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Abstract
Uncertainty Quantification (UQ) studies allow us to de-
termine whether a model is fit for a particular purpose,
as well as the operational domain in which it can be
used. Standardising the UQ analysis setup and result sum-
mary enables the iterative composition of UQ information,
which is a crucial step in evaluating model credibility. In
this paper, we present an initial attempt to specify UQ in-
formation as a cross-layer standard for Modelica-, FMI-,
and SSP-based workflows subject to two essential restric-
tions: (a) uncertainties can only be described in terms
of parameters, and (b) analysis is limited to forward un-
certainty propagation and sensitivity analysis of nonlinear
models. More analysis features are planned for the future.
The approach is illustrated using both a simple example
and an industrial use case.
Keywords: Uncertainty Quantification, Credibility, Stan-
dardization, Operational Domain, FMI, SSP, Modelica

1 Introduction
Simulation models provide an approximation of reality
with different degrees of accuracy, which has a direct im-
pact on the context in which these models are usable.
Through use case analysis in the ITEA OpenSCALING
research project1, we have identified the following work-
flows that rely on UQ:

• choosing a model with the appropriate level of rep-
resentativeness and complexity for the specific appli-
cation context,

• evaluating the model’s overall uncertainty based on
the propagation of uncertain parameters,

• performing model validation,
• conducting global sensitivity analysis of parameters,

and
• improving the accuracy of data measurements.
In this paper, we propose a data model for capturing

uncertainty quantification in a unified way across different
workflows and thus facilitating the exchange of models,
including metadata, between different stakeholders.

1https://itea4.org/project/openscaling.html.

Furthermore, we show how this data model can be in-
tegrated into Modelica2, Functional Mock-up Interface
(FMI)3, and System Structure and Parametrization (SSP)4

based workflows.
The paper is structured as follows; Section 2 provides

the motivation for the standard. Section 3 presents a sim-
ple forward UQ study while Section 4 introduces an indus-
trial use case. The data model is outlined in Section 5, and
Section 6 describes integration mechanisms with Model-
ica Association (MA) standards. Finally, Section 7 out-
lines future directions, and Section 8 concludes the paper.

2 Background and Motivation
Machine-interoperable traceability is vital for transparent
model validation and reduces reliance on implicit knowl-
edge transfer (Rosenlund et al. 2025; Otter et al. 2022).
The SSP Traceability standard draft (SSP LS Trace-
ability)5 incorporates Simulation Resource Meta Data
(SRMD) to capture verification activities, intended use,
and operational domain, supporting automated model suit-
ability evaluations. Embedding such structured metadata,
either via SRMD or directly in models, streamlines val-
idation, supports long-term credibility assessments, and
aligns with industry standards like NASA STD-7009 6and
LOTAR7. The recent Credible Simulation Process (CSP)
initiative formalizes continuous simulation credibility pro-
cesses using SSP-based layering (Ahmann et al. 2022;
Heinkel and Steinkirchner 2021).

A model’s credibility depends on how accurately it rep-
resents reality. Ensuring credibility requires rigorous ver-
ification, validation, and UQ frameworks, see, e.g., the
NASA Handbook for Models and Simulations 8 (Roy and

2https://modelica.org/language/
3https://fmi-standard.org/
4https://ssp-standard.org/
5https://github.com/modelica/

ssp-ls-traceability
6https://standards.nasa.gov/standard/nasa/

nasahdbk-7009
7https://lotar-international.org/
8https://standards.nasa.gov/standard/nasa/

nasahdbk-7009
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Oberkampf 2011; Riedmaier et al. 2021). UQ systemat-
ically evaluates confidence in model predictions. Tech-
niques such as probabilistic analysis and sensitivity stud-
ies help quantify and propagate uncertainties, guiding con-
fident interpretation of simulation results (Hällqvist et al.
2023; Otter et al. 2022).

Predictive capability extends validation by assessing
model performance across the entire feasible input space,
not just tested scenarios. Hallqvist et al. (Hällqvist et al.
2023) propose entropy-based (Shannon 1949; Kullback
and Leibler 1951) and coverage-based (Atamturktur et al.
2015) metrics to quantify a model’s numerical representa-
tiveness in both interpolation and extrapolation scenarios.
These metrics provide a quantitative foundation for evalu-
ating whether a model remains valid when applied outside
its validated input and parameter space.

