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Abstract
The Functional Mock-up Interface (FMI) is the standard
for exchanging industrial simulation models in a variety
of different applications. Although sensitivity analysis for
continuously differentiable systems is directly supported
by the standard, for systems with state discontinuities, it
is only possible to determine correct sensitivities to a lim-
ited extent. In this position paper, we investigate how
sensitivity analysis for discontinuous Functional Mock-up
Units (FMUs), i.e. including state and time events, works
in theory and which additional steps are required to obtain
correct results in practice. We further investigate that these
steps are unnecessarily computationally intensive from a
mathematical point of view, but cannot be implemented
in a more efficient way under the current restrictions of
the standard. We therefore make a concrete proposal for
the new layered standard sensitivity analysis (LS-SA) that
remedies the current deficits of FMI in the sensitivity anal-
ysis of discontinuous systems. In this way, LS-SA opens
FMI towards a variety of next-level applications — includ-
ing (scientific) machine learning and optimal control — by
providing fully differentiable FMUs under high computa-
tional performance.
Keywords: Functional Mock-up Unit, Functional Mock-
up Interface, Discontinuous, Events, Machine Learning,
Scientific Machine Learning, Neural FMU, Layered Stan-
dard

1 Introduction
We start by motivating the actual topic, followed by a brief
introduction to the relevant basics to understand the paper.

1.1 Motivation & Goal
The FMI standard was created to allow the exchange
of standardized models within and outside of company
boundaries. The topic of Sensitivity Analysis (SA) has
already played a role in the development of the standard,
for example, to be able to perform uncertainty assessments
on models. The groundbreaking developments in the field
of machine learning in recent years have led to an increas-

ing fusion of classical engineering disciplines such as sci-
entific computing with machine learning, establishing the
research field of Scientific Machine Learning (Baker et al.
2019; Rackauckas, Ma, et al. 2021). The backbone of (sci-
entific) machine learning is efficient SA. Therefore, in
our view, enhancing SA capabilities for FMUs is a crucial
step toward advancing the standard for future applications
in research and industry. This improvement will facilitate
the use of FMI in machine learning, advanced dynamic
optimization, and other fields.

Today, many industrial optimization platforms are used
to improve energy efficiency, reduce operational costs,
and improve sustainability in various sectors, for exam-
ple, ABB OPTIMAX@ (Franke et al. 2008) and TLK-
Thermo (Petr, Tegethoff, and Köhler 2017). Such plat-
forms often operate based on FMUs because of the seam-
less integration of physics-based models and efficient han-
dling of complex multi-domain systems. Enabling proper
SA in FMUs becomes more and more important, because
many industrial optimization problems are highly nonlin-
ear, nonconvex and discontinuous.

While FMI already offers possibilities for SA, for
example for integration of FMUs into frameworks for
Automatic Differentiation (AD) (s. Sec. 3.4), these are
only sufficient to perform SA correctly for continuously
differentiable systems. However, for discontinuous sys-
tems, further measures are necessary for a correct SA, as
we will investigate further. This is of crucial relevance
for industrial applications, where most models include dis-
continuities.

In this position paper, we want to show what is cur-
rently possible in FMI and what should be made possi-
ble to be open to current and future research fields, e.g.,
neural FMUs (Thummerer, Mikelsons, and Kircher 2021),
the combination of FMUs and Arifical Neural Networks
(ANNs). We start by investigating two applications of
current research that we believe should be made solvable
with FMI. We then examine the current interface offered
by FMI and collect requirements with respect to unsolved
tasks within these applications. Based on these require-
ments, we make concrete proposals for an extension of
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FMI on the basis of a Layered Standard (LS), i.e. without
adjustments to the actual standard release. In parallel, we
are already working on a prototype implementation, i.e.
the suggestions made are already being tested.

In the following, we provide a brief introduction to the
foundational concepts necessary to understand the paper.

1.2 Functional Mock-up Interface (FMI)
The Functional Mock-up Interface (FMI) is an open stan-
dard that defines an interface to exchange dynamic mod-
els in the form of a ZIP container which stores the model
as a combination of XML files, binaries, and C code.
There are three major releases, the most recent version is
3.0.2 (Modelica Association 2024b), while version 2.0.5
might still be the release with the broadest implemen-
tation (Modelica Association 2024a). Motivated by dif-
ferent application scenarios for simulation models, FMI
supports three different simulation types, while we fo-
cus only on the most relevant for SA, which is Model-
Exchange (ME) and is further introduced in the next para-
graph. Because ME requires external implementation of
the solver and event handling routines, incorporation of
SA is more straightforward, for example compared to Co-
Simulation (CS). Throughout the paper, for readability
reasons, we only use the FMI3 command terminology, and
are also focusing specifically on the development of the
LS for FMI3. However, the proposed adjustments should
also be compatible with FMI2 and we try to highlight the
necessary adjustments if not.

ME-FMU
𝑡 time
𝑝 parameters
𝑢 inputs
𝑦 outputs
𝑤 local variables
𝑧 event indicators
𝑥𝑐 continuous states
𝑥𝑑 discrete-time states
𝑏 hidden states (buffers)

User

Solver

𝑝 𝑤

𝑦𝑢

𝑡 𝑥𝑐 ሶ𝑥𝑐 𝑧

Figure 1. The ME-FMU and its interface signals. Figure
adapted from the official standard document (Modelica Asso-
ciation 2024b).

ME-FMUs provide an interface heavily motivated by
Ordinary Differential Equations (ODEs) (as further intro-
duced in 1.4) and are therefore paired with ODE solvers
to obtain a solution (referred to as simulation), see Fig. 1.

