. The main benefit of
our methods is the ease-of-use, requiring no model manip-
ulations, nor any special co-simulation master algorithms.
The methods are implemented in Dymola 2025x and vali-
dated with both an academic mechanical model as well as
industrial thermo-fluid examples where we often observe
over 10 times faster co-simulation and, in the best cases,
up to 400 times faster. One of these thermo-fluid examples
is used in the OpenSCALING research project to generate
training data for constructing surrogate models, for which
the input smoothing is especially important to speed up the
dataset creation. Keywords: FMI, Efficient co-simulation,
Input smoothing, Thermo-fluid

1 Introduction

To facilitate simulation of complex and large systems
spanning over multiple technical domains, co-simulation
techniques are commonly employed. This may, for ex-
ample, include the integration of several domain-specific
tools into one single simulation.

In this article we present two methods for speeding
up co-simulation under the FMI standards, versions 2
and 3 (Modelica Association 2022; Modelica Association
2023). Co-simulation of multiple FMUs face several nu-
merical challenges. Among others, these involve stability,
accuracy, efficiency, and step-size control. A wide range
of methods for handling these challenges can be found
in the literature. For stabilization techniques see for ex-
ample Benedikt and Drenth (2019) for non-iterative co-
simulation and Arnold (2010) for iterative co-simulation.
For adaptive co-simulation with step-size control we refer
to Schierz, Arnold, and Clauf} (2012).

Here we consider the efficiency challenge by proposing
two methods to speed up the numerical integration inside
each co-simulation FMU. More precisely, our techniques

are useful for FMUs using variable-step solvers. Firstly,
we apply input smoothing to create continuous inputs to
the FMUs. Thus, we may avoid restarts of the integrators
inside the FMUs. To further help the integrator we also
present a predictor compensation method.

Input smoothing methods have previously been dis-
cussed in the literature, see e.g. Andersson (2016) and
Busch (2016) where the smoothing is achieved by the
master. These references also include stability and con-
sistency analyses of related smoothing techniques.

However, the main benefit of the input smoothing and
predictor compensation presented in this article is the
ease-of-use. No special co-simulation master is required.
Nor do we require any changes to the models that are ex-
ported to FMUs .

Indeed, in our implementation in Dymola 2025x you
only need to set the corresponding options before export-
ing your model to an FMU and the input smoother, with
or without predictor compensation, will then be included
in the generated code. The resulting FMU can then be
used with most co-simulation masters, in particular ver-
sions of the classical non-iterative, parallel master.! Fur-
ther, FMUs using input smoothing may be co-simulated
with FMUs not using it.

Avoiding integrator re-initialization at communication
points may improve performance for any variable step-
size solver. But this is especially true for multistep meth-
ods as they have to restart at order one, with a tiny internal
step size. While ramping up both the order and the step
size, several costly model and Jacobian evaluations are re-
quired. In this article we consider this class of integrators.
More precisely the implementations CVODE and IDA
from SUNDIALS (Gardner et al. 2022) and DASSL from
Brenan, Campbell, and Petzold (1996).2 In the context of
models exported from Dymola these are arguably the most

IThe exceptions involve masters that set the input derivatives. Fur-
ther, since the input to an FMU using input smoothing is delayed, such
FMUs cannot be used in co-simulation masters which rely on setting
an input and then immediately reading the new output without first per-
forming a doStep.

2The input smoothing does not depend on which solver is used, but
the predictor compensation requires modifications tailored to the solver
implementation.
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widely used variable-step solvers in co-simulation FMUs.
Note that fixed-step solvers, e.g. the commonly used Dy-
mola inline methods, do not benefit from input smoothing.

However, even with smoothed inputs, continuing the
integration over communication points comes with ad-
ditional challenges and problems. We identify and ad-
dress these issues. To alleviate the main problem caused
by avoiding integrators restarts, we arrive at the afore-
mentioned predictor compensation. In Andersson (2016),
this technique was discussed in a similar context for in-
tegrators with a Nordsieck history representation (e.g.
CVODE). In this article we extend the idea to the DAE
solvers DASSL and IDA and tailor it to work optimally in
combination with input smoothing.

To validate these methods we study their application in
both academic models and thermo-fluid examples. One
important example is how input smoothing can benefit the
creation of datasets for training surrogate models. For this
purpose we examine the effect of smoothing inputs on a
demonstrator of the OpenSCALING research project, de-
livered by the industry partner Bosch.