3 Simple Use-Case: DC Motor
This section presents a forward UQ study propagating un-
certainties in a simple DC motor model. This kind of
study can be used to answer engineering questions, such as
whether at least 95% of the produced DC motors meet the
requirement of reaching the declared idle speed. In other
words, the aim is to assess the impact of production and
material tolerances on the DC motor’s steady-state idle
speed.

It is assumed that a standardized procedure and sup-
porting tooling are in place to enable this type of analysis
independently of the chosen modeling tool. The task of
developing a functional behavioral model of the DC mo-
tor is assigned to a simulation engineer, who is free to
select the most appropriate modeling environment. The
resulting model is delivered in executable form, accompa-
nied by a specification of the experiment setup. This setup
defines the static boundary conditions, parameter values,
estimated distributions for uncertain parameters, and the
quantities of interest to be analyzed. In addition, all meta-
data required to perform the analysis in the target envi-
ronment in a repeatable and automated manner must be
provided in a machine-readable format.

An investigation of the physical behavior of the DC mo-
tor found that the relevant dynamics can be captured by
the balance equations for electrical voltage and mechani-
cal torque, resulting in the two differential Equations (1)
and (2) implemented in Modelica.

V = R · I +L
dI
dt

+ cm ·ω (1)

J · dω

dt
= cg · I −d ·ω +Tload,mech (2)

In both equations, the following variables are defined:
• V [V ]: Supply voltage,
• I [A]: Winding current,
• R [Ω]: Winding resistance,
• L [H]: Winding inductance,
• cm [V · s/rad]: Electrical motor constant,

• Tload,mech [Nm]: Mechanical load,
• ω [rad/s]: Motor velocity,
• J[kg ·m2]: Rotor inertia,
• cg [N ·m/A]: Mechanical motor constant,
• d [N ·m · s/rad]: Mechanical friction coefficient.
To keep the investigations simple, only two physical pa-

rameters are defined as uncertain parameters and are de-
scribed with the following two stochastic distributions:

• R: N (µ = 0.1 [Ω], σ = 0.01 [Ω])

• L: U ([0.105, 0.115] [mH])

The Probability Density Functions (PDFs) related to R
and L are displayed in Figure 1, assuming a Gaussian nor-
mal distribution9 N and resp. a uniform distribution10

U .

Figure 1. Representation of the uncertain parameters R and L as
PDF

The remaining physical parameters are kept constant
along with the voltage at the terminals and the mechan-
ical load.

The motor is initially at rest (I(t = 0) = 0 [A],ω(t =
0) = 0 [rad/s]) and accelerates in response to the in-
put voltage V , assuming zero mechanical load torque
(Tload,mech = 0), until it reaches steady-state. The objec-
tive is to quantify the uncertainty in the steady-state mo-
tor speed, expressed as ω∞[rad/s] or equivalently nrpm,∞ =

ω∞ · 30
π
[rpm], based on the uncertainties in the electrical

parameters R and L. To this end, the uncertain parame-
ters are sampled using Latin Hypercube Sampling, and a
simulation is carried out for each sample. The resulting
data is used to estimate the Probability Density Function
(PDF) and Cumulative Distribution Function (CDF) of the
steady-state motor speed.

All the information required to configure the forward
UQ experiment, such as the problem description, model
reference, parameter definitions, observed variables, ex-
periment settings, and desired results, is listed in a corre-
sponding .xml file. In this file, a reference to an .ssv
file might be present, which is the standard way in SSP
to store parameters and their values. The UQ XML file
can be accessed via scripting during all stages of a for-
ward UQ workflow, including pre-processing, simulation,

9https://en.wikipedia.org/wiki/Normal_
distribution

10https://en.wikipedia.org/wiki/Continuous_
uniform_distribution
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and post-processing. External references to result files or
summaries are included where needed, see Figure 2.