The FMI standard facilitates the transfer and exchange
of models in simulation tools. However, it has limitations,
when the calculation of a model’s sensitivity is required.

Layered Standard (LS) The development of the FMI
standard is subject to long release cycles to ensure quality
and safety of investments, as the standard is widely used
in industry. On the other hand, to allow innovation, in
FMI 3.0 the concept of Layered Standard (LS) was put in
place to be able to introduce new features in an optional
and backward compatible way (Bertsch et al. 2023). A LS
can add standardized annotations, standardized extra files,
and/or new C-API functions.

1.3 Sensitivity Analysis (SA)
Sensitivity Analysis (SA) in the context of FMUs involves
studying the influence on the quantities computed by the
model (e.g., outputs and state derivatives) w.r.t. variations
in quantities that are input to the model (like parameters,
states, and inputs). Among others, SA is especially useful
for parameter estimation, uncertainty quantification, and
optimization.

For example, in optimal chemical production schedul-
ing problems, a mixed-integer linear programming
(MILP) solver may be often trapped in suboptimal solu-
tions due to strict reactor start-up time constraints. One
can use SA to prioritize the most influential constraints
to prevent suboptimal schedules. Moreover, SA can sup-
port uncertainty quantification and risk assessment, as in-
dustrial systems operate under various uncertainties. By
evaluating the range of possible outcomes w.r.t. input vari-
ations, SA enhances confidence in optimization results.
A further practical example is in hydrogen plant sizing,
where SA can assess the impact of load fluctuations, future
demand uncertainties, and thermal constraints on trans-
former efficiency and longevity. This reduces the risk of
over- or under-sizing, ensuring that transformers operate
within safe margins while optimizing cost and reliability
(Gutermuth, Primas, and Bitta 2023).

Last but not least, efficient computation of SA is essen-
tial for many modeling and analysis tasks, including hy-
brid modeling (combining physical and machine learning
models) and scientific machine learning. Supporting SA
for FMUs is therefore a key enabler for integrating large-
scale industrial simulation models into data-driven work-
flows, es for example required in neural FMUs (Thum-
merer, Mikelsons, and Kircher 2021).

1.4 Ordinary Differential Equations (ODEs)
ME-FMUs without events can be interpreted straight-
forward as ODEs. The ODE within this work is denoted
with

ẋ = f (x, p, t), (1)

where the function f is referred to as right-hand side, x the
system state, ẋ the system state derivative, p parameters
and t the time. Note that external inputs to the system
could be implemented by augmenting x or p. In this work,
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we use this formalism for a simplified description of ME-
FMUs without events.

To solve an ODE, a variety of numerical integration
schemes exist, that are often incorporated into an abstract
definition for arbitrary ODE solvers:

x(t) = ODESolve( f ,x0, p, t0, t), (2)

where x0 and t0 are the initial state and time to solve the
ODE, (Hairer, Nørsett, and Wanner 1992). To obtain a
time-discretized solution for f , ODESolve can be called
recurrently, leading to a simulation loop as in Alg. 1.

Algorithm 1 ODESim: Simple simulation loop without
events.

Input: right-hand side f
Input: time points ti for i ∈ {0, ...,N}
Input: initial state x0, parameters p
n = 0 ▷ initialize step counter
while tn < tN do ▷ final time not reached

xn+1 = ODESolve( f ,xn, p, tn, tn+1)
n = n+1

end while
Output: states X = {x0, ...,xN}

In addition, this concept can be extended to ODEs in-
cluding events. Events are points in time where the system
is allowed to change discontinuously. The time point of an
event can be known in advance or depend on the system
state by defining an event indicator (Modelica Association
2024b). However, this requires a different interface for
ODESolve, because the termination time for the solver is
now not known beforehand (Hairer, Nørsett, and Wanner
1992) and (Chen, Amos, and Nickel 2020):

t∗, x(t∗) = ODESolveEvent( f ,c,x0, p, t0, t). (3)

Here, t∗ is the event time and the event function c is de-
fined as zero at any event time:

c(x(t∗), p, t∗) = 0. (4)

This is a simplified view, and in practice a common ap-
proach is to monitor changes in signs of a vector contain-
ing multiple event indicators, instead of an event function
stopping exactly at zero. An event often corresponds to a
discontinuous change in the function f . In essence, pro-
cessing events (so-called event handling) captures the fol-
lowing steps: The event time point is determined (by in-
vestigation of the event function zero crossing), the solver
is stopped, the discontinuous state change is performed
(here, by calling the event affect function a) and a fresh
integration is started from the new state after the event.
The event affect function a computes a new state for after
the event x(t+) based on the quantities at time t− before
the event, and is defined as:

x(t+) = a(x(t−), p, t−) = 0. (5)

In the actual implementation, it is distinguished between
events that solely depend on time (time events) or also on
states (state events). A more detailed introduction on the
topic of event handling is not relevant for this work and is
omitted for brevity.

Algorithm 2 ODESimEvent : Simple simulation loop
with events.

Input: right-hand side f
Input: condition c, affect a
Input: time points ti for i ∈ {0, ...,N}
Input: initial state x0, parameters p
n = 0 ▷ initialize step counter
t̃ = t0 ▷ init. current time
x̃ = x0 ▷ init. current state
while tn < tN do ▷ final time not reached

t̃, x̃ = ODESolveEvent( f ,c, x̃, p, t̃, tn+1)
while t̃ ̸= tn+1 do ▷ next sol. time point not reached

x̃ = a(x̃, p, t̃) ▷ handle event
t̃, x̃ = ODESolveEvent( f ,c, x̃, p, t̃, tn+1)

end while
xn+1 = x̃
n = n+1

end while
Output: states X = {x0, ...,xN}

Further, in the FMI specification, the concept of super-
dense time is applied, allowing events to be ordered even
if they are triggered for the same t. For reasons of clarity,
this was simplified within this work. In general, the FMI
specification (Modelica Association 2024a; Modelica As-
sociation 2024b) provides a valuable source for this topic
in detail.

