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Abstract
This paper introduces the FMI 3.0 Layered Standard for
Network Communication (FMI-LS-BUS), an extension of
the Functional Mock-up Interface 3.0 (FMI 3.0) standard
designed to address interoperability challenges in simula-
ting distributed, networked systems, particularly in auto-
motive applications. By leveraging FMI 3.0 features such
as clocks, clocked variables, and hierarchical terminals,
the standard defines two complementary abstraction lay-
ers:

Physical Signal Abstraction (High-Cut): Representing
physical signal values as clocked variables.

Network Abstraction (Low-Cut): Emulates hardware-
level bus protocols (e.g., CAN, Ethernet) using FMI 3.0’s
clocked binary variables.

Aligning with the V-model development process, we
demonstrate how these layers address distinct challenges
in different design phases: High-Cut supports require-
ments engineering and functional testing by simplifying
signal exchange during Virtual Electronic Control Unit
(vECU) integration. Low-Cut enables later phases of the
design validation by replicating network timing and pro-
tocol specific properties, such as error handling.

The standard’s applicability currently focuses on auto-
motive use cases (e.g., CAN, CAN FD, CAN XL, Ether-
net, FlexRay, LIN) but can be extended to industrial au-
tomation and IoT, facilitated by its domain-agnostic struc-
ture.
Keywords: FMI, layered standard, network communica-
tion, bus, V-model, High-Cut, Low-Cut, Physical Signal
Abstraction, Network Abstraction, FMU, vECU

1 Motivation
The development of complex cyber-physical systems in
the modern automotive industry pushes the boundaries
of engineering complexity, demanding new standardized
methods, virtual validation, and simulation-based testing
practices (Rausch 2022). As vehicles become increasingly

software-driven, the need for virtual validation is partic-
ularly evident since advanced vehicle functions like Ad-
vanced Driver Assistance Systems (ADAS) are extensive
and resource-intensive (dSPACE 2025). Real-world test-
ing and hardware-in-the-loop (HiL) systems alone can-
not adequately cover all test scenarios. Existing devel-
opment methodologies, such as the Vehicle Development
V-model (Müller-Ettrich 1998), provide a well-established
framework for system design and verification. However,
these methods must be complemented by adapting pro-
cesses, methods and tools to the new requirements. There-
fore, new approaches are being developed to validate ve-
hicle functions, ECU software components and network
communication. Strengthening support for communica-
tion protocols and system interactions is essential to en-
sure performance, reliability, and functional safety in the
development of modern vehicles.

Furthermore, the development of these complex, cyber-
physical systems and their components is highly dis-
tributed, with development of critical functionalities
spread across multiple suppliers and engineering teams,
introducing significant challenges in requirements specifi-
cation, system integration and validation (Lawrenz 2013).
A single vehicle’s electronic architecture may involve nu-
merous Original Equipment Manufacturers (OEMs) and a
diverse network of tier suppliers, such as Tier 1 and Tier
2, each with different roles in the development process of
ECUs. These ECUs rely on various automotive bus proto-
cols, such as CAN, LIN, FlexRay, and Automotive Ether-
net (Rausch 2022), to exchange data and coordinate sys-
tem behavior. Each supplier may employ different simula-
tion environments, modeling methodologies, and protocol
implementations, making it difficult to achieve a unified,
end-to-end system simulation. Ensuring seamless inter-
operability between simulation tools and across different
teams and companies has become essential. Engineers en-
counter substantial challenges in:

• Verifying end-to-end system behavior across diverse
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ECUs and networks

• Ensuring consistent communication between hetero-
geneous components and network technologies

• Validating system performance at different stages of
development

• Reducing time-to-market while managing escalating
development costs

• Maintaining comprehensive system reliability,
safety, and compliance with standards such as ISO
26262 (ISO 2011)

A key enabler for addressing these interoperability
challenges is the Functional Mock-up Interface (FMI)
(Blochwitz 2011) (Blochwitz 2012) (Junghanns 2021),
which is a non-proprietary, free standard for model ex-
change and co-simulation, allowing simulation artifacts
from different sources and different simulation tools to in-
teract seamlessly instead of existing proprietary and in-
compatible solutions from different software manufac-
turers. By integrating bus simulations into an FMI-
based workflow, engineers can achieve a more modular,
reusable, and interoperable simulation environment. Since
the FMI 3.0 standard does not cover bus or network com-
munication, the Layered Standard (Bertsch 2023) FMI-
LS-BUS extends the capabilities of FMI 3.0 by standard-
izing network simulations using only features of FMI 3.0.
This enables the validation of communication protocols at
both the frame level (Low-Cut simulation) and the signal
level (High-Cut simulation) while ensuring consistency
across different tool chains (dSPACE 2024).