Figure 2. Forward-UQ workflow: Artifacts and processing steps

For the simple DC motor example, the following data
is provided in the .xml-file defining the forward UQ
experiment:

<!-- ... -->
<uq:ParameterSet> <!-- Super set of SSP -->
<uq:Parameters>
<uq:UncertainParameter name="R">
<uq:Normal mu="0.1" sigma="0.01"

unit="Ohm"/>
</uq:UncertainParameter>

<uq:UncertainParameter name="dcMotor.L">
<uq:Uniform minimum="1.05e-4"
maximum="1.15e-4" unit="H"/>

</uq:UncertainParameter>
</uq:Parameters>

<uq:Units> <!-- SSP Units -->
<!-- ... -->

</uq:Units>
</uq:ParameterSet>

<uq:ObservedVariables>
<uq:ObservedVariable name ="omega"/>

</uq:ObservedVariables>

<uq:DesiredResults
data = "dc_motor.mat"
summary = "dc_motor_result_summary.xml"
scope = "Trajectory"
mean = "true"
pdf = "true"
cdf = "true">
<uq:Percentiles level="0.05 0.95"/>
<uq:SobolIndices order="2" total="true"/>

</uq:DesiredResults>

<uq:SimulationSettings
stopTime = "0.5"
interval = "0.01"
tolerance = "1e-4"
solver = "DASSL"/>

<uq:SamplingMethod>
<uq:LatinHypercube numberOfSamples="1000"/>

</uq:SamplingMethod>

Note, for every uncertain parameter, a nominal value is
required that can, for example, be used if only a single
simulation run shall be performed. From this data, it is

possible to perform the forward UQ experiment computa-
tions and to display typical outcomes like:

• The time response of the spreading motor speed
nrpm(t), see Figure 3,

• The PDF of the idle motor speed in steady-state, see
Figure 4 on the left,

• The CDF of the idle motor speed in steady-state, see
Figure 4 on the right,

• The first-order global sensitivity analysis related to
the motor speed trajectory over time, see Figure 5.

Figure 3. Mean, 5th and 95th percentile of the motor speed time
response

Figure 4. PDF and CDF of the motor speed at steady-state

Figure 5. First order sensitivities of the motor speed w.r.t. the
uncertain parameters R and L over time until reaching steady-
state. The interpretation is that the uncertainty of L is of rele-
vance only during the early start-up phase, while the uncertainty
of R dominates the uncertainty of the motor speed at steady-
state.

In these investigations,
• The UQ analysis of the DC motor is evaluated

for only one operational point (supply voltage V =
12 [V ] and constant mechanical load Tload,mech =
0 [N ·m]),
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• Python11 has been used to evaluate the forward UQ
experiment based on a Modelica model of the DC
motor and the experiment definitions from the .xml-
file, generating the samples, evaluating the simu-
lations through OMPython12 and OpenModelica13,
and performing the post-processing to produce the
desired results.

This illustrates how the Modelica model, together with
the estimated distributions of the uncertain parameter val-
ues and the .xml experiment settings based on the draft UQ
standard, was used to perform Forward UQ analysis with
open-source tools. The complete setup of the open-source
tools is available in the draft specification14. In the future,
the UQ .xml file will most likely be supported by many
other tools, such as Modelica-based tools15 or FMI-based
tools16.

4 Industrial Use Case: Mobile Valve
Parker Hannifin’s Hydraulic Valve Systems Division Eu-
rope17 manufactures fluid power valves for a wide range
of applications. The factory in Borås, Sweden, special-
izes in directional valves for mobile working machines.
Recently, an increased demand for valve simulation mod-
els has been noticed both from customers and internally at
Parker. Simulation models are, for instance, useful in con-
trol strategy development, energy loss minimization, and
functionality verification. To meet these demands, a pro-
cess for auto-generation of valve models, based on valve
specification data, has been developed. During this devel-
opment, several challenges emerged:

• ensuring simulation tool independence,
• protecting company Intellectual Property (IP),
• shipping model credibility information, such as UQ

experiments results, with the models.

The initial solution was to use the FMI standard and
ship the models as Functional Mock-up Units (FMUs)
providing credibility metadata in the index.html file in-
side the model’s FMU directory. However, this limits the
reusability of the credibility information in the simulation
tool and has a negative impact on traceability, hence the
need for a standardized way of shipping model credibil-
ity information with simulation models. Within the ITEA
OpenSCALING project, Parker has identified a represen-
tative use case where a UQ experiment is carried out on a
valve model. The UQ results are then packaged along with
the model in the standard format proposed in this paper.