2 Related Work
We now turn to related work on SA for FMUs, with a par-
ticular focus on discontinuous systems.

FMISensitivity.jl The Julia library FMISensitivity.jl1

implements fully differentiable FMUs using built-in FMI
functions as far as available, while sensitivities not con-
sidered in FMI are approximated by finite differences.
Further, SA relevant to practice, in terms of reason-
able computing effort, requires additional but optional
FMI features, like fmi3Get/SetFMUState for getting
and setting the FMU memory state. The implemented
workarounds are investigated in more detail in Sec. 3. Be-
fore porting the functionality to FMISensitivity.jl in 2023,
these features were implemented as part of FMIFlux.jl.

Time-freezing This approach reformulates non-smooth
systems with state jumps into systems that appear smooth
from the perspective of a numerical solver (Nurkanović,
Sartor, et al. 2021). It introduces a pseudo-time vari-
able and clock state to enforce the discontinuities to lay

1https://github.com/ThummeTo/FMISensitivity.
jl.
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in the derivative rater than in the state itself. During the
frozen phases, an auxiliary dynamic system evolves the
state smoothly in pseudo-time to mimic the effect of the
jump. As a result, the original non-smooth problem is
more suitable to conventional ODE solvers without adding
integer variables. However, constructing such an auxiliary
differential equation is not trivial, and introducing pseudo-
time variables may increase the computational effort.

Finite Elements with Switch Detection (FESD) This
discretization scheme embeds switch detection directly
into the time discretization process (Nurkanović, Sperl, et
al. 2024). Essentially, it detects state jumps using comple-
mentarity constraints and the collocation method. Hence,
FESD is able to pose the time points exactly where events
happen without relying on the event handling process. The
main challenges remain the implementation overhead of
a robust switch detection mechanism within a finite ele-
ment framework and the computational complexity due to
the increase of optimization variables and constraints. An
implementation of this, as well as the time-freezing ap-
proach, can be found as part of the NOSNOC software
package (Nurkanović and Diehl 2022).

CasADi In (J. Andersson and Goppert 2024), the in-
tegration of SA for discontinuous systems within the
CasADi tool (J. A. Andersson et al. 2019) is investi-
gated. The paper also gives a rough outlook on how to
make discontinuous SA available for FMUs under sim-
ilar considerations to those we make in the course of
this work. However, the authors omitted existing work
regarding SA for FMUs: Integrate-then-differentiate, as
well as differentiate-then-integrate approach, is available
since 20212 as part of FMIFlux.jl and since 2023 as part
of FMISensitivity.jl, both providing seamless integration
with SciMLSensitivity.jl (Rackauckas, Ma, et al. 2021) and
DiffEqCallbacks.jl (Rackauckas and Nie 2017) that pro-
vide implementations for a multitude of SA approaches.

Finite Differences The most obvious approach to SA
would be to perform numerical differentiation of the
output of ODESolve. There are two main disadvantages:
a high amount of numerical noise which can be avoided
by freezing the step-sizes and number of iterations or
alternatively by internally differentiating (Hairer, Nørsett,
and Wanner 1992), and that the cost increases linearly
with the number of parameters — using adjoint equations
avoids this second issue. On the other hand, there is the
great advantage that even systems with discontinuities
can be analyzed, which is why this method can be found
in practical application despite its poor computational
performance.

However, all the investigated solutions are subopti-
mal from a mathematical perspective and are either not
generally applicable or scale insufficiently with the size

2Experimental 2021, stable release in 2022 (Thummerer, Stoljar, and
Mikelsons 2022).

of the problem due to limitations in FMI. This strongly
motivates the derivation of an addition to the standard
(Layered Standard), that is able to provide access to com-
putational efficient SA, while still being fully backward
compatible with FMI.

3 Requirements Analysis
In this section, we want to derive requirements for the LS.
The essential part of the requirements is the availability
of the various Jacobians that are needed for a correct
SA. However, it is important to remember that in many
cases we are actually interested in results of operations
including the Jacobian, rather than the Jacobian itself.
This especially captures Jacobian-Vector Products (JVPs)
and Vector-Jacobian Products (VJPs). Note that JVPs are
not only useful for SA, but also for solving large ODEs
(Ascher and Petzold 1998) with implicit solvers using
iterative approaches (e.g., Krylov subspace methods).

We start collecting requirements by investigating
two use cases that should enabled with the new LS. Both
applications share the question posed by SA, but look at
the actual problem from two different perspectives: while
a parameter optimization task (s. Sec. 3.1) is defined
by the problem of identifying sensitivities for variables
within the FMU, the neural FMU approach (s. Sec.
3.2) requires determination of sensitivities for variables
outside the actual FMU. As a result, different sensitivities
are required to solve both tasks.

3.1 Parameter Optimization
One of the most common applications of SA in the field
is the optimization of ODE parameters within a model,
often referred to as model calibration. When optimizing
ODEs, an objective l is defined that is either minimized
(e.g., loss in supervised machine learning) or maximized
(e.g., reward in reinforcement learning). Typically, this
loss is not defined on the right-hand side of the ODE itself,
but on the solution of the ODE.

