
Comparing the Predictive Event Handling Algorithm LookAhead
to Rollback and Early Return

Felix Tischer1 Simon Genser1 Daniel Watzenig1, 2 Martin Benedikt1, 3

1Virtual Vehicle Research GmbH, Inffeldgasse 21a, 8010 Graz, Austria,
{Felix.Tischer,Simon.Genser,Daniel.Watzenig,Martin.Benedikt}@v2c2.at

2Institute of Visual Computing, Graz University of Technology, Inffeldgasse 16/2, 8010 Graz, Austria,
daniel.watzenig@tugraz.at

3SETLabs Research GmbH, Elsenheimerstraße 55, 80687 Munich, Germany, Martin.Benedikt@setlabs.de

Abstract
LookAhead is a lightweight algorithm that improves event
handling in co-simulation by predicting events and adjust-
ing the communication step size beforehand. It operates
without requiring subsystem event handling capabilities.
This paper compares LookAhead with other event han-
dling methods, namely Rollback and Early Return, from
the perspective of performance and applicability. Results
from the presented example show that LookAhead per-
forms on par with iterative co-simulation methods and is
particularly well-suited for handling shared state events.
Keywords: co-simulation, non-iterative co-simulation, hy-
brid simulation, event handling

1 Introduction
In co-simulation, the continuousness of signals is critical
for performance and accuracy. The coupling error at cou-
pling time steps can introduce discontinuities in a signal
that might lead to slower computation, as a subsystem’s
solver algorithm might have to reset or use smaller steps.
Methods like anti-aliasing can be used to smoothen input
signals and improve co-simulation results. Such signals
usually represent physical quantities that are continuous
in nature. In other cases, a signal can actually be discrete,
which can pose a particular challenge for co-simulation.
This is a common challenge in the simulation of cyber-
physical systems, where physical systems interact with or
are being controlled by discrete control signals. A discrete
change in signals, state or behaviour in a simulation model
in general is called an event.
Events can be the result of different types of causes (Cel-
lier and Kofman 2006). An event that is triggered at a
certain moment in time, irrespective of the system’s state
(within limitations), is called a time event. An event that
is directly caused by the system reaching a certain state on
the other hand is called a state event.
A challenge of discrete signals unique to co-simulation are
shared events, where events are being triggered in multiple
subsystems by the same cause; if such an event occurs in
only some subsystems or at different times, it can lead to
incorrect and unphysical behaviour like violating bound-

ary conditions or conservation of energy.
Due to the evolving sophistication of co-simulation tech-
niques and the increasing importance of simulation and
co-simulation in industrial development, proper event han-
dling has become more and more important and has been
a major focus in the development of the fmi3 standard.

2 Algorithm Description
2.1 LookAhead
For systems that lack sophisticated event handling sup-
port, LookAhead can improve the results of a co-
simulation by predicting events and adapting the commu-
nication step size (Tischer et al. 2023). It does so by defin-
ing event indicators, which are sets of functions of a sub-
system’s inputs, outputs, and parameters. Each function
z in an event indicator (called an event condition) is de-
fined in a way such that z < 0 means that this condition
of the event is fulfilled. An event occurs when all con-
ditions are fulfilled, which is equivalent to when the last
condition function crosses zero. Via extrapolation of these
event condition functions, an event can be predicted, and
the communication time step can be reduced and adapted
in advance to hit the event precisely. For a more thorough
description, see (Tischer et al. 2023).
As LookAhead only relies on a subsystem’s interface, it
can be used with any subsystem regardless of its own event
handling capability and whether it is a black-box or not.
On the other hand, knowledge about its events is needed
to a degree that their conditions can be modelled; addi-
tionally, the event conditions also need to be able to be
modelled in this manner instead of relying on internal vari-
ables.

2.2 Rollback
Rollback capability means that a system’s state can be re-
set to a prior point in simulation, usually the previous time
step. FMUs with the canGetAndSetFMUstate attribute are
able to store their state at any point in a simulation and thus
support Rollback.
To improve event handling in our use case, the subsys-
tems store their state at every communication time step.