11https://www.python.org/
12https://pypi.org/project/OMPython/
13https://openmodelica.org/
14https://gitlab.liu.se/openscaling/

work-products/d2.1-uq-layered-standard
15https://modelica.org/tools/
16https://fmi-standard.org/tools/
17https://www.parker.com/de/en/divisions/

motion-systems-group-europe/resources/about-us/
hvse.html

4.1 Valve Model
The valve model is based on the orifice equation, where
the relationship between volumetric flow q and pressure
drop, ∆P = P1 −P2, across the orifice is described accord-
ing to the time-invariant relationship:

q = A

√
(P1 −P2)

K
(3)

where the parameter K lumps the discharge coefficient
and fluid density, see e.g. (Merritt 1967; Miller 1990).
The orifice area, A, and K may be identified as uncertain
parameters. A model of such an orifice can be defined
as having two time-dependent inputs, P1 and P2, and two
time-dependent outputs q1 = q2 = q under the assumption
of incompressible flow. The Operational Domain (OD) of
this model could be viewed as a space containing all the
different feasible combinations of the two inputs P1 and
P2. The two-dimensional area, encompassing all feasible
inputs, can be summarized through a set of points that de-
fine (for example) a convex hull.

The valve used in the UQ study is one work section
of a proportional, load-sensing, pre-compensated mobile
directional control valve in the Parker L90LS series. The
core functionality of the valve is to generate a flow18 that
is proportional to an input control current, independently
of pump and load pressure variations.

4.2 Scenario
A typical valve test scenario is to connect its work ports to
a volume in a closed loop, feed it with constant pump pres-
sure, and investigate the flow and counter-pressure charac-
teristics for different input currents. Manufacturing toler-
ances lead to uncertainties in valve discharge coefficients,
so UQ experiments must be performed to investigate the
effect of these uncertainties on flow and counterpressure.

4.3 Experiment Setup
Figure 6 shows the schematics of the model used to carry
out the UQ experiment. The UQ model contains the valve
model, a hydraulic volume, and other valve model bound-
aries (e.g., constant pump supply). The valve contains
Meter-In (MI) and Meter-Out (MO) orifices that are mod-
elled according to Equation (3). The MI and MO areas
(AMI , AMO) are determined by the main spool geometry
and controlled by the main spool position via current-
controlled pilot valves. In the UQ experiment described
here, direction PABT is considered, which means that
the main spool position is controlled by input current uA.
Pump (pp) and load (pA) pressure-independent flow is
realized with a pressure compensator which controls the
pressure drop over the MI orifice. Briefly explained, the
MI orifice determines the flow (qA), while the steady-state
counterpressure (pA) is determined by the resistance of the
MO orifice for a given flow (qA).

18For example, to a cylinder that controls the boom function of a
forestry crane.
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Figure 6. Schematics of the model used for UQ in the Mobile
Valve use case. Variables within parentheses represent internal
states.

Table 1. UQ model variables.

Variable Causality Description
uA [mA] input Valve input A current
pT B [bar] input Valve port TB pressure
qA [l/min] output Valve work port A flow
pA [bar] output Volume port A pressure

Kq,MI,PABT,gain parameter MI orifice discharge coefficient (rel.)
Kq,MO,PABT,gain parameter MO orifice discharge coefficient (rel.)

The model is packaged as an SSP-file, where the valve
model FMU is connected to another FMU, exported from
Hopsan 19, which contains the volume and other valve
boundaries. The UQ model has the variables listed in Ta-
ble 1.

According to the specification, the current uA ∈ [0,900]
mA, while the tank pressure pT B ∈ [0,20] bar. The model’s
OD may thus be represented as a rectangle with corner
points as listed in Table 2 and illustrated in Figure 7. Note
that Figure 7 also shows the UQ model’s Domain of Un-
certainty Quantification (DoUQ), which is described in the
next section.

Table 2. Valve UQ model operational domain coordinates.

Point nr. uA [mA] pT B [bar]
1 0 0
2 0 20
3 900 20
4 900 0

4.4 UQ Definition
For this example, UQ experiments are carried out at points
whose coordinates are listed in Table 3, representing loca-
tions within the model’s OD.