Finally, we note that FMI 3 comes with the powerful
capability Intermediate Update Mode, where inputs can
be communicated between FMUs also during the com-
munication intervals. This allows for more advanced co-
simulation masters and can also be used to reduce the
number of integrator restarts. As an example we mention
the Transmission Line Method (R. Braun and Krus 2013;
Robert Braun and Fritzson 2022) where physically moti-
vated time-delays are introduced. While our methods are
not motivated by physical considerations, their benefit is
that they do not require any special modeling methodol-
ogy or corresponding co-simulation master.

2 Co-simulation with input smoothing

Co-simulation of multiple FMUs can be performed us-
ing a variety of methods. For example iterative methods,
higher-order input extrapolation, or non-iterative stabiliza-
tion techniques. However, we consider this to be out-of-
scope for the current presentation. Rather, the purpose of
this article is to investigate techniques for speeding up the
simulation inside each FMU. Therefore, we here only con-
sider the classical parallel co-simulation algorithm (also
known as non-iterative or weak-coupling co-simulation).

2.1 Classical co-simulation

During classical co-simulation the FMUs communicate
with each other at communication points. This means that
the input to each FMU may be computed from outputs of
other FMUs. The interval between communication points
(the communication interval) may vary in size. To ad-
vance the time from one communication point to the next,
a doStep call is made in each FMU. The doStep compu-
tations may be done in parallel.

The classical approach for handling inputs inside each
FMU is to keep any inputs constant throughout the com-
munication interval (zero-order hold). Then, at the next

communication point a jump is made to the newly received
input values.

We refer to the above algorithm as classical co-
simulation with each FMU using classical input handling.

During a dosStep call an integrator is employed inside
the FMU. The here considered integrators CVODE, IDA,
and DASSL are all variable step-size solvers. That is,
they have their own step-size sequence. Normally, but not
necessarily, there are several integrator steps during each
communication interval.

When using classical input handling (zero-order hold)
the input signal (as seen by the integrator) is piecewise
constant with jumps at the communication points. There-
fore, the integrator needs to restart at each such point. This
is costly for any variable step-size solver, but especially so
for multistep methods.

2.2 Input smoothing

In contrast to classical input handling, the purpose of the
proposed input smoothing is to construct input signals
which are continuous over communication points. The
idea is to do this inside the FMU such that no modifica-
tions to the co-simulation master or the exported models
are required, cf. Figure 1.

User User

u Fy u Ay

FMU FMU ]

Input

Smoother

~ A

] vy y
Solver Solver

\ o A

u y 1] 1 y
Model Model

Figure 1. On the left is the abstract structure of a Classical
FMU, on the right the modified variant. The input smoothing
can be visualized as an additional block between user and model
processing the inputs. Input # provided by the user is converted
to the interpolated # signal. Additionally, an interaction of the
input smoothing block and the solver has to be implemented.

Therefore, at each communication point, the input val-
ues provided from the master are not immediately set.
Instead, we ramp up to these values such that they are
reached at the end of the communication interval. In
this way, continuous, piece-wise linear input signals are
achieved, c.f. Figure 2. This must be done with care to
also handle the case of variable communication interval
lengths.
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Figure 2. The orange smoothed input signal instead of the blue
hold signal is used by the model

As the integrator inside the FMU only sees this
smoothed input, then we can allow the integrator to con-
tinue integration without restarts at communication points.

An important assumption here is that the integrator does
not step past any communication points before receiving
new inputs. Otherwise, it would use the previous piece-
wise linear segment of the input interpolation in the new
interval. This is incorrect and also gives a discontinuity in
the input signal at the end of the integrator step. An im-
plementation of the input smoothing must make sure that
the integrator, at each communication point, has a coincid-
ing internal step. This restriction may lead to an increased
number of successful solver steps and Jacobian updates.

The input smoother is enabled in Dymola by setting the
flag

Advanced.FMI.UselInputSmoother,

and then translating your model to a co-simulation FMU.
As algorithm select either CVODE, IDA, or the Dymola
solver DASSL. Input smoothing for FMI 2 is supported
from Dymola 2025x. FMI 3 support is available from Dy-
mola 2025x Refresh 1.

We have identified two potential problems that may be
encountered when using the proposed input smoothing.
Firstly, the smoother introduces additional input delays.
Secondly, when the integrator uses orders higher than one,
mere continuity of the input signals is not enough for op-
timal performance. These problems are discussed in the
upcoming subsections together with proposals for how to
handle them.