 

DOI Proceedings of the 16th International Modelica&FMI Conference 663 
10.3384/ecp218663 September 8-10, 2025, Lucerne, Switzerland    

 

 

 

 

 

 

 

 

 

 

RRR  



This save state is being stored externally (meaning, out-
side of the FMU by the importer) for one communication
time step, when it is being overwritten by the new one if
the step finished successfully. If the step fails, both FMUs
in the example system (see following section) are being
reset to the beginning of the step, and a new step size is
chosen. In our example, if an event occurs in the mid-
dle of a communication time step, the simulation is being
rolled back to the last time step and then a new commu-
nication step size is chosen so that the event occurs at the
communication point.

2.3 Early Return
Early Return is an fmi3 functionality (Modelica Associa-
tion 2024) where an FMU can do a simulation step and,
for example when encountering an event, stop and return
early from the step. This is different from Rollback in that
the step was still finished successfully and does not have to
be repeated. The importer has to declare to the FMU that
it supports Early Return and can handle subsystems not
finishing a whole step. In our example, the FMUs return
early when encountering an event to allow for additional
exchange of signals.
Early Return can be requested from the outside by the im-
porter as well via callback functions, but this has not been
utilised in this setup.

3 Example Setup
3.1 Example System
The example system that the algorithms are being tested
on consists of two connected spring-damper-mass sys-
tems. The upper mass is connected to a fixed ceiling at
height x = 0 while the lower mass is connected to the up-
per one. Both connections have the same stiffness and
damping coefficients, k = 100,d = 1. This system was in-
troduced in (Dejaco and Benedikt 2017) and was slightly
adapted from there.
The system’s state is described by four variables, the posi-
tions and velocities of both blocks, which can be described
by the following system of first order differential equa-
tions:

ẋ1 = v1

ẋ2 = v2

v̇1 =− 2k
m1

x1 −
2d
m1

v1 +
k

m1
x2 +

d
m1

v2 −g

v̇2 =− k
m2

x2 −
d

m2
v2 +

k
m2

x1 +
d

m2
v1 −g

(1)

with i ∈ 1,2 denoting the upper and lower block and x,v
their position and velocity, respectively. The half height of
each block is ∆x= 0.55. When splitting the system up into
two subsystems, each block takes the other one’s position
and velocity as inputs and provides its own as outputs.
This simple, continuous-state system is being complicated
by two collision events. The upper block can collide with

Figure 1. Schematic of the spring-damper-mass system. Figure
was taken from (Dejaco and Benedikt 2017) and adapted.

the ceiling, and both blocks can collide with each other.
The former is a private event that only affects the up-
per block, while the latter is a shared event between both
blocks.
The conditions for the wall block’s private event, the col-
lision with the ceiling, are

−v1 < 0
−x1 < ∆x.

(2)

The ceiling collision is handled internally and simply
by subsystem 1 by flipping its velocity:

v′1 =−v1. (3)

Primed variables denote variables after the event. The
conditions for the shared event, the collision between the
blocks, are

v1 − v2 < 0
x1 − x2 < 2∆x.

(4)

The binary collision is handled internally (and seper-
ataly) in both blocks. Each block does this by using
the formulas for elastic collisions to calculate the post-
collision velocities. For calculating the time steps between
collision and the next communication step with the other
block, not only the block’s own velocity is being calcu-
lated but also the other one’s to prevent the possibility of
false succeeding collisions.
The calculation is being done by these formulas:

v′1 =
m1 −m2

m1 +m2
v1 +

2m2

m1 +m2
v2

v′2 =
m2 −m1

m1 +m2
v2 +

2m1

m1 +m2
v1.

(5)

Even though the equations are the same in both blocks,
the results can differ, as each block can only access
the other’s velocity as an input (that is dependent on
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coupling step size and method, and is therefore affected
by coupling error), and not the exact state value.