19https://liu.se/en/research/hopsan
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Figure 7. Operational domain (OD) and domain of uncertainty
quantification (DoUQ) of the valve UQ model.

Table 3. Valve UQ model domain of uncertainty quantification
points.

Point nr. uA [mA] pT B [bar]
1 345 1
2 355 1
3 375 1
4 395 1
5 415 1
6 440 1
7 465 1
8 485 1
9 505 1
10 525 1

Within the UQ experiment, uncertain model parameters
are defined explicitly, while the resulting model output un-
certainties represent the experiment outcomes. The rela-
tive discharge coefficients of the MI and MO orifices are
assumed to be uncertain and follow truncated normal dis-
tributions, as specified in Table 4.

The experiments conducted here constitute forward
UQ, where the uncertainties in the relative discharge co-
efficients are propagated through to the port A flow and
pressure (qA and pA). For this example, the relationships
between the uncertain parameters and these observed vari-
ables can be described by the simplified expressions given
in Equation (4).

qA = AMI

√
∆pMI

Kq,MI,PABT

pA = pT B +

(
AMI

AMO

)2

∆pMI
Kq,MO,PABT

Kq,MI,PABT
.

(4)
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Table 4. Valve UQ model domain of uncertainty quantification coordinates. The uncertainties of the two parameters are esti-
mated and are described with truncated normal distributions with parameters µ,σ . ∗: The valve model’s name in the SSP-file is
"valve_model".

Uncertain Parameter Minimum Maximum µ σ

valve_model.KqMI_PABT_gain∗ 0.8 1.2 1 0.1
valve_model.KqMO_PABT_gain∗ 0.8 1.2 1 0.1

4.5 UQ study in FMI
A MonteCarlo-sampling with 1000 samples was done to
generate samples of the two observed variables qA, pA, us-
ing the UQPy python package (Olivier et al. 2020). Figure
8 shows histograms of the sample sets.
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Figure 8. Histogram of 1000 samples of each of the uncertain
parameters.

The UQ model was simulated with the Python API of
OMSimulator. The simulation was executed for all sam-
ples at each coordinate of the DoUQ. Each simulation was
run until a steady-state was reached on all model outputs.
This resulted in one sample set for each output at each op-
erating point, with 1000 samples in each set. These sam-
ple sets were then fitted to truncated normal distributions
with minimum, maximum, mean (µ), and standard devia-
tion (σ ). Figure 9 shows an example of the distribution of
the two observed variables at one operating point. Table
5 and 6 show the resulting fits at all experiment points for
the observed variables qa and pA, respectively.

Figure 10 shows violin plots of the data in Tables 5 and
6. Based on these results some observations can be made:

• Uncertainty in flow qA due to uncertainty in dis-
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Figure 9. Histogram of 1000 samples from one Monte Carlo
simulation run for each of the observed variables at operating
point uA = 400 mA, pT B = 1 bar.

charge coefficient is higher at higher current (uA) lev-
els, as the MI orifice area (AMI) is higher at higher
currents. This, in turn, results in a greater amplifi-
cation Kq,MI,PABT → qA (see Equation (3)). A similar
reasoning may be applied to explain the larger uncer-
tainty in pA at higher current levels,

• Uncertainty in orifice discharge coefficients has a
higher impact on the uncertainty of pA than that of
qA. This may be illustrated by the simplified ana-
lytical expressions of qA and pA in equation (4); qA
primarily depends on Kq,MI,PABT , while pA depends
on both discharge coefficients.

The .xml definition of the Forward UQ Experiment and
the results are shown in Listing 1 and Tables 5-6, respec-
tively.
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Table 5. Statistical data of the observed variable qA [L/min] for all UQ experiments fitted to truncated normal distributions.

qA [L/min]
ID Points [uA [mA], pTB [bar]] Minimum Maximum µ σ

1 [345, 1] 0.013 0.016 0.015 0.00067
2 [355, 1] 0.41 0.5 0.45 0.021
3 [375, 1] 2.6 3.2 2.9 0.13
4 [395, 1] 6.1 7.5 6.7 0.3
5 [415, 1] 12 15 13 0.6
6 [440, 1] 26 32 29 1.3
7 [465, 1] 42 51 46 2
8 [485, 1] 54 65 59 2.5
9 [505, 1] 59 71 64 2.7
10 [525, 1] 59 71 64 2.7