2.3 Delayed inputs

Already classical input handling introduces input delays
as the inputs are set at the communication points and then
held throughout the communication interval. The input
smoothing makes the situation worse by further delay-
ing the input. This additional delay is effectively half a
communication interval as we ramp up to the new inputs,
reaching them at the end of the interval. Therefore, input
smoothing must be used with care when the co-simulation
setup is sensitive to delays.

For such setups, a potential solution may be to slightly
reduce the communication interval to compensate for the

additional delays. For co-simulation problems where the
majority of the CPU time is spent inside the FMUs, then
using the input smoother may still be faster, even with the
smaller communication interval. This idea is further pur-
sued with the mechanical example model in Section 3.1.

2.4 Discontinuous input derivatives

The input smoothing guarantees that all smoothed inputs
seen by the integrator are continuous. But, already the
first input derivative is generally discontinuous. When the
solver uses any order higher than one, these discontinuities
may still cause problems for the integrator.> This may
result in reduced step size, reduced order, and Jacobian
re-evaluations, meaning that we lose some of the benefits
from the input smoothing.

The main problem is that the integrator makes bad pre-
dictions. The multistep methods considered in this article
use old solution values to predict the next step. The pre-
dictor can generally be described by a polynomial of the
same order as the current order of the BDF method used.
This polynomial is evaluated at the time of the next step to
get the prediction. For details see Brenan, Campbell, and
Petzold (1996) and Radhakrishnan and Hindmarsh (1993).

The prediction is then used as a start guess in the cor-
rector iteration that solves for the actual next step. A bad
start guess makes it more difficult for the quasi-Newton
method to solve the corrector equations, which may cause
extra model evaluations. In the worst case, the Newton
method fails, meaning reduced step size, or even Jacobian
re-evaluations.

Further, the multistep methods use their predictor to es-
timate the local error. The estimate is based on the differ-
ence between the predictor and the solution of the correc-
tor iterations. When the predictor is bad the error estimate
will typically be far too large. The result is that steps are
often discarded when they should not be. Even if no steps
are discarded, the large error estimates typically result in
reduced step sizes and reduced order while the integrator
recovers and improves its error estimates.

2.5 Predictor compensation

To alleviate the problem of discontinuous input deriva-
tives, we tailor the predictor compensation of Andersson
(2016, Chapter 7) to our input smoother and extend it
to the IDA and DASSL solvers. The zeroth- and first-
order terms of the predictor polynomial are already rea-
sonable, the first-order term due to the continuity of the in-
put achieved by the input smoothing. Thus, the predictor
compensator implemented in Dymola 2025x targets the
second-order term. Higher order terms are not considered
as they would be computationally too complex to handle
with the employed technique, offsetting any benefits.

The predictor compensation is employed as needed at
each communication point. It requires an approximation
of how the second state derivative is affected by jumps in

3In contrast, note that this is not a problem for classical input han-
dling due to the re-initialization done at every communication point.

DOI
10.3384/ecp218653

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

655



Input Smoothing for Faster Co-Simulation using FMI

the input derivative. As the dependency has to be traced
through the model, we need to approximate the Jacobian
of the state derivatives with respect to the inputs. If the
FMU supports directional derivatives (Modelica Associa-
tion 2022), these can be used for this task.

Dymola FMUs support directional derivatives and re-
quire two model evaluations to compute them. This means
that the predictor compensation comes with an additional
cost that offsets some of the benefits.

To enable the predictor compensation in Dymola, fol-
low the steps in Section 2.2 to enable the input smoothing.
In addition, enable the flag

Advanced.FMI.UsePredictorCompensation.

As algorithm select either CVODE, IDA, or the Dymola
solver DASSL. Predictor compensation is supported in
the same Dymola versions as input smoothing, except for
DASSL where support starts with Dymola 2026x.

3 Applications

We present a simple mechanical model along with two dif-
ferent thermo-fluid examples to highlight the benefit of
input smoothing. As mentioned in Section 2.3, the de-
layed inputs can introduce errors in the simulation. The
mechanical example is especially sensitive to delays, and
a method to handle it is presented in Section 3.1. The
thermo-fluid models studied in Section 3.2 and Section 3.3
are also affected by delays, but for these examples the fo-
cus lies on the performance gain of the input smoother.