2 Concepts
This section delves into the general concept of the FMI-
LS-BUS. First, the existing system compositions are pre-
sented. Second, the two specified abstraction layers are
explained and differentiated.

The FMI 3.0 standard itself allows interoperability be-
tween the tool chains of different software manufactur-
ers and reflects a fundamental need and the necessity of
users who have to develop and secure software in a dis-
tributed manner. For example, across company boundaries
in an OEM and supplier relationship or across departmen-
tal boundaries in large companies. Based on this stable
foundation, the FMI-LS-BUS (MAP FMI 2025a) specifies
an extension of the FMI 3.0 standard that enables the sim-
ulation of network communication. This extension sup-
ports various bus systems such as CAN, CAN FD, CAN
XL, FlexRay, Ethernet and LIN and uses native FMI 3.0
features such as binary variables, clocks and terminals.
With two different abstraction layers, the High-Cut and
the Low-Cut, it also offers users the necessary flexibility
and variety to simulate a network of controllers at their
current phase of development.

• Physical Signal Abstraction ("High-Cut"): Use indi-
vidual, clocked signal variables to transport logical,
unit-based values between vECUs, ignoring trans-
port layer-specific properties. The layered standard
for this abstraction basically defines how bus signals
have to be described in the model description file.

• Network Abstraction (Low-Cut): This abstraction al-
lows for the implementation of virtual bus drivers
within FMUs on the level of a hardware abstrac-
tion layer. It uses clocked binary variables to ex-
change bus operations between FMUs based on a
lightweight protocol defined by the layered standard.
Bus operations are used to transmit bus messages as
well as bus events like acknowledge or error events.
This enables both ideal and more realistic bus simu-
lations depending on the capabilities of both sides of
the API: The FMU and the importer. These capabil-
ities can include timing, arbitration, error handling,
status monitoring and other effects.

Since the FMI-LS-BUS is constrained to the description
of the FMU interface, it remains neutral and agnostic to
the actual bus communication process. For supported bus
technologies, convenient templates are available to keep
the integration effort low.

2.1 System Compositions
The FMI-LS-BUS supports three different ways of sys-
tem compositions for integration into a specific simulation
platform. Each individual system composition offers dif-
ferent advantages that are relevant depending on the user’s
concrete needs. The integrated FMUs across the different
system compositions are the same, so that the same FMU
can be integrated in all three communication architectures.

2.1.1 Direct Connection

The first option is to use a common FMU importer. Within
this configuration, the FMU importer does not require any
special features for simulating buses, apart from support-
ing FMI variables, clocks and terminals. Figure 1 illus-
trates the direct communication of two FMUs.

Importer
Direct Communication

Bus Terminal
Terminal Connection

Figure 1. The first system composition allows the connection of
exactly two FMUs using a common FMU importer to simulate
bus systems.

FMI Layered Standard for Network Communication: Applications in Networked ECU Development 
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Direct bus communication is limited to exactly two
FMUs. The idealized bus simulation does not consider
bus-specific properties like the simulation of transmission
timing or arbitration and, therefore, differs from physical
networks. The main points resulting from this are as fol-
lows:

• Network congestion/bandwidth: The respective bus
transmits the specific messages at an infinite speed.
Baud rate considerations are not taken into account.

• Arbitration of network frames: All frames are trans-
mitted at the same time without delay, which means
that network-specific priority rules are not consid-
ered.

• Bus-specific protocol functions: All frames are trans-
mitted at the same time without any delay. Protocol-
specific functionalities, such as the acknowledgment
of frames in CAN or any other network protocol, are
ignored.

• Incoming buffer overflow: The Network FMU will
receive all frames, regardless of buffer size or other
hardware limitations and would need to handle those
internally.