Table 6. Statistical data of the observed variable pA [bar] for all UQ experiments fitted to truncated normal distributions.

pA [bar]
ID Points [uA [mA], pTB [bar]] Minimum Maximum µ σ

1 [345, 1] 1.3 1.4 1.3 0.02
2 [355, 1] 3.3 4.2 3.7 0.17
3 [375, 1] 5.0 7.3 5.8 0.36
4 [395, 1] 5.7 9.7 7.2 0.77
5 [415, 1] 6.3 12.0 8.6 0.94
6 [440, 1] 7.1 13.0 9.6 1.1
7 [465, 1] 7.3 13.0 9.9 1.1
8 [485, 1] 7.4 14.0 10.0 1.1
9 [505, 1] 7.4 14.0 10.0 1.1
10 [525, 1] 7.4 14.0 10.0 1.1

Listing 1. The ForwardUncertaintyQuantification
element from the mobile valve use case
<!-- ... -->
<uq:ParameterSet> <!-- Super set of SSP -->
<uq:Parameters>
<uq:UncertainParameter

name="KqMI_PABT_gain">
<uq:Normal mu="1" sigma="0.1"

minimum="0.8" maximum="1.2"
unit="-"/>

</uq:UncertainParameter>
<uq:UncertainParameter

name="KqMO_PABT_gain">
<uq:Normal mu="1" sigma="0.1"

minimum="0.8" maximum="1.2"
unit="-" />

</uq:UncertainParameter>
</uq:Parameters>
<uq:OperationalDomain>
<uq:Axes>
<uq:Axis name="uA" unit="mA" />
<uq:Axis name="pTB" unit="bar" />

</uq:Axes>
<uq:Boundary>
<uq:ConvexHull>
<uq:Point coordinates="0 0" />
<uq:Point coordinates="0 20" />
<uq:Point coordinates="900 20" />
<uq:Point coordinates="900 0" />

</uq:ConvexHull>
</uq:Boundary>
<uq:ExperimentPoints>
<uq:PointSet id="PS1">
<uq:Points>
<uq:Point id="P1"

coordinates="345 1" />
<uq:Point id="P2"

coordinates="355 1" />
<!-- ... -->

<uq:Point id="P10"
coordinates="525 1" />

</uq:Points>
</uq:PointSet>

</uq:ExperimentPoints>
</uq:OperationalDomain>
<uq:Units> <!-- SSP Units -->
<!-- ... -->

</uq:Units>
</uq:ParameterSet>
<uq:ObservedVariables>
<uq:ObservedVariable name="qA"
distributionApproximation="Normal" />
<uq:ObservedVariable name="pA"

distributionApproximation="Normal" />
</uq:ObservedVariables>
<uq:DesiredResults
data="mobile_valve.csv"
summary="mobile_valve_result_summary.xml"
scope="FinalTime"
histogram="true">

</uq:DesiredResults>
<uq:SamplingMethod>
<uq:PseudoRandom numberOfSamples="1000" />

</uq:SamplingMethod>

4.6 UQ study in Dymola
The proposal is that a Modelica tool will have the option
to import the .xml-file and provide the user the choice to
both modify, run, and verify the forward uncertainty quan-
tification from the provided information. The tool should
also be able to export any new UQ results and setups.

For this example, the mobile valve model is pack-
aged as an SSP and imported into Dymola. This study
will concern only one point, with coordinates (uA, pT B) =
(415 mA,1 bar).
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Figure 10. Violin plots of the data in Tables 5 and 6.

4.7 Verification of UQ
Using the data provided from the .xml-file, an UQ analy-
sis with 1000 Monte Carlo samples can be performed to
validate the result of previous UQ experiments. The re-
sults show that statistics such as mean value and standard
deviation agree with those presented in Table 5.

In the previous step, the uncertain parameters
Kq,MI,PABT and Kq,MO,PABT were propagated to the ob-
served variables pA and qA. In addition, it can be useful to
quantify exactly how much specific parameters contribute
to the output variance of pA and qA. This helps to iso-
late the most important variables in a complex model with
multiple parameters. The idea is to append the .xml file
with additional attributes for the sensitivity analysis, such
as the sampling method and the choice of sensitivity in-
dices.