3.1 Simple mechanical example

To illustrate the effects of input smoothing and predictor
compensation we start with a simple mass-spring-damper
system. The example is selected not only to showcase the
improved simulation statistics, but also to see the effects
of input smoothing on a model famously sensitive to co-
simulation delays.

3.1.1 Setup

Consider the mass-spring-damper system in Figure 3. We
split the model at the connection between the mass compo-
nent and the spring-damper component. Then we export
each submodel into an FMU. From the mass FMU, posi-
tion and velocity is sent to the spring-damper FMU. The
latter sends the force to the former. Please see Table 1 for
non-default physical and numerical parameters.

SOring
L :

EpringDam--' :-|||'-;-| Fm

mass

m=1 kg

Mass FMIL

fixed

0.5 N

Figure 3. Simple mass-spring-damper model split into two co-
simulation FMUs.

Table 1. Physical and numerical parameters of the mass-spring-
damper co-simulation problem. Only non-default values are
listed.

Parameter Value
Mass start position 1 m
Mass (m) 1 kg
Spring constant (c) 1 N/m
Damping constant (d) 0.5 Ns/m
Simulation stop time 100 s
Communication interval 0.2s

The co-simulation is performed using a classical non-
iterative master. For the mass FMU we include either
CVODE, IDA, or DASSL as solver inside the FMU to
integrate its two states: position s and velocity v. For
this FMU we either use classical input handling or input
smoothing with or without predictor compensation. The
spring-damper FMU has no states so it uses no integrator
and only uses classical input handling.

3.1.2 Result and analysis

Select simulation statistics for all combinations of solvers
and input options are listed in Table 2. In each case, the
number of f-evaluations is significantly reduced by input
smoothing. The additional evaluations required by the
predictor compensation is more than repaid by the fur-
ther reductions in f-evaluations made by the solvers. Es-
pecially for CVODE and IDA. On top of that, the more
expensive Jacobian-evaluations are significantly fewer.

When using classical input handling, CVODE con-
structs one Jacobian at the start of each communication
interval (due to the integrator restart) and then keeps it
throughout the interval. Enabling input smoothing reveals
that these Jacobians actually can be kept for a longer time,
resulting in only 40 Jacobian evaluations throughout the
co-simulation. Also enabling the predictor compensation
helps CVODE’s nonlinear solver and reduces the number
of required Jacobians to only 14.

For IDA, the reduction in Jacobian-evaluations given
by the predictor compensation is not significant. How-
ever, when only using input smoothing, then IDAs non-
linear solver fails to converge seven times during the co-
simulation. With the help of predictor compensation to
improve the start guesses, all of these failures are elimi-
nated revealing the numerical soundness of this technique.

The position of the mass (s) is plotted over time in
Figure 4 for the co-simulations using IDA in the mass
FMU. A direct simulation of the full system is provided
as reference. As expected the classical non-iterative co-
simulation attenuates the oscillations. This is made worse
by the extra delays introduced by the input smoothing.
As previously discussed, the predictor compensation has
no direct effects on the simulation results, but rather only
helps the solver. Since the result of the input smoother
with predictor compensation coincides with that without
compensation, we do not include it in the figure.
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Table 2. Simulation statistics for the mass FMU from the mass-spring-damper co-simulation problem. Three different solvers are
tested with classical input handling or input smoothing (IS) with or without predictor compensation (PC). The statistics are the
number of times the model is evaluated by the solver (f-evals), the number of times the solver Jacobian is approximated (Jac-evals),
and the number of times the predictor compensation evaluates the model (PC f-evals).

CVODE IDA DASSL
Option f-evals Jac-evals PC f-evals | f-evals Jac-evals PC f-evals | f-evals Jac-evals PC f-evals
Classical | 5471 499 5958 4960 5042 4543
IS 2708 40 4715 1030 2653 534
IS & PC 853 14 996 2692 916 996 1481 259 996
Mass position (s) Mass position (s)
! Reference (no co-sim) ! —=— Classical input handiing, communication interval 0.2
0s] —m— Classical input handling 034 —ae— Input smoother and predictor compensation, communication interval 0.15

—e— Input smoother
0.6

0.4

0.24

[m]

0.0

024

044

06

084

-1

T T T
0 5 10 15 20

Figure 4. The mass position (s) over the first 20 s of simulation
of the mass-spring-damper co-simulation problem with commu-
nication interval H = 0.2 s, with or without input smoothing.
The reference solution is given by simulating the full model di-
rectly in Dymola.