The gradient of a loss function defined on the ODE so-
lution X , can be derived by applying the chain rule:

dl(X(p), p)
d p

=
∂ l(X(p), p)

∂X(p)
∂X(p)

∂ p
+

∂ l(X(p), p)
∂ p

, (6)

where the ODE solution X can stem from ODESim, as
well as ODESimEvent.

SA for ODESim As can be investigated in algorithm 1,
the consecutive evaluation of ODESolve leads to the deter-
mination of X . On derivative level, this results in a chain
of Jacobians containing

∂xn+1

∂xn
=

∂ODESolve( f ,xn, p, tn, tn+1)

∂xn
, (7)

growing with every step of ODESolve that needs to be per-
formed to determine the required Jacobian ∂X/∂ p. Most
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ODE solvers, for example explicit and implicit Runge-
Kutta methods, determine xn+1 by one or more evalua-
tions of f . This results in differentiation of f with respect
to state and parameters, so ∂ f/∂xn and ∂ f/∂ p. These
Jacobians can also be found by investigating the sensitivi-
ties required for the continuous adjoint method (Céa 1986;
Serban and Hindmarsh 2003; Sapienza et al. 2024). If the
right-hand side depends on time, further the time gradi-
ent ∂ f/∂ t is required. Of course, to obtain a complete
derivative chain, also the arithmetic operations inside the
ODE solver need to be differentiated. However, the de-
tailed chain of Jacobians depends on the type and imple-
mentation of the numerical solver and is therefore omitted.

SA for ODESimEvent Very similar to ODESim, sen-
sitivities for ODESimEvent can be collected by investi-
gation of algorithm 2. However, there are differences:
First, ODESimEvent also determines the event time t∗

besides the system state, therefore differentiation over
ODESolveEvent results in determination of the Jacobian
∂x∗/∂xn and the additional time gradient ∂ t∗/∂xn. Sec-
ond, the event time t∗ depends on the zero crossing of
the event condition c, which involves differentiation of the
event condition with respect to its arguments, so ∂c/∂xn
and ∂c/∂ t. These sensitivities can also be found by in-
vestigating the continuous adjoint method for event-ODEs
(Chen, Amos, and Nickel 2020; Pfeiffer 2008). Finally,
also the derivative of the new state after the event is needed
by differentiation of the affect function a, in particular the
Jacobian of the state after the event w.r.t. to the state be-
fore the event ∂x+/∂x−.

SA for calculated Parameters In practice there are of-
ten also calculated parameters b = g(p) that are computed
at the start of the simulation. These calculations may be
trivial (e.g., calculating the mass based on the density and
volume parameters), or complicated, as, for example, cal-
culating polynomial coefficients based on curve fitting.
The set of parameters can be extended to calculated pa-
rameters to accumulate sensitivities with respect to b and
then only compute the VJPs for ∂g/∂ p once. Differentiat-
ing these functions should be straightforward even if they
are not needed for analytic Jacobians. Parameter subex-
pressions can be treated together with calculated parame-
ters, as we are not interested in individual calculated pa-
rameters but only in their overall impact.

3.2 Neural FMUs
In (Thummerer, Mikelsons, and Kircher 2021), neural
FMUs where introduced as the combination of FMUs,
ANNs and a numerical ODE solver. In the easiest case,
only a single FMU and a single ANN are connected. Even
if a common scenario is the modification of the FMU state
derivative by the ANN, a variety of different combination
schemes are possible. Whereas neural FMUs are in gen-
eral not restricted to ME-FMUs, we only focus on ME
within this work, because we see this as more relevant for
the topic of proper SA, and it is definitely more relevant

within the topic of neural FMUs. However, we give a short
outlook on CS in the conclusion section.

As introduced, within neural FMUs, no restrictions are
made with respect to the connections between the FMU
and ANN(s). To make this more tangible, in Fig. 2 all pos-
sible positions to extend a ME-FMU by ANNs are given.
In addition to the theoretical possibility of doing this, there
is of course also the question of practical relevance, which
we shall examine below by a brief investigation of fields
of applications:

• One of the first applications of hybrid modeling (in
terms of combining physical and machine learning
models) was the correction of parameters by an
ANN (Psichogios and Ungar 1992). This is still a
meaningful measure within similar applications.

• The most valuable point of intervention is the cor-
rection of state derivatives. Note that this allows,
for example, to incorporate additional forces (like
friction) to a system because forces act on the state
derivative (acceleration). Manipulation of the state
derivative allows us to change the entire behavior of
the system because it allows us to overwrite or extend
the actual right-hand side of the ME-FMU.

• Time can be manipulated to induce, e.g., time shifts
to compensate for unsynchronized measurements. In
the parallel contribution (Thummerer, Jarmolowitz,
et al. 2025), this is investigated.

• By changing the system input, corrections can be
made to faulty signals. This further opens up the
topic of learning an input trajectory to achieve op-
timal control.

• If only the system outputs (or local variables) are
changed, the correction is learned on top of the sim-
ulation performed, without actually influencing the
ODE solution, leading in general to less generaliza-
tion within the ANN. However, this can still be use-
ful in applications where generalizability is less im-
portant.

• Manipulation of event indicators allows, for exam-
ple, for augmentation of the event indicators to
learn for not modeled event conditions and therefore
new discontinuities.

• Correcting the system state before passing it to
the FMU allows for correcting modeling errors like
general shifts in state-space (Thummerer, Mikelsons,
and Kircher 2021) or equilibrium position for fluid
simulations such as in (Thummerer, Tintenherr, and
Mikelsons 2021).