In this case, the experiment performs global variance-
based sensitivity analysis using Sobol indices. The ex-
periment is conducted on both pA and qA at the point
(uA, pT B) = (415 mA,1 bar). Three separate Monte Carlo
runs with 10000 samples each are performed to evaluate
qA and pA, where the uncertain parameters are sampled
using the Latin Hypercube method. These 10000 samples
are then bootstrapped 1000 times to provide confidence
intervals for the first and total order Sobol indices.

The results are presented in Table 7. For the observed
variable qA, the first and total order indices are approxi-

mately equal, indicating that there are no interactions.
The Sobol indices for the parameters on the outcome

pA show that most of the variability comes from the pa-
rameters varying on their own, but there is no statistical
significance in higher order interactions.

5 Data Model
The data model for UQ is designed to be tool-agnostic and
compatible with multiple standards, including Modelica,
FMI, and SSP. This ensures seamless integration across
diverse simulation environments while maintaining flexi-
bility to support both simple and complex UQ workflows.
To achieve this, the model employs a modular structure
where many elements are optional, allowing users to spec-
ify UQ data either inline within the model or in separate
files as needed. The data model reuses existing SSP ele-
ments, such as Units and ParameterSet.

Figure 11. The structure of the <ExperimentSetup>
element. The Model contains optional details about the
simulation model, such as name, file, model, and
modelResourceMetaData, the latter enabling linkage to an
SRMD file for SSP traceability integration. ExperimentSet
defines the experiments to be conducted on the model

The top element of the UQ model is ExperimentSetup,
see Figure 11.
The setup can contain different types of experiments,
such as ForwardUncertaintyQuantification (see
Figure 12):

• ParameterSet: Extends the SSP
ssv:ParameterSet by enabling the description
of stochastic distributions for uncertain parameters
alongside deterministic values. A reference to a
standard SSP parameter file (SVV) can be used to
include a standard (non-UQ) set of parameter values.

• ObservedVariables: Specifies the model
variables for which results shall be com-
puted and stored. Optionally, the attribute
distributionApproximation may be used
to indicate that the result at a given time point should
be approximated by the defined distribution.

• DesiredResults: Defines which results are to be
computed for all observed variables and where the
resulting data shall be stored. The data attribute
typically points to a tool-specific result file (e.g.,
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Table 7. The mean values and 95% confidence intervals for the Sobol Indices of the valve model, at coordinates (uA, pT B) =
(415 mA,1 bar), estimated using a Monte Carlo method with 10000 Latin hypercube samples bootstrapped 1000 times.

Observed variable Uncertain parameter First Order Confidence Total Order Confidence
pA KqMI 48.79% +/-0.56% 50.40% +/- 0.41%

KqMO 49.5% +/-0.57% 50.37% +/-1.32%
qA KqMI 100.00% +/- 0% 99.44% +/- 2.01%

KqMO 0.01% +/-2.01% -0.10% +/-4.06%

Figure 12. Structure of the ForwardUncertainty
Quantification element

dc_motor.mat) and can also refer to a directory
if results are stored in multiple files. The optional
summary attribute is used to reference a separate file
that contains aggregated or post-processed statistical
information.

• SimulationSetting: Specifies the most impor-
tant parameters for one simulation run. Optionally,
tool-specific settings can be added.

• SamplingMethod: Describes the sampling method
to be used in the Monte Carlo simulation, along with
all required parameters for generating samples. Tool
specific parameterization can included if needed.

6 Integration with MA Standards
Uncertainty data can come from multiple sources, and it
needs to be easy to export and import between tools in
a unified way. For instance, a component manufacturer
might evaluate the accuracy of the model for a single com-
ponent in Modelica and would wish to deliver this infor-
mation together with the model as an FMU. This infor-
mation could then be used as input to a larger UQ study
for the entire system. The suggested approach is a Cross
Layered Standard that uses the same definition of UQ con-
cepts across Modelica, FMI, and SSP models.

6.1 Integration with FMI and SSP
FMI and SSP have general extension mechanisms. Ev-
ery extension must keep an FMU or SSP component still
compliant, so tools can ignore elements of an extension
that they do not know or support.