2.1.2 Composition with a dedicated Bus Simulation
FMU

To simulate more realistic network characteristics, a bus
simulation must usually be integrated, which simulates
bus-specific properties like arbitration or the actual trans-
mission time. One option is to implement this behavior in
a separate FMU, the so-called Bus Simulation FMU. This
FMU is responsible for simulating the respective bus be-
havior depending on the specified bus type (e.g., CAN,
Ethernet, or any other bus) and simulates transmission
times and failures of bus messages. Also it realizes the
connections between the different FMUs that want to ex-
change network data (Network FMUs). The primary idea
behind this concept is: All Network FMUs send their bus
messages to the Bus Simulation FMU, which can con-
firm, delay or reject, and forward them. This approach
allows for detailed bus simulations using common FMU
importers. Figure 2 shows two Network FMUs connected
to a Bus Simulation FMU; a total of three FMUs are run-
ning on an FMU importer.

This type of communication allows for the simulation
of all required bus features:

• Transmission timing: An essential and one of the
important features of bus-specific simulations is
the consideration of transmission times for specific
transmissions.

• n:m Bus Communication: The Bus Simulation FMU
can provide the appropriate number of inputs and
outputs to connect all Network FMUs within the
complete bus network.

Importer

Bus Terminal
Terminal Connection
Bus Simulation

Bus Simulation FMU

Figure 2. Bus simulation using a dedicated Bus Simulation
FMU allows the simulation of n:m bus systems and very de-
tailed simulations based on common FMU importers.

• Failure injection: Both the FMI-LS-BUS and this
system composition in which all network data is
routed via central Bus Simulation FMU(s) allow the
possible targeted injection of transmission errors for
simplified testability.

• Arbitration of network frames: Depending on the bus
type and the specific arbitration requirements, ap-
propriate implementations can be carried out via the
central Bus Simulation FMU.

2.1.3 Importer with integrated Bus Simulation

Within this system composition, the functionality of the
Bus Simulation FMU is integrated into the importer or
simulator, so it allows the integration of the FMI-LS-BUS
into an already existing manufacturer-specific simulator.
These simulators may implement network communication
with proprietary interfaces.

Importer

Bus Simulation (embedded)

Bus Terminal
Terminal Connection
Bus Simulation

Figure 3. Bus simulation by using an importer with integrated
Bus Simulation allows proprietary simulators to integrate FMI-
LS-BUS specific FMUs.

This kind of system composition supports the same bus
features as the setup with a dedicated Bus Simulation
FMU, but with importer-specific benefits or constraints.
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Figure 3 shows two Network FMUs integrated by an im-
porter that supports the FMI-LS-BUS standard without the
need for an additional Bus Simulation FMU.

2.2 Physical Signal Abstraction ("High-Cut")
Physical Signal Abstraction, or shortly called High-Cut,
allows the exchange of unit-based physical signals be-
tween FMUs. Variables representing these physical sig-
nals are clocked to reflect the bus timing aspects of the
information flow. The activation of these clocks always
indicate that new network data is available at a given point
of time.

As shown in figure 4, the core idea of the High-Cut con-
sists of the bus signals, which are modeled as FMI 3.0
variables. These FMI variables are grouped into Protocol
Data Unit (PDU) terminals, which are then grouped into
frame terminals to declare their structure according to the
network description.

Importer
Bus Simulation FMU

Frame X

Transmit Transmit
Receive Receive

Terminal

Frame Y
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Figure 4. The figure shows an example architecture of a Physi-
cal Signal Abstraction. The signals (Signal 1. . . 9) are modeled
as clocked FMU variables of a specific type. The corresponding
signals are structurally combined using PDUs, which in turn are
assigned to frames. The PDU and frame structuring is done via
terminals (PDU A, B, C and Frame X, Y).1

This approach of loose coupling between the physical
signals and the lightweight PDU/frame grouping commu-
nication structure allows for easy creation of such High-
Cut-based Network FMUs without the need for complex
communication stacks. These configurations make them
perfect for the rapid creation or prototyping in an agile, it-
erative development of the final communication structure.
The High-Cut is therefore primarily suitable for early de-
velopment phases, where its data-based simplicity offers
efficiency advantages, rather than being disrupted by the
fact that it lacks complete accuracy in simulating specific
bus systems.