Based on the finding that such architectures have prac-
tical relevance, the question arises as to which sensitivities
are required for optimization including such architectures.
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ME-FMU
𝑡 time
𝑝 parameters
𝑢 inputs
𝑦 outputs
𝑤 local variables
𝑧 event indicators
𝑥𝑐 continuous states
𝑥𝑑 discrete-time states
𝑏 hidden states (buffers)
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Solver

𝑝 𝑤

𝑦𝑢

𝑡 𝑥𝑐 ሶ𝑥𝑐 𝑧
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ǁ𝑡 ෤𝑥𝑐 ሶ෤𝑥𝑐 ǁ𝑧

Figure 2. The neural FMU (ME), showing possible intervention points where ANNs can be incorporated to extend the ME-FMU.
Individual ANNs could be used for each signal, or all causal input ANNs (p, u, t and xc) could be merged to obtain a single input
ANN (purple, dashed silhouettes). The same applies for the causal output ANNs (w, y, ẋc and z). The discrete-time state xd and the
buffer b are not accessible from outside the FMU within the standard definition, granted access to xd is part of the LS-SA, however.

Since all possible permutations of existing ANNs are to
be investigated, it is expedient to assume the most com-
plex case: All ANNs are incorporated.

3.3 Required Sensitivities
Based on the two fields of applications introduced and
the corresponding observations, all necessary sensitivities
are collected below. It is required to allow for JVP and
VJP operations involving the Jacobians3 ∂γ/∂υ , where
υ ∈ {t,xc,u, p} and γ ∈ {ẋc,z,y,w}. Furthermore, the ac-
tual event affect function that computes the new state of
the system after event x+c based on the system state be-
fore the event x−c is required but neglected in the picture to
be compatible with the illustration in the standard specifi-
cation. Furthermore, sensitivities are required not only for
the continuous state, but also for the entire state of the sys-
tem, which additionally requires the discrete state xd . In
summary, the required sensitivities are υ ∈{t,x−c ,x

−
d ,u, p}

and γ ∈ {ẋc,x+c ,x
+
d ,z,y,w}.

3.4 Available methods within FMI
In FMI, there are two commands available that
allow to access partial derivatives over an FMU.

3For the case of γ = t (scalar time) it is more common to refer to a
gradient than Jacobian.

First, fmi3GetDirectionalDerivative allows for
JVP-multiplication with a custom seed vector, while
fmi3GetAdjointDerivative provides functionality
for VJP-multiplication. Although this does not allow one
to directly access the Jacobians, it allows a straightforward
integration within AD frameworks. Forward-mode AD in-
volves consecutive evaluations of JVPs, which allows for a
natural propagation of the current sensitivity seed through
the FMU with fmi3GetDirectionalDerivative. The
other way round, for reverse-mode AD, consecutive VJPs
are computed and fmi3GetAdjointDerivative pro-
vides an interface for backpropagation of the adjoint sen-
sitivity (or co-tangent) through the FMU. However, there
are two issues with these commands: First, the implemen-
tation is optional, and, therefore, only a fraction of tools
support these commands. Second, and even more impor-
tant, not all required sensitivities (value references) are
accessible by these commands, event if they are imple-
mented. This is investigated in detail, along with solution
proposals, in the next section.

4 Layered Standard
In the following subsections, we investigate all open issues
derived from the introduced applications. For each issue,
we will highlight the problem and available workarounds.

LS-SA: Developing an FMI layered standard for holistic & efficient sensitivity analysis … 
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Workarounds already implemented within FMISensitiv-
ity.jl and FMIFlux.jl are briefly described below. Finally,
possible solutions and their technical implementation in
the form of a LS are investigated. We explicitly try to
reuse the existing command interface as much as possible,
as we want to minimize the implementation effort in the
tools and enable a wide adaptation of the LS-SA.

4.1 Event condition
The FMI standard allows for the calculation of derivatives
of state derivatives ẋ and outputs y with respect to states x
and inputs u. If the system is subject to events, a complete
SA requires the sensitivity of the point in time where an
event occurs. As indicated in subsection 3.1, this requires
derivatives of the event condition, or as it is named in FMI,
the event indicator. Since FMI3, event indicators are part
of the model variables (so they are exposed), which was
not the case for FMI2. Within the FMI specification, there
is no restriction that prohibits providing sensitivities for
event indicators via the directional or adjoint derivative
commands, however it is also not enforced.

Workaround The only generally applicable
workaround to obtain partial derivatives w.r.t. event
indicators is to sample them via finite differences. This
way it is implemented in FMISensitivity.jl. The required
number of samples scales linearly with the Jacobian size
to multiply with, that is, linearly with the number of rows
for forward AD or the number of columns for reverse AD.

Proposed Solution (LS-SA) The proposed solution for
the LS-SA is straight-forward: Because the model vari-
ables of the event indicators are already known in FMI3,
it is only necessary to provide sensitivities for the event
indicators via fmi3GetDirectionalDerivative and
fmi3GetAdjointDerivative. For FMI2, it is addition-
ally required to expose the event indicators in the same
way as they are exposed in FMI3, by adding the corre-
sponding entries to the section <ModelStructure> in
the model description.

4.2 Discontinuous State Change
After the event is handled, the numerical integration is
restarted with a new state x+. However, also this new state
may depend on the state before the event x−, time, inputs
before the event and/or parameters. These sensitivities are
not present within FMI — in general, it is not possible to
access sensitivities w.r.t. to quantities before an event after
event handling was performed.

Workaround One could sample the required sensitiv-
ity by restarting the simulation and disturbing the inves-
tigated variable right before the event (finite differences).
This is computationally infeasible, because this requires a
new simulation for every required sensitive state / input /
parameter.