Similarly to how the event prediction works in LookA-
head, the FMUs use event indicators to trigger their events
internally. For an event Ei, we call its event indica-
tor Mi(z), analogously to the naming conventions of the
fmi standard. Then, the event Ei occurs if and only if
Mi(z) < 0. To use the event conditions Equation 2 and
Equation 4, we just define the Mi(z) for each event as the
minimum of its event conditions:

Mi(z) = min jzi j, (6)

where zi j is the j-th event condition for event Ei.

3.2 Co-simulation Setup
The subsystems have been compiled as FMUs, using the
Modelica Reference FMUs as a basis. Three versions have
been compiled of each subsystem: one without any ad-
ditional event handling methods, one implementing Roll-
back, and one implementing Early Return. The simulated
time is 20 seconds, the longest time in which the described
system shows interesting behaviour. After that, the sys-
tem reaches a somewhat stable configuration and no more
events occur.
The co-simulations have been carried out in Python, using
the fmpy package to import and simulate the FMUs. The
Early Return FMUs are equipped with Intermediate Up-
date (Modelica Association 2024) support, which is used
to log the FMUs’ states at every microstep.
In total, simulations with five different setups have been
carried out.

• The first, the monolithic simulation, serves as ground
truth for our analysis; this was not a co-simulation,
but was in fact a simulation of the total system of four
equations that the two subsystems consist of. The re-
sults have been saved with a time step of ∆t = 0.001s,
which is the time step of the fixed step solver inte-
grated in the FMUs.

• The second setup is the standard co-simulation,
where no event handling has taken place. This means
that collisions are only being handled internally by
the subsystems, and the master is only exchanging
information between them without any additional
handling such as inter- or extrapolation, event trig-
gering, or time step adaptations. It has been car-
ried out with a fixed communication step size of
∆t = 0.08s, which was also the default for the fol-
lowing setups.

• The third setup is similar to the second, except
the addition of the LookAhead algorithm turned on,
evaluating the event indicators once per simulation
loop and adapting the communication step size when
an event is being predicted. The minimum step size

for LookAhead was equal to the solver step size of
∆t = 0.001s.

• The fourth setup used Rollback. The Rollback FMUs
were equipped not only with the capability to reset
their state, but also with two additional output signals
to indicate if (called EventSensor) and when (called
EventTime) an event occurred. If an event occurred
at a time that was too far away from a communica-
tion point, the co-simulation algorithm would reset
the last simulation step and repeat it with the event
time as target time.

• The final setup utilises Early Return. The FMUs have
been adapted in such a way that, when they are being
initialised with earlyReturnAllowed = True, they re-
turn early immediately before an event occurs. For
this, the event indicators M(zi) have been slightly
changed by subtracting a small threshold m = 0.05
from their final value, but also changing the condition
for triggering the event to M(zi) < m. This makes it
so that the event trigger remains unchanged, but the
FMU returns early right before the event to allow for
exchange of signals before it.

4 Analysis
4.1 Criteria
To compare and analyse the different co-simulation
methods, the position error is used as a key metric. This
error is calculated as the absolute difference between the
position and a reference or ground truth over time, as
given in Equation 7, where xi is the position of block i in
the co-simulation and x̂i is its counterpart in the reference
solution. By examining the magnitude and trend of this
error, we can assess the accuracy and performance of each
co-simulation method.
By taking the root mean square of it, we can get an
average error as well. The RMS provides a single
scalar value that reflects the overall magnitude of the
error, smoothing out noise and highlighting consistent
deviations. By evaluating the RMS error up to different
points in time, we can observe how the accuracy of the
simulation evolves and compare the performance between
the different methods. This time-resolved analysis helps
to identify when and where the simulation performs well
and when it diverges.