2.3 Network Abstraction ("Low-Cut")
The Network Abstraction, or shortly called "Low-Cut", al-
lows the exchange of bus operations between FMUs over
binary clocked variables. Bus operations are defined for

1The term Tx Clock was chosen as an abbreviation for Transmission-
Clock within the figure.

different bus types and allow the emulation of the respec-
tive bus system above an electrical level. The focus here is
on the level of abstraction for virtual scenarios and execu-
tion performance. Each operation consists of an OP-code
and optional arguments. The primary operation is Trans-
mit, which indicates that a Network FMU, connected to
the bus, intends to send a payload. The payload content
mirrors that of a real bus payload, with additional argu-
ments to provide necessary communication frame data, as
shown in figure 5 for a CAN Transmit bus operation corre-
sponding to a CAN Standard Data Frame. A correspond-
ing Bus Simulation typically responds with a Confirm op-
eration to acknowledge receipt of the frame, but it may
also reply with a Bus Error or other bus system specific
operations. The set of provided bus operations ensures
that a particular bus system can be simulated to the re-
quired level of detail.

OP
Code Length ID R

TR ID
E Data

Length Data

SO
F

R
TR ID
EID DLC PAYLOAD CRC D

EL
AC

K
D

EL EOFr

Standard CAN Data Frame

Data Field CRC Field
Acknowlege

FieldControl Field
Arbitration

Field

FMI-LS-BUS CAN Transmit Operation
Operations Field CAN Trasmit

transformed

Figure 5. Shows the mapping of the FMI-LS-BUS CAN Trans-
mit bus operation to a CAN Standard Data Frame. The informa-
tion that can be mapped directly is shown in green. The yellow
representation describes transformed values and the information
shown in red is not used.

In contrast to the High-Cut approach, only one termi-
nal per bus is needed. It consists of a binary variable and a
clock variable for each direction of communication (trans-
mission and reception). With the aid of bus specific oper-
ations, definition any message on the particular bus can be
transported.

Thus, the sum of the instruments of the bus operations,
as well as the bus terminals specified for the interconnec-
tion of Network FMUs, provides the possibility to use the
Network Abstraction within the presented system compo-
sitions (see section 2.1). Figure 6 illustrates two Network
FMUs integrated via an importer with an integrated Bus
Simulation.

Network Abstraction allows a detailed and precise si-
mulation of bus systems. This allows extensive tests us-
ing a suitable simulator in later development stages, when
it comes to ensuring the functionality of a communica-
tion stack and software based on it. Currently, the bus
systems planned for Network Abstraction are CAN, CAN
FD, CAN XL, FlexRay Ethernet and LIN. However, this
list might be extended to include other domains in the fu-
ture.
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Figure 6. Two Network FMUs integrated via an importer which
is coming with integrated Bus Simulation support, based on the
Network Abstraction.

2.4 Principle of FMI-LS-BUS
Based on FMI 3.0, FMI-LS-BUS defines the API between
FMU and importer and its semantics: What a variable and
its values mean, how and when to exchange values and
how to interpret those values.

Neither FMI 3.0, nor FMI-LS-BUS, specify what hap-
pens inside FMUs and importers. Both standards are ag-
nostic of the FMU generation process (e.g. hand written,
generated, wrapper or tool connector) or its content (e.g.
AUTOSAR (AUTOSAR R24-11) vECU, file access for
replay, aerospace line-replaceable unit (LRU)).

By not defining the internals of either side of the FMI-
LS-BUS API’s participants, FMI-LS-BUS can be used for
many different use cases, as described above: Rough or
detailed functional behavior, function emulations or pro-
duction behavior wrapped in a thin FMI-LS-BUS wrapper.

3 Benefits of Integrating FMUs with
FMI-LS-BUS within the Develop-
ment Process

This section proposes an enhanced V-model, tailored to
address the complexities of modern automotive develop-
ment (see figure 7). This approach uses FMUs as cen-
tral, standardized exchange artifacts across the entire de-
velopment lifecycle. Being inherently tool-agnostic, FMI
proves particularly valuable in distributed development by
facilitating seamless integration at the interfaces between
diverse domains (e.g., controls, sensor fusion, vision), dis-
tinct development stages (design, implementation, test-
ing), and across heterogeneous tool chains.

During the initial design phases on the left side of the
V-model, requirements decomposition occurs, leading to
system and architectural decisions, including function dis-
tribution. This involves the definition of software com-
ponents (SWCs) and their specific network interactions.
These designs, including functional behavior, parameters,

interface definitions, and network information, are then
abstracted and encapsulated into executable FMUs, poten-
tially leveraging FMI 3.0 features and the FMI-LS-BUS.