In FMIFlux.jl, a much more performant approach is im-
plemented, however, this requires the optional FMI fea-
tures fmi3Get/SetFMUState. If these commands are

available, a memory snapshot of the FMU can be made
right before the event. In this way, sampling becomes
much more efficient because the snapshot can be used to
reinitialize right before the event to disturb the signals for
sampling, instead of starting a new simulation. In this way,
the complexity reduces to only performing one evaluation
of the system of equations rather than performing an entire
simulation.

Proposed Solution (LS-SA) The challenge is that the
x+ and x−, which are required for the Jacobian ∂x+/∂x−,
represent the same state (model variable) at different lo-
cations in (super-dense) time. In FMI, there is no mecha-
nism to access partial derivatives w.r.t to the same variable
at different points in super-dense time, because the state
before and after the event have the same value reference.

However, in the Modelica modeling language, previ-
ous values before event handling can be accessed using
the function pre. We therefore propose to introduce new
model variables that can be used to access previous val-
ues of states. This captures the continuous, as well as
the discrete-time state. Because derivatives of continu-
ous states are introduced with the derivative keyword
within the definition of the model variable, we propose
a new keyword previous for previous states before the
event. A code snippet for this is given in Listing 1.

Listing 1. Example for a state definition within the model de-
scription, including the new previous attribute.

<Float64
name="mass.s"
valueReference="33554432"
description="absolute position of mass"
unit="m"

</Float64>
<Float64

name="der(mass.s)"
valueReference="587202560"
description="derivative of mass.s"
unit="m/s"
derivative="33554432">

</Float64>
<Float64

name="pre(mass.s)"
valueReference="587202561"
description="previous value for mass.s"
unit="m"
previous="33554432">

</Float64>

In case of multiple events occurring at the same point in
time, the previous model variable actually refers to the
previous value before the last event handled, and not the
value before the first event at the time instant. Finally, note
that this measure is not necessary for other relevant inputs
like u and p, because they do not change in super-dense
time, for example ∂x+/∂ p− = ∂x+/∂ p+.

4.3 Time Gradients
As investigated, the gradient with respect to time is
needed. Since FMI3, time (or the independent variable
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in general) is registered as special model variable with
causality="independent". However, there is no en-
forced possibility within FMI to request partial derivatives
w.r.t. time.

Workaround As for the event condition, the influence
of time, e.g. on the state derivative or outputs, can be sam-
pled straightforwardly during continuous time by disturb-
ing only the time and re-evaluation of the FMU.

Proposed Solution (LS-SA) We would like to enforce
that directional and adjoint derivatives are allowed to be
requested w.r.t. the independent variable during continu-
ous time.

4.4 Event Time
In addition to event indicators that depend on state and
time, events can be registered solely depending on time.
The time of these events is known exactly, but only step-
wise, the next event time is determined during initializa-
tion (the first time event) or during event handling (for the
upcoming time events). Such events are not determined by
zero crossings of event indicators, hence their influence on
the FMU’s outputs has to be determined separately.

Workaround To calculate the influence on the current
state or parameter on the next event time, a sampling-
based approach is used as for the state change in the pre-
vious Sec. 4.2: Before actually handling the current time
event, a memory snapshot (fmi3GetFMUState) is per-
formed, and the influence of the state and parameters can
be successively sampled by disturbing one input to SA,
handling the time event and quantifying the influence on
the determined event time. This requires at least one sam-
ple (one event handling procedure) for every state and pa-
rameter in the system and is therefore expensive for large
simulations.

Proposed Solution (LS-SA) As outlined, the next event
time may also depend on the current time. Therefore, it
is not sufficient to require the time to be defined as model
variable (cf. Sec. 4.3), but necessary to require an addi-
tional one for the next event time. This enables to calcu-
late the sensitivity of the next event time w.r.t. state and
parameters as well as the influence of the current event
time on the next event time. Although these sensitivities
are required for SA at the next event, they already have to
be calculated at the current event and need to be cached.

4.5 Parameter Sensitivities
Even if FMI supports functions to obtain directional
derivatives, it is important to state that parameter sen-
sitivities are not available during the actual simulation.
Even tunable parameters are only available in event mode
(Modelica Association 2024b), which is not useful dur-
ing continuous-time simulation. This is of course a huge
problem and actively prevents parameter SA for FMUs.
There are also good reasons to not treat these parameters
as tunable, as we are often (e.g., in case of parameter SA)

considering the impact for the entire simulation. Further-
more, tunable parameters can complicate the storage of
the memory state, and SA requires storing a large number
of memory states.

Workaround To our knowledge, there is no obvious
workaround to this. However, we observed that some
FMU implementations do not implement this limitation
and provide correct parameter sensitivities even during
continuous-time mode.

Proposed Solution (LS-SA) The proposed solution is
straightforward: Within the LS, we enforce that parameter
sensitivities (at least for tunable parameters) must be
accessible via the already existing interface for directional
and adjoint derivatives.

Beyond the listed issues, we would also like to add
requirements for the application of neural FMUs in the
field. In addition to the mathematical considerations for a
comprehensive SA, the optimization or training process
can be made more efficient and robust with the following
enhancements.

4.6 Get/Set Discrete State
A common technique in the training of neural FMUs, and
in machine learning in general, is mini-batching. Train-
ing data is divided into chunks called mini-batches, and
parameter gradients are determined for each chunk rather
than the entire dataset. A new batch is selected for each
training step, either algorithmically or randomly.