The extension mechanism in FMI is called layered stan-

dard and is described in section 2.6 of FMI 3.020. It is
used for the UQ standard by storing the UQ XML file in a
new folder inside the FMU extra-folder and by adding the
required fmi-ls-manifest.xml in this folder.

From the SSP Traceability layered standard perspective
(i.e., which information is involved related to the model-
ing and simulation activity, where does it come from and
where shall it be propagated), the current concept would
consist of referring to the uq.xml file containing the UQ
data e.g., from further .xml-files that are hosted in the dif-
ferent activities (i.e., Analysis, Requirements, Design, Im-
plementation, Execution, Evaluation, Fulfillment) of the
Credible Simulation Process (CSP). Each file would pro-
vide information related to a given CSP activity that could
be easily read and processed by a dedicated tool (e.g.,
easySSP21 for the Requirements, Dymola22 for the Exe-
cution).

6.2 Mapping to Modelica
The Modelica Language has annotations with modifier
syntax that can be used to represent the information ex-
tracted from the XML UQ file in a backwards compati-
ble way. A benefit of storing the information inside the
model is that references to variables are syntactically vari-
able references and not strings, and that the information
is naturally moved together with the model. The Mod-
elica Language also supports a hierarchical Resources
folder inside a Modelica package where the different parts
are referenced using Modelica URIs. In this folder, large
tables could be stored, e.g., the coordinates of the experi-
ment points in the operational domain, including the val-
ues (that can be reused for different experiments).

On the other hand, the UQ analysis supported by a
tool is typically tool-specific, and a tool could provide
many more features and options as standardized by the
draft specification proposed in this paper. A Modelica tool
would store its UQ setup in tool-specific annotations. For
this reason, currently the conservative approach is used,
that which no mapping of the XML-file to Modelica an-
notations is defined. Instead, (a) the UQ XML file can
be imported in a Modelica tool and the tool stores its UQ
setup in tool specific annotations, and (b) the tool can ex-
port its UQ setup and store it in the proposed UQ XML file
format (tool specific settings can be stored in tool-specific

20https://fmi-standard.org/docs/3.0.2/
#VersioningLayered

21https://www.easy-ssp.com/
22https://www.3ds.com/products/catia/dymola
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annotations of the XML file).

7 Outlook
The data model describes a container, which can be ap-
plied on any system level, in an iterative composition-
based process. This paper showcases applications in for-
ward uncertainty propagation and sensitivity analysis of
nonlinear models. The next step is to extend the specifi-
cation with model validation against in-situ measurements
as presented in (Hällqvist et al. 2023).

The standard presented in this paper is driven by the
analysis of existing use cases and supports common con-
cepts used in the UQ domain. In the future, if the need for
additional elements is identified, the definitions can be ex-
panded. For instance, while the current schema includes
Latin Hypercube and pseudo-random sampling, and sup-
ports basic statistical outputs (e.g., mean, percentiles), fu-
ture versions may incorporate additional sampling strate-
gies, surrogate modeling techniques, sensitivity measures,
and probabilistic inference methods.

The aim is to support simple as well as advanced work-
flows. The presented use-cases have the modeler’s role at
the center of the workflow and all the information is cen-
tralised in a single file; in the future, the UQ data should be
traceable via the SSP Traceability Layered Standard. This
will enable quality tracking and more efficient information
reuse.

Another aspect to be considered is the scalability of the
approach and enabling the definition of large data quan-
tities through references to external resources, as well as
being able to associate different parameterisations to the
same experiment and maximize data reuse.

8 Conclusions
Storing UQ, sensitivity analysis and validation, and ver-
ification experiments in a standardized manner is an im-
portant step toward ensuring credibility and qualifying
whether a model is fit for a particular purpose.

These kinds of computations require evaluations of
multiple uncertain variables, which in larger models can
be a very computationally complex task. An iterative ap-
proach, where the results of a previous study for a single
component can be exported and composed with the results
of experiments for other components, allows for managing
this complexity.

A cross-layered standard is an enabler for interoperabil-
ity, where studies can be performed in different simulation
tools and packaged in FMI or SSP format.

The next steps are the validation of this approach on
larger use-cases with composition of UQ information from
several sources and the implementation of tool support for
import, export, update, and analysis of UQ data in Model-
ica, FMI and SSP tools.
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