Table 3. Simulation statistics for the mass FMU from the mass-
spring-damper co-simulation problem. The co-simulations are
run using IDA. The simulation statistics for communication in-
terval H = 0.2 s is as in the previous experiments, cf. Figure 4
and Table 2. To compensate for the additional delay, the interval
has been reduced to H = 0.15 s for the simulations with input
smoothing, cf. Figure 5.

IDA
Option H [s] | f-evals Jac-evals PC f-evals
Classical 0.2 5958 4960
IS 0.2 4715 1030
IS & PC 0.2 2692 916 996
IS 0.15 2380 471
IS&PC 0.15 1506 357 1330

As a final experiment we reduce the communication in-
terval to H = 0.15 s for the simulations with input smooth-
ing to compensate for the additional delay. With this
choice of H, the result is similar to the result when using
classical input handling with H = 0.2 s, cf. Figure 5. From
Table 3 we can see that even with this smaller communi-
cation interval the simulations with input smoothing are
cheaper in terms of f-evaluations and Jacobian-evaluations
inside the mass FMU. Indeed, the statistics are even better
compared to Table 2.

A disadvantage is that the master has to handle inputs

0.6

0.4+
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0.0
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-0.44

06

084

-1

T T T
0 5 10 15 20

Figure 5. The mass position (s) over the first 20 s of simulation
of the mass-spring-damper co-simulation problem. The simula-
tion with input smoothing and the predictor compensation has
a reduced communication interval to compensate for the addi-
tional co-simulation delay. Under these settings the results are
similar.

and outputs more often. Thus, in a larger system, reducing
the communication interval could increase the number of
function evaluations in other part of the coupled system.
Further, in practice, it is not always possible to arbitrarily
change the communication interval, e.g. due to real-time
requirements.

3.2 HIL simulation of a heat pump

In this section the model of a heat pump as used for
Hardware-in-the-Loop (HiL) is examined. On the HiL en-
vironment the model is simulated with a (usually) fixed
synchronization rate. The input signals of the model are
updated in each step. The input signal often has a small
noise. In this section we only replicate the boundary con-
ditions by applying a constant input signal with a small
noise. The example uses a single FMU, the surrounding
environment is represented by the input signals. This ex-
ample is focussed on the overall performance gain, it does
not examine the effect on the results due the modified in-
put trajectory, or the introduced delay.

3.2.1 Setup

The domestic heat pump used in this example is based
on the HiL use case of (Schulze, Griber, and Huhn
2011) and uses the TIL-Suite (TLK-Thermo GmbH 2024).
It is a simple vapor compression cycle with efficiency-
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based compressor, Bernoulli expansion valve, two 1D-
discretized TubeAndTube HX (heat exchangers) and an
ideal separator model. The refrigerant is R-407C.

O

P m_flow

Figure 6. The valve opening area is input of this domestic heat
pump model.

A large simulation study with almost 17000 single sim-
ulations was conducted to analyze the CPU time perfor-
mance. The cumulative CPU time exceeded 5 days and 16
hours. The model is exported as FMU 2.0. The solver tol-
erance is set to 107>, Five independent "dimensions" have
been varied: The solver (CVODE, DASSL and IDA), the
smoothing method (Classical, IS, and IS & PC), model
variant, the boundary condition (constant, small noise,
large perturbation), the doStep interval length.

The model variants are:

e Baseline (1s): Low number of HX volumes
with num. ODE-Jacobian and 1s stop time,
83 continuous-time states, Helmholtz fundamental
equation of state.

e Baseline (100s): Low number of HX volumes
with num. ODE-Jacobian and 100s stop time,
83 continuous-time states, Helmholtz fundamental
equation of state. Used to display what happens if
the time constants of the model are relatively smaller
compared to the doStep interval lengths.

¢ High-Resolution (1s): High number of HX vol-
umes with num. ODE-Jacobian and 1s stop time,
403 continuous-time states, Helmholtz fundamental
equation of state. Used to display the influence of
the model complexity.

¢ Analytical Jacobian (1s): Low number of HX vol-
umes with analytical ODE-Jacobian and 1s stop
time, 83 continuous-time states, spline-based fluid
properties. Used to display the influence of the com-
putation of the ODE-Jacobian.

There are three types of boundary conditions for the ef-
fective valve opening area:

» Constant input: 1mm?

* Small noise: Imm? plus a small random number
varying at each time step with an amplitude of 0.1%,
simulating signal noise.