The availability of executable FMUs enables early and
continuous virtual integration testing (e.g., MIL/SIL) on
the verification branch of the V-model. For example,
FMUs representing distinct ECUs, potentially created
from multiple suppliers, can be simulated together us-
ing FMI-LS-BUS. By enhancing conventional methods
(which typically rely on static documentation and inter-
face specifications) by integrating executable specifica-
tions, we can substantially reduce ambiguity and error
potential. A key benefit of this integration is the ability
to formulate and apply test cases early on, enabling the
early identification and resolution of inconsistencies that
might otherwise arise from interpretation mismatches or
format translations between different development stages
and tools. This includes managing inconsistent signal def-
initions across different tool domains, simulating realistic
network requirements, and validating end-to-end timing,
interactions, and protocol adherence.

Acceptance
Test

H
ig

h-
C

ut

realization / time

Customer 

VALIDATION

LEVEL

Vehicle

VERIFICATION

LEVEL
Functional
Simulation

System
Simulation

Co-
Simulation

Results

le
ve

l o
f d

et
ai

l

System

VERIFICATION

LEVEL

System &
Performance Test

Module/Unit
Implementation

Composition &
Component

Integration Test

Component &
Composition

Design

Functional
System Design

Context &
Requirements

System & System
Integration Test

Functional &
Architecture
Specification

FM
I-L

S-
B
U
S

Lo
w

-C
ut

FM
I-L

S-
B
U
S

Component

VERIFICATION

LEVEL

Software

VERIFICATION

LEVEL

Figure 7. Enhanced V-model incorporating FMI-LS-BUS.
This model illustrates the application of High-Cut and Low-Cut
FMUs throughout distinct phases of the automotive development
and verification life cycle.

This tight coupling between design and validation as-
pects of the V-model, facilitated by executable FMUs, en-
ables an agile, iterative methodology, thereby supporting
Continuous Integration/Continuous Testing (CI/CT) prac-
tices. Smaller, faster development cycles for components
or subsystems provide rapid feedback. This significantly
reduces integration risks later in the process and enhances
overall efficiency, traceability, and the capacity to manage
the complexity inherent in modern vehicle compositions.
Furthermore, the standardized nature of FMUs promotes
model reuse across different projects, simulation environ-
ments, and even between collaborating organizations (e.g.,
OEM and Tiers), maximizing the return on modeling ef-
fort.

Figure 7 illustrates this enhanced V-model framework
that integrates FMI-LS-BUS to support both High-Cut and
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Low-Cut FMUs, targeting different phases in the develop-
ment process. Typically, High-Cut FMUs encapsulate ap-
plication logic or functional behavior (often derived early
in the design), while Low-Cut FMUs focus on detailed
network interface behavior and network stack implemen-
tations (like AUTOSAR Classic), enabling verification at
different integration levels as development progresses.

3.1 System Requirements and Architecture
Definition

The High-Cut variant addresses the "top-left" of the devel-
opment process, including requirements decomposition,
system architecture definition, and the allocation of func-
tions to logical or preliminary architectural components
(see figure 8).
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Figure 8. High-Cut use cases in the V-model. A proposed work-
flow for a quick development testing feedback loop using FMI-
LS-BUS High-Cut features.

In this context, FMUs become executable design ob-
jects that embody requirements and components, offer-
ing a precise and verified definition early in the devel-
opment lifecycle. The relationship between requirements
and executable models improves traceability, verification,
and impact analysis. The interoperability of the FMI stan-
dard can be a significant improvement in addition to tradi-
tional document-centric methods, allowing experts to in-
tegrate models from diverse tools like MBSE platforms
and domain-specific simulators. These models serve as
preliminary executable definitions that yield insights more
rapidly and accelerate the specification process.

One example usecase is the allocation of distributed
functions within a vehicle network, where a function is
spread across multiple components. Simulation can be
used to assess the impact of moving a function from one
control unit to another, revealing how the change affects
system behavior and communication. FMI-LS-BUS de-
scribes the interaction between these functional FMUs as
part of automotive networks at a High-Cut abstraction
level by modeling the interaction between these FMUs at

the "signal level. This abstraction emphasizes the vali-
dation of functional data exchange between components
while omitting the characteristics of network protocols.