As the performance of a hybrid system can depend
heavily on how well the events are being handled, the tem-
poral accuracy of events (especially the shared event) is
also an important metric that has a direct effect on the po-
sition error. Temporal accuracy refers to how closely the
timing of key events in the simulation aligns with those
in the reference solution. To evaluate temporal accuracy,
timestamps of the collision events are compared across
simulations, and any deviations are measured as time off-
sets.
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This is defined in Equation 8, analogously to the posi-
tion error, summing up the time differences of all n events
that occur during simulation. To get a meaningful result
for the time error, all the events in the reference solu-
tion have to have a counterpart in the co-simulation. If
the co-simulation has events that do not occur in the ref-
erence, or any events of the reference do not occur in the
co-simulation (or, if it is a shared event, do so only in some
of the partaking subsystems) the time error can not be cal-
culated.

epos = |x1 − x̂1|+ |x2 − x̂2| (7)

etime =
n

∑
i
|ti − t̂i| (8)

4.2 Results
In Figure 2 we can see the results of the five simulations
described in subsection 3.2. One can see that the shared
events are the main contributor to the position error; after
each collision the deviation from the reference increases.
Table 1 shows the RMS position error for each simulation
co-simulation method evaluated at three different time
points: 2 seconds, 10 seconds, and at stop time of 20
seconds. The standard co-simulation already has a large
error at t = 2s of 0.609 m after just 2 events, and increases
by a factor of ten at t = 10s. At this point, the simulation
is already far off from the reference solution.
In contrast, LookAhead and Rollback maintain consis-
tently low errors across the entire simulation, indicating
strong and stable accuracy. Finally, Early Return starts off
with the lowest error at t = 2s (0.071m), but experiences
a significant jump to 2.036m at t = 10s and a slightly
lower 1.936m at t = 20s. This accumulating error leads
to a diverging behaviour and indicates that the events
have not been handled well enough. Overall, LookAhead
and Rollback demonstrate the most stable and accurate
performance over time, while Early Return is accurate at
first, but diverges later in the simulation.
One can see that the Rollback and LookAhead co-
simulations performed better than the standard co-
simulation and the one using Early Return; we split the
result analysis into these two groups.

When looking at the results for the standard and Early
Return variants (Figure 3), we can see that not only
the trajectories diverge, but also the event times do not
match and, at a simulation time of about 12 seconds,
an additional collision takes place which changes the
following trajectory so much that the position error is
no longer a meaningful metric. The issue with Early
Return is that, unlike Rollback, it is not possible to reset
a simulation, so when one subsystem returns early but
the other has completed its step (or stopped at a later
time during the step), it is no longer possible to reset the
simulation to the point of the event. The early returned

subsystem can be fed with updated inputs, but the other
one not. Two possible ways to solve this problem is
to either schedule the subsystems sequentially, which
works when one of them tends to stop earlier, or to allow
the FMUs to be stopped externally, which introduces
non-deterministic behaviour (Broman 2017). If there
is an untreated discrepancy in event times between the
involved subsystems, an additional error is introduced,
possibly leading to a bigger time discrepancy at the next
shared event and explaining the increasing position error.

On the other hand, the Rollback and LookAhead
methods (Figure 4) performed much more accurate, with
no additional events occurring. From a first impression,
one might assume that Rollback and Early Return perform
the same; in both cases, the simulation introduces an
additional communication step at the event time, and
calculating exactly the same outside of any events. The
difference is that, as Rollback is an iterative co-simulation
technique, the system has more accurate information
during subsequent repeated calculation steps, resulting in
reduced error — independent of how the event is handled.
Unlike Early Return, both subsystems in Rollback calcu-
late to the same event time as their communication step is
governed by the co-simulation algorithm, preventing any
time discrepancy errors.
LookAhead handles shared events as well as Rollback
does, even though it is non-iterative. It accomplishes this
by reducing the communication step size just before the
event, introducing additional communication steps. Since
collisions significantly contribute to position error, the
co-simulation improves accuracy by increasing signal
exchange when it matters most, while maintaining larger
step sizes elsewhere to optimize performance.

Table 1. Root mean square position error at different times.