* Large stochastic perturbation: Imm? plus a large
random number varying at each time step with an
amplitude of 50%, replicating abrupt controller out-
put changes.

The time constants of the Baseline model with 83
continuous-time states range from 0.1 s to 65 s with a mean
of 2.1s and a median of 0.58s. The time constants of the
High-Resolution model with 403 continuous-time states
range from 0.023s to 52s with a mean of 0.6s and a me-
dian of 0.1s.

3.2.2 Result and analysis

Figure 7 shows the performance gain of CPU time rela-
tive to the reference case plotted against the number of
doStep calls. The Classical FMU is the fastest scenario
if the inputs are constant (best-case scenario). If the input
of the Classical FMU is updated, then the solver is reset
and the CPU time increases significantly (worst-case sce-
nario). The IS variant has a limited solver step size, and an
increased number of Jacobian evaluations compared to the
Classical variant with constant input signal, as mentioned
in Section 2.2.

The Baseline (100 s) demonstrates smaller perfor-
mance gains if the input is subject to large perturbations.
The model responds comparatively quickly because the
dostep interval length is larger compared to the model
time constants. The model has to be brought closer to the
steady state, and hence the computational effort is higher.
The effect of input smoothing diminishes. Using constant
input values (dotted line, best-case scenario) is signifi-
cantly faster, but also the results are significantly different.

The High-Resolution model demonstrates that as the
number of continuous-time states of the model increases,
the computational cost of the f- and Jacobian-evaluation
also rises. Consequently, the speed-up factor of the IS and
IS & PC method becomes more significant. The model
variant with analytic Jacobian is generally faster than the
Baseline with num. Jacobian. In all cases, the speed-up
factor with analytic Jacobian is at a lower level, but the
overall picture is unchanged.

The minimum and maximum speed-up summarized in
Table 4 of the variants shown in Figure 7 illustrate that
input smoothing is beneficial, if inputs have to be updated
and the synchronization step size is low.

Augmenting the input smoother with predictor compen-
sation is occasionally very beneficial. In Figure 7 we see
the benefits when the input is altered by large perturbation
and IDA or DASSL is used. When only the input smoother
is used, these represent the cases where the solver runs into
severe problems due to the large changes in the derivative
of the smoothed input signal. Investing a few extra model
evaluations at communication points to help the solver
predictor is repaid many times over. In the best cases, we
see about 10 times faster simulation compared to only us-
ing input smoothing (about 100 times faster compared to
the reference). The most striking is that the number of
Jacobian evaluations is reduced from about 1000 (IS) to
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Performance gain as speed-up factor of CPU Time, Reference: Classical FMU
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Figure 7. The figure illustrates the CPU time performance gain across various simulations, represented as a speed-up factor relative
to the solid blue reference scenario. The x-axis indicates the number of doStep calls required to reach the fixed stop time. The
upper half of the figure represents simulations with small noise in the boundary condition, while the lower half shows results under
large stochastic perturbations. The reference scenario, defined as the Classical FMU with altered input (regardless of perturbation
amplitude), represents the worst-case in terms of performance. Conversely, the Classical FMU with constant input exhibits the
fastest execution and serves as the best-case scenario. As the number of doStep calls with the same stop time increases, the
performance gain improves in all plots. The Baseline (100 s) shows smaller performance gains under large perturbation, as the
model responds comparatively quickly. With increasing model complexity (High-Resolution), the performance gain becomes more
pronounced. Utilizing an analytic Jacobian reduces the impact of input smoothing while preserving the overall trend. Adding
predictor compensation is sometimes very beneficial with large perturbation boundary conditions using DASSL or IDA, reaching
about a factor of 10 times faster simulations compared to when only using input smoothing.
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Table 4. The table provides a summary of Figure 7, presenting the minimum and maximum speed-up factors across selected
number of doStep calls. The range reflects the differences among model variants and boundary conditions. The rows compare
the IS and IS & PC performance with updated inputs to the best case scenario. Across all scenarios, IS consistently improved
performance. However, the speed-up factor is highly influenced by time constants, model complexity and the input trajectory.

Speed-up factor
. Number of doStep calls
Solver Variant | 100 1000 10000

CVODE | Classical with constantinput | 1.3-5.5 | 3.1-34.0 | 48-614 52-70.1

IS, altered input | 1.2-4.5 | 1.7-22.8 2.6-25.7 3.6-26.2

IS & PC, altered input | 1.2-4.1 | 2.1-18.0 | 2.2-20.3 2.3-21.0
DASSL | Classical with constant input | 1.8 -7.8 | 7.6 - 66.5 | 21.3-338.9 | 25.8 - 847.2
IS, altered input | 1.4-43 | 2.4-14.6 | 34-122.0 | 4.1-403.0
IS & PC, altered input | 1.5-4.9 | 2.7-14.6 | 4.1-113.2 | 13.1-282.1
IDA | Classical with constant input | 1.8-8.8 | 7.1-67.8 | 17.2-272.5 | 19.0-532.2
IS, altered input | 1.3-4.1 | 25-149 | 3.2-119.6 | 4.1-299.2

IS & PC, altered input | 1.4-3.8 | 3.1-149 | 3.8-1059 | 8.3-206.2

about 50 (IS & PC), showcasing the numerical soundness
of the predictor compensation.

With that said, we can also see that predictor compen-
sation is not always needed. When the input is altered by
small noise, then the changes in input are small enough
for the integrator to function well, even without the help
of predictor compensation. This is evident by looking at
the internal step-size sequence of the integrator inside the
FMU. Very often the integrator takes the largest possible
step, i.e. the length of the communication interval. In these
cases, the predictor compensation only contributes its ad-
ditional f-evaluations and therefore worsens performance.
This is also the case in the experiments with CVODE
when the input is altered by large perturbation and the
number of dostep calls is large.

It is important to note that the results of the simula-
tions performed are not identical. The user must evaluate
whether the results are still within tolerance, even with the
altered input trajectory effectively causing additional time
delay.

3.3 Heat pump simulation data for training
surrogate models

To show the possible improvements for industry-relevant
applications, we investigate the application for a detailed
model of an air-source heat pump. The used model is a
demonstrator of the OpenSCALING research project, de-
livered by the industry partner Bosch. It consists of a re-
frigeration cycle with controller and is modeled using the
TIL-library of TLK-Thermo. The outdoor heat exchanger
is especially detailed; apart from the liquid-vapor behav-
ior of the R-290 refrigerant, it models the moist air flow
including condensation and frost formation on the heat ex-
changer surface. The diagram view of the R-290 refriger-
ation cycle (or just model) can be seen in Figure 8.

In practice, system models including refrigerant cycles
can be computationally expensive, due to the detailed rep-
resentation of the physical phenomena (evaporation, con-
densation, ice formation, ...). Required simulation times

Figure 8. Diagram of the R-290 refrigerant with 7 inputs.

and computational resources set limits to repeated evalu-
ation of the models. This restricts how the model can be
used, for example in virtual testing, controller design or
setpoint optimization. Here, data-driven surrogate mod-
eling comes into play: By sampling input signals to the
physical simulation model, a dataset is created, with which
surrogate models are trained. This means that one has to
accept a high computational upfront cost for generating
the surrogate model; but once it is trained, its evaluation
becomes really cheap and can be easily used for millions
of evaluations. For example, University of Augsburg ex-
amines in the research project OpenSCALING Balanced
Neural ODEs for generating surrogates. This method has
been demonstrated to decrease computation times by a
factor up to 100 (Aka et al. 2025).

3.3.1 Operating points

Evaluation times of the heat pump model can consider-
ably differ depending on the operation point; it is espe-
cially high for reverse-cycle operation to defrost the out-
door heat exchanger, or for oscillating controller behav-
ior, that frequently arises during virtual controller devel-
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opment. On the other hand, if steady state operating condi-
tions are reached, adaptive-step size solvers quickly solve
the model. To evaluate the impact of the input smoother
for these different cases, we include it with (1) tuned con-
trollers that avoid oscillating behavior and (2) controller
with high gains to enforce oscillations. Additionally, the
model is operated at air-conditions that avoid frost forma-
tion.

3.3.2 Setup

The heat pump system consisting of the refrigeration cycle
and controllers is exported as a co-simulation FMU 2.0
with DASSL as solver. The inputs are defined in a co-
simulation master. Moreover, the heat-pump model with
setup for controllers is also implemented in pure Modelica
and simulated for comparison.

3.3.3 Result and analysis

The results for the simulation statistics related to the solver
are found in Table 5, while computational time measured
is presented in Table 6.

Table 5. Simulation statistics of the solver for the heat pump
co-simulation FMU exported with DASSL, from the controller
model for the two different operation points. Simulated to
T =500 s with communication interval H = 1. In addition the
model is simulated using pure Modelica, with applicable statis-
tics for f-evals and Jac-evals. The model with tuned controllers
that avoid oscillating behavior in the output is labeled Low Os-
cillations while the model with controllers with high gains to
enforce oscillations in the output is labeled High Oscillations.

Low Oscillations
Option f-evals | Jac-evals | Events | PC f-evals
Classical | 8251 4546 506
IS 1950 209 6
IS & PC 1910 222 6 998
Modelica | 1038 140

High Oscillations
Option f-evals | Jac-evals | Events | PC f-evals
Classical | 71939 9073 514
IS 70734 7011 16
IS & PC | 70442 6936 16 926
Modelica | 35343 6113

When the controller is tuned to avoid oscillating behav-
ior (Low Oscillations) the input smoother performs well,
reaching over 40 times faster co-simulation. This is clear
from looking at the reduced number of events in Table 5.
The Classical FMUs generate events every time the inte-
grator re-initializes. Thanks to the continuity of the input
these re-initializations are not needed, drastically speed-
ing up the simulation. On the other hand, adding predictor
compensation slightly worsens performance for the same
reason as described in Section 3.2.2 when the input is al-
tered by small noise, c.f. Figure 7.

Although still having a positive impact, input smooth-

Table 6. CPU-time statistics of the solver for the heat pump
co-simulation FMU exported with DASSL, from the controller
model for the two different operation points. CPU-time gain
is calculated with classical FMU as baseline. Simulated to
T = 500 s with communication interval H = 1. In addition
the model is simulated using pure Modelica. The model with
tuned controllers that avoid oscillating behavior in the output is
labeled Low Oscillations while the model with controllers with
high gains to enforce oscillations in the output is labeled High
Oscillations.

Low Oscillations
Option CPU-time [s] | CPU-time gain
Classical 129 1
IS 3.11 41.5
IS & PC 3.27 39.5
Modelica 2.35 54.9
High Oscillations
Option CPU-time [s] | CPU-time gain
Classical 321 1
IS 273 1.18
IS & PC 255 1.26
Modelica 183 1.75

ing is less effective for the model containing high oscil-
lations. The reason is that the simulation inside the heat
pump FMU is challenging for the integrator given the used
communication interval. The work is dominated by a lot
of internal steps in each interval, overshadowing the per-
formance gained by avoiding restarts at communication
points. Adding predictor compensation improves perfor-
mance slightly.

In all cases it is most efficient to simulate the model us-
ing pure Modelica, but employing input smoothing tech-
niques decreases computational effort to be more in level
with the Modelica implementation.

4 Conclusion

In this article we have introduced techniques that may
speed up co-simulation by orders of magnitude, namely
input smoothing and predictor compensation. The main
benefit is their ease-of-use. No special co-simulation mas-
ter is required, nor any manipulations of the models that
are being exported to FMUs. Rather, the options are easily
enabled in Dymola 2025x and the logic is handled entirely
by the generated code.

By smoothing the input to the FMU, integrator re-
initializations at communication points can be avoided.
For multistep solvers like CVODE, IDA, and DASSL, this
may heavily reduce the number of model and Jacobian
evaluations. The benefits of smoothing the input were ob-
served for the examples studied in this article, with some
configurations seeing over 400 times faster co-simulation.

However, the smoothed input may still have discontin-
uous derivatives. To handle this problem we proposed the
use of predictor compensation to help the integrator inside
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the FMU. When enabled, additional model evaluations are
performed to improve the guess for the next internal state.
In the best cases we observed performance gains of a fac-
tor 10 compared to only using input smoothing.

Based on the experiments with the thermo-fluid appli-
cations we conclude that input smoothing gives the great-
est benefits when the co-simulation FMU is computation-
ally heavy but the communication interval is small com-
pared to the dynamics of the model inside the FMU. This
is a commonn case in applications as the communication
interval often is set by external factors, such as stability
and accuracy of the overall co-simulation problem or real-
time requirements, c.f. Sections 3.2.

Predictor compensation is most beneficial when, addi-
tionally, the integration with input smoothing is not too
trivial. Thereby, predictor compensation performs best
within a sweet spot where the integration inside the FMU
is not too simple, nor too difficult. In our experiments IDA
and DASSL are more often helped by predictor compen-
sation.

Although, the results presented in this article are very
promising, further work is needed to study the effect
of input smoothing and predictor compensation for co-
simulation setups containing several coupled FMUs.
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