The primary validation objective in this design phase
is to confirm the architecture’s functional accuracy, vali-
date data flows, and detect conceptual errors in distributed
logic before they are implemented. By enabling Verifi-
cation and Validation activities much earlier than conven-
tional, late-stage integration methods, High-Cut simula-
tions with FMI-LS-BUS allow teams to identify and cor-
rect architectural flaws before they propagate into more
costly development stages. Crucially, even with signal-
level abstraction, this approach facilitates the early eval-
uation of closed-loop behavior, capturing essential timing
factors and discretization effects that might otherwise be
overlooked. Moreover, these FMUs serve as a shared, exe-
cutable specification that improves collaboration between
system architects and implementation teams. This single
source of truth provides a clear, unambiguous, and vali-
dated artifact that can be shared with suppliers, which is
especially beneficial when developing functions across or-
ganizational boundaries.

3.2 ECU Software Development and Compo-
nent Testing

Building on the validated architecture, this iteration con-
centrates on the detailed development of Software Com-
ponents (SWCs) and their integration into virtual ECUs
(vECUs). Function developers and software engineers re-
fine the FMUs with the executable specification or create
new, more detailed FMUs representing concrete SWCs or
vECUs, potentially incorporating auto-generated or hand-
written code. The adoption of FMUs supporting FMI-
LS-BUS substantially enhances the workflow, enabling
early virtual integration and testing of software long be-
fore hardware is available. For instance, an OEM can eas-
ily integrate and test vECUs from multiple suppliers in a
common simulation environment. This early, hardware-
independent validation results in robust vECUs that serve
as reliable deliverables for the next stage, significantly ac-
celerating the overall development cycle.

In advance, network communication can be verified at a
more detailed "Low-Cut" abstraction level using FMI-LS-
BUS. This involves simulating the AUTOSAR communi-
cation stack, including the packing and unpacking of sig-
nals into network messages (e.g., CAN frames) based on
standard description formats like DBC or ARXML. Sim-
ulating these vECUs together allows for thorough testing
of the communication software, ensuring the implemen-
tation meets network interface requirements. This helps
developers identify critical errors, such as incorrect sig-
nal packing or protocol deviations, preventing them from
becoming costly problems during later hardware integra-
tion phases. The simulation can also be extended to model
key characteristics of the bus itself, enabling the analysis
of network-level phenomena such as timing effects and
the correctness of error-handling mechanisms like mes-

FMI Layered Standard for Network Communication: Applications in Networked ECU Development 
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Figure 9. Low-Cut use cases in the V-model. This figure illustrates a proposed workflow for a quick development testing feedback
loop using FMI-LS-BUS Low-Cut features.

sage retransmission.

3.3 System Testing

Proceeding from the integrated vECU developed and val-
idated in section 3.2, this final virtual iteration assembles
the individual vECUs into a complete system simulation.
The primary objective is comprehensive testing in a realis-
tic environment to create a high-confidence virtual release
candidate. System integration and test teams utilize the
collection of vECUs alongside potentially more sophisti-
cated Bus Simulation FMUs (see section 2.1.2) or use an
integrated Bus Simulation (see section 2.1.3) representing
the network bus itself. These Bus Simulations, also lever-
aging FMI-LS-BUS (Low-Cut), incorporate enhanced ca-
pabilities beyond simple message transport, such as de-
tailed timing models and error injection mechanisms, pro-
viding a realistic virtual testbed. The standardized FMU
interface within this iteration affords significant flexibility,
allowing test teams to readily combine vECUs from vari-
ous sources (different internal teams or external partners)
with advanced bus models and test harnesses, potentially
originating from different tool vendors. This enhances test
flexibility, coverage, and the ability to simulate realistic
system conditions, ensuring functional requirements and
communication specifications are met at the system level.

The validation at this system level is thorough, in-
tended for ensuring end-to-end correctness and identifying
integration problems that isolated component tests may
not detect. The procedure include validating functional
performance throughout the complete virtual system and
evaluating detailed network attributes such as latencies,
scheduling conformity, and bus load. By systematically
injecting network errors—such as message loss, data cor-

Co-Simulation

vECU1 vECU2 vECU3

vECU4 vECU5 vECU6 vECU7

CAN1

CAN2

Arbitration
Bus Load
Bus Timing
Latency Analysis
Bus Error
Node Error
Frame Error
...