If mini-batching is paired with neural FMUs, or mixed
continuous-discrete systems in general, a new challenge
pops up: The system needs to be initialized for the ini-
tial state of every mini-batch. This covers the continuous
state, but also the discrete-time state of the FMU. Note
that the discrete state can influence the system dynamics,
in the extreme case, the discrete state can be used to switch
between completely different sets of equations for the con-
tinuous right-hand side. In this case, the discrete state is
sometimes referred to as mode of the system.

By default, FMI completely hides the discrete-time
state of the FMU. It is neither readable nor writable from
the outside. However, this is required to initialize the sys-
tem based on data. However, it is important to state that
for proper initialization the continuous and discrete states
must match. Depending on the system model, not every
combination of continuous and discrete states is meaning-
ful and leads to a solvable system.

Workaround For now, FMI does not provide an in-
terface to directly access the discrete state, but an inter-
face to catch it indirectly. The corresponding commands
are fmi3Get/SetFMUState, which create (or activate)
a memory copy of the entire FMU memory state, includ-
ing the continuous and discrete state, but also additional
variables, such as starting values for iteration of algebraic
loops. It is also important that commands for the memory
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states are declared optional in the FMI specification and
only a fraction of tools implemented these.

Furthermore, while these commands can be used to re-
visit a discrete state after capturing it once, they do not
allow one to actually modify the discrete state. For exam-
ple, if the system needs to be initialized in a very specific
discrete state, one needs to guide the system to this spe-
cific state, e.g. by controlling inputs, in order to capture
the intended discrete state. This is an immense effort and
is generally not feasible in the case of a complex simu-
lation model. This workaround should therefore only be
regarded as a makeshift solution.

Proposed Solution (LS-SA) Even if this step is associ-
ated with technical challenges, we see no alternative to al-
lowing reading / writing of the discrete state of the system,
as is allowed for the continuous part of the state within
FMI. We propose the following additions to FMI:

1. Because the data type of the discrete state
may vary, compared to the continuous state
which is always Float64 / Float32, we
do not suggest introducing new commands
such as fmi3Get/SetDiscreteState. We
propose to reuse the existing commands for
reading/writing variables of the FMU, like e.g.
fmi3Get/SetInt32. This way, no new commands
are introduced, which we see as the main obstacle
when implementing a LS, and there is no problem
with multiple data types used for the discrete state,
as it can be set/get by multiple consecutive calls (e.g.
mixing boolean and integer values).

2. The value references of the discrete states must be
made available from outside the FMU, in order to al-
low for setting/getting the discrete state. We propose
to add this information to the model description, as
part of the section <ModelStructure>. There, we
like to add a new section <DiscreteState>, where
value references of discrete states are listed in the
same way as, e.g. for outputs. Because FMI does not
allow us to add new fields to the standardized model
description, the addition of fields does not happen
within the existing model description. Technically
speaking, a separate file is created consisting only of
the new fields and a minimum representation of the
model description XML tree around.

3. Discrete states are only required to be settable in
event mode (where the discrete state changes during
regular simulation), and we propose to require trig-
gering event handling consecutively to ensure that
the given continuous states match the discrete states.

4.7 Comply with Assertions
The use of assertions when modeling large systems is
a meaningful measure in developing correct and easily
maintainable simulation models. Typically, assertions are

formulated in binary form, i.e. they remain unnoticed
until a condition is violated. The existence of an assertion
and the monitored condition cannot be seen outside
the FMU. This has drastic effects on the application of
hybrid modeling with FMUs (e.g. neural FMUs). If, for
example, the system dynamics is changed by an ANN,
the violation of a condition within an assertion can only
be detected when it is already too late and an exception
is thrown, which often leads to the termination of the
simulation and thus the SA.

To our knowledge, there is no workaround to this.

Proposed Solution (LS-SA) We propose to introduce
a concept related to the event indicator interface, which
we call straightforward error indicators. Error indicators
provide a distance measure for the violation of modeling
errors. Unlike event indicators, the sign is important. Neg-
ative error indicators identify the non-existence of a mod-
eling error, whereas positive error indicators show that a
modeling error occurred. For the case of at least one posi-
tive error indicator, we do not expect the FMU to provide
meaningful values, e.g. returning fmi3StatusError or
fmi3StatusDiscard for calls to fmi3GetX. To imple-
ment error indicators, we propose the following modifica-
tions:

1. Error indicators are introduced as model variables
in the same way as event indicators, and are made
public in the section <ModelStructure> in the
model description, where we add a new subsection
<ErrorIndicator>, again in the same way as for
<EventIndicator>. As for the discrete state in
4.6, this measure is implemented in a parallel model
description file and not by modification of the stan-
dardized FMI model description.

2. To make the values of error indicators accessible, two
obvious strategies are available. First, the error indi-
cators could be accessed through fmi3GetFloat64
as any other (Float64) model variable. For now, we
see no reason to not enforce all error indicators to
be of type Float64 (for 64-bit FMUs). Second, be-
cause all event indicators share the same data type,
a new command could be introduced in analogy to
fmi3GetEventIndicators, see code 2, that al-
lows capturing all error indicators at once.

3. As proposed for event indicators, we also like to keep
error indicators differentiable. Although this is not
required for proper SA, this opens up an interesting
and valuable new use case: Explicit regularization. If
not only the distance to an error is known, but also in
which direction parameter changes influence the er-
ror (gradient), error indicators can be used to actively
prevent errors during training, for example by adding
the (differentiable) error indicators to the training ob-
jective as additional summands (referred to as regu-
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larization terms). Sensitivities could be accessed in
analogy to the event indicators.