Variant RMS@2s RMS@10s RMS@end
Standard 0.609 6.060 4.578
LookAhead 0.146 0.100 0.132
Rollback 0.139 0.178 0.159
Early Return 0.071 2.036 1.936

5 Summary, Conclusion and Future
Work

We have introduced the LookAhead algorithm, a
lightweight event handling algorithm that works by pre-
dicting upcoming state events and reducing the commu-
nication step size, and compared it to two other event
handling methods, the iterative Rollback mechanism and
fmi3’s Early Return functionality. Based on an example
system that has proven itself to be a hard task to sim-
ulate correctly due to the shared events having such a
large influence on the error, we compared each method’s
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Figure 2. An overview over all 5 co-simulation results. The upper panel shows the trajectories of
both blocks, while the lower panel shows the position error epos as calculated in Equation 7.

performance to the monolithic reference solution, a co-
simulation algorithm without any event handling, and to
each other. All three methods have their strengths, each
one having the high ground in different systems.
Rollback can significantly enhance the accuracy of a co-
simulation with comparatively small programming effort.
This is achieved by enabling a subsystem to access and
restore its internal state, and by providing a mechanism
to notify the importer when such operations should occur.
(We assume here that the importer supports this function-
ality for all three methods.) However, the main drawback
lies in the potential computational cost: for complex mod-
els, saving and restoring system states can be computa-
tionally expensive. If states are stored thousands of times
for an event that occurs only a few times, the overhead
may outweigh the benefits. This limitation can be miti-
gated by storing the system state less frequently and, if a
reset is required, reverting to an earlier point in time. Fur-
thermore, if not all subsystems support Rollback, sequen-
tial coupling must be employed. In this case, the Rollback-
capable subsystems are executed first, while the remaining
components proceed only after a successful communica-
tion step has been completed.
Early Return has its strengths in handling private events.
It not only enables recording the exact time and state at
which an event occurs, but also allows this information to
be propagated to other system components, thereby im-
proving overall accuracy. To maximise this advantage,
similarly to Rollback, Early Return FMUs can be calcu-
lated first in a sequential coupling scheme. The problem
that we encountered in this setup is that two components
utilising Early Return can give contradicting information
on when an event takes place, leading to time discrep-
ancies. This problem arises only under specific circum-

stances, but can lead to uncertain credibility in systems
with events in more than one subsystem. Another big ad-
vantage of Early Return is its versatility in how it can be
used, as aspects such as the ability to trigger Early Re-
turn from the outside (Modelica Association 2024) have
not been explored in this setup.
LookAhead operates at the importer level, managing
the communication step size of the entire co-simulation.
While this global approach may be less optimal for a sin-
gle component, it is unaffected by multiple concurrent
events. When LookAhead predicts an event, it sets the
next communication point and thus ensures that all sub-
systems are synchronized. This method remains effective
regardless of the number of events or event sources, mak-
ing it robust in managing both shared and simultaneous
events. However, its main limitation lies in the types of
events it can handle. Events must be predictable from
the component’s interface (its inputs and outputs) which
can be challenging for events that occur deep in complex
subsystems. Even though LookAhead can be applied to
any black-box subsystem, knowledge about the system’s
events is necessary to implement its event detection. Ad-
ditionally, the event must be reliably predictable: sudden
state events triggered by rapidly evolving conditions can
be difficult to anticipate and may indicate the need to re-
duce the communication step size of the continuous por-
tion of the model.
Future work aims to improve usability by supporting in-
ternal event indicators and devising a method to automat-
ically associate signals with events. On a technical level,
LookAhead is being expanded to work with other cou-
pling schemes than the standard parallel coupling, such
as sequential coupling and parallel or sequential coupling
for different communication step sizes. LookAhead is be-
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Figure 3. Comparison of the standard and Early Return co-simulation results. Although both systems
diverge from the monolithic reference solution, Early Return keeps the position error much lower.

ing implemented in the co-simulation tool ICOS, devel-
oped at Virtual Vehicle Research GmbH and included in
the co-simulation platform Model.CONNECT™by AVL
List GmbH (AVL 2023).
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Figure 4. Comparison of the Rollback and LookAhead co-simulation results. They follow the
trajectory of the reference solution very closely and keep the error at a constant magnitude.

Note that the scale of the error graph is much smaller than in Figure 2 and Figure 3.
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