Bus Simulation:

Figure 10. This figure illustrates a total of seven VECU FMUs
connected via two virtual CAN bus lines (CAN1 and CAN2). A
portion of the VECU FMUs is connected via both bus lines and
thus communicates in both CAN networks. Using the Low-Cut
approach, very detailed and global tests on a system level are
possible to ensure the functionality of the various vECU FMUs
in various scenarios.

ruption, or node failures—through the advanced bus sim-
ulation, the system’s reaction can be properly assessed
against its requirements. Successful completion of this
virtual testing phase provides high confidence in the sys-
tem’s correctness, performance, and robustness. The vali-
dated set of integrated FMUs represents a comprehensive
virtual prototype, ready to be shared with other stakehold-
ers (e.g., for calibration or HiL testing) as part of the dis-
tributed development and release process, ensuring con-
sistency prior or in parallel to hardware deployment.

3.4 Operation and Maintenance
The integration of FMUs connected via FMI-LS-BUS ex-
tends its benefits beyond initial development and testing
into the vehicle’s operational phase and subsequent main-
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tenance activities. Virtual models and test environments
created during the development life cycle, encompassing
a wide range of potential vehicle configurations, become
valuable assets for post-release tasks.

Managing Variant Complexity with Virtual Fleets:
A virtual fleet enhances troubleshooting capabilities.
When addressing field-reported issues potentially specific
to certain variants, the corresponding virtual configuration
can be quickly instantiated to reproduce the fault condi-
tion. Validated system representations, containerized as
FMUs, are used within these simulations. Field record-
ings are utilized to stimulate the simulation. Therefore,
the Low-Cut abstraction is especially useful since the cap-
tured traces can be easily transformed to the FMI-LS-BUS
datagram. Furthermore, operational data collected from
vehicles in the field can then be added into the simulation
database to improve and correlate the original FMU mod-
els, gradually increasing accuracy over time.

Quality Assurance of Updates Across Variants: A
virtual system environment, representing the necessary
variants from the virtual fleet, is crucial for validating soft-
ware upgrades before deployment, especially for Over-
the-Air (OTA) updates. Prior to releasing updates, their
compatibility and performance can be rigorously tested
across all relevant deployed configurations within the
FMI-LS-BUS simulation system. This pre-deployment
validation against the virtual fleet acts as essential qual-
ity assurance, significantly reducing the risk of introduc-
ing variant-specific defects or regressions into operational
vehicles, thereby safeguarding the safety and reliability of
OTA updates across the diverse product range.

Digital Twin for Long-Term Maintenance: The con-
tainerized nature of FMUs simplifies archiving specific
system configurations and component baselines for each
variant (Coïc 2021). This supports consistent, traceable
long-term maintenance across the entire vehicle portfolio.
A specific configuration from the virtual fleet, potentially
updated with operational data for a particular physical ve-
hicle, can function as a key component of that vehicle’s
Digital Twin, enabling variant-specific analysis and pre-
diction.

Service Training: The library of FMU models, cover-
ing various vehicle configurations, serves as an effective
tool for the supplementary training of service technicians.
They can learn about variant-specific systems and diag-
nostics in a virtual environment, enhancing competence
without the constraints and costs associated with access-
ing diverse physical hardware.

3.5 Conclusion
By establishing FMUs as standardized, executable ex-
change artifacts throughout the proposed "enhanced" V-
model development process, FMUs close critical gaps
between development domains, stages, tools, teams and
companies. The iterative application of this methodol-
ogy, leveraging both High-Cut (signal-level) and Low-
Cut (message-level) FMI-LS-BUS abstractions, enables

the following significant benefits:
This methodology improves efficiency, reduces integra-

tion risks and costs, enhances quality and reliability, fos-
ters collaboration, and manages the inherent complexity
in developing modern, distributed automotive electronic
systems through standardization, virtualization, and early,
continuous validation.

4 Validation of FMI-LS-BUS
Interoperability is an essential aspect of modern model-
based systems engineering, enabled by standards like the
FMI. FMI encourages exchange and simulation of dy-
namic models created with various authoring tools. The
FMI 3.0 Layered Standard for Network Communication
(FMI-LS-BUS) has been developed to extend these ca-
pabilities to distributed systems and network-based sim-
ulation architectures. The demonstrated interoperability
across a wide range of technologies and organizations is
an important measure of such standards’ success and prac-
tical adoption.

At the ASAM International Conference 2024 (Bertsch
2024), the FMI-Design Group demonstrated the