Listing 2. The new error indicator function.

typedef fmi3Status fmi3GetErrorIndicators(
fmi3Instance instance,
fmi3Float64 errorIndicators[],
size_t nErrorIndicators);

Although we consider all the proposed measures within
this section important, we have sorted them in descending
priority order (with the aim of carrying out a correct SA)
in order to support a targeted implementation.

5 Conclusion
In summary, we have investigated the opportunities that
already exist for SA in FMI. By investigating two ex-
ample applications (parameter SA and neural FMUs), we
were able to identify deficits, particularly in the analysis of
discontinuous systems. We went on to consider how we
could close these gaps (mathematically and technically)
and made a concrete proposal for the LS-SA, which will
be able to solve the issues investigated under reasonable
computational performance.

Current & Future Work Even if the LS is not yet
fully implemented, a dedicated working group within the
research project OpenSCALING, including tool vendors,
users, and academia, continues to develop and implement
the LS to be able to publish it during the project period.
As soon as more prototypes of tool implementations are
available, we want to examine and quantify the practical
computational benefits of the LS besides the theoretical
considerations.

One major part of future work is a more detailed inves-
tigation and specification of the proposed measures, e.g.
it is necessary to specify allowed (or forbidden) attributes
for the newly introduced model variables.

Of course, the development of LS-SA is also strongly
driven by specific applications for which we are aiming,
which will benefit greatly from the realization of the stan-
dard extension. For example, training of neural FMUs, the
combination of ANNs and physics-based simulation mod-
els captured in an FMU, will benefit from a significantly
faster training process (multiple factors, depending on the
number of states and events).

In theory, the proposed LS-SA can be extended for CS-
FMUs. However, this introduces additional challenges
because parts of SA, which are now part of the simulator,
need to be incorporated to the FMU. Further, a clever
interface needs to be discussed that allows for efficient
determination of sensitivities, for example by defining
required sensitivities before starting the actual simulation
(e.g. during the setup of experiment).

This publication lays the methodological foundation
for further discussions on a large and importing topic
within the standard, as well as prototype implementations

within importing and exporting tools. It is important
for us to point out that the LS is in active development,
but not officially released. We would like to draw the
community’s attention to the development, as well as
the intended measures, and we hope to achieve a broad
discussion of this topic in the community so that a strong
LS with broad adoption can emerge from this. We
welcome any kind of participation.
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AD Automatic Differentiation

ANN Arifical Neural Network
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FMI Functional Mock-up Interface

LS Layered Standard
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FMU Functional Mock-up Unit

JVP Jacobian-Vector Product

ME Model-Exchange

MILP mixed-integer linear programming

ODE Ordinary Differential Equation
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VJP Vector-Jacobian Product

References
Andersson, Joel and James Goppert (2024). “Event support for

simulation and sensitivity analysis in CasADi for use with
Modelica and FMI”. In: Modelica Conferences, pp. 99–108.

Andersson, Joel AE et al. (2019). “CasADi: a software frame-
work for nonlinear optimization and optimal control”. In:
Mathematical Programming Computation 11, pp. 1–36.

LS-SA: Developing an FMI layered standard for holistic & efficient sensitivity analysis … 

 

690 Proceedings of the 16th International Modelica&FMI Conference DOI 
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218681 

https://openscaling.org/


Ascher, Uri M. and Linda R. Petzold (1998). Computer Meth-
ods for Ordinary Differential Equations and Differential-
Algebraic Equations. Philadelphia, PA: Society for Industrial
and Applied Mathematics. DOI: 10.1137/1.9781611971392.

Baker, Nathan et al. (2019). Workshop report on basic research
needs for scientific machine learning: Core technologies for
artificial intelligence. Tech. rep. USDOE Office of Science
(SC), Washington, DC (United States).

Bertsch, Christian et al. (2023). “Beyond FMI-Towards New
Applications with Layered Standards”. In: Modelica Confer-
ences, pp. 381–388.

Céa, Jean (1986). “Conception optimale ou identification de
formes, calcul rapide de la dérivée directionnelle de la fonc-
tion coût”. In: Revue Française d’Automatique, Informatique,
et Recherche Opérationnelle (RAIRO) 20.4, pp. 371–402.

Chen, Ricky T. Q., Brandon Amos, and Maximilian Nickel
(2020). “Learning Neural Event Functions for Ordinary Dif-
ferential Equations”. In: CoRR abs/2011.03902. arXiv: 2011.
03902. URL: https://arxiv.org/abs/2011.03902.

Franke, Rüdiger et al. (2008). “Model-based online applications
in the ABB Dynamic Optimization framework”. In: Proc. of
the 6th Int. Modelica Conference, Bielefeld. www. modelica.
org/events/-modelica2008/Proceedings/sessions/session3b1.
pdf.

Gutermuth, Georg, Bernhard Primas, and Jan Bitta (2023). “Siz-
ing matters”. In: ABB Review. URL: https : / /new.abb.com/
news/detail/103158/sizing-matters.

Hairer, E., S.P. Nørsett, and G. Wanner (1992). Solving Ordinary
Differential Equations I Nonstiff problems. Second. Berlin:
Springer.

Modelica Association (2024a-11). Functional Mock-up Inter-
face for Model Exchange and Co-Simulation. Document ver-
sion: 2.0.5. Tech. rep. Linköping: Modelica Association.
URL: https : / /github.com/modelica / fmi- standard/ releases /
download/v2.0.5/FMI-Specification-2.0.5.pdf.

Modelica Association (2024b-11). Functional Mock-up Inter-
face Specification. Version 3.0.2. Tech. rep. Modelica Asso-
ciation. URL: https://fmi-standard.org/docs/3.0.2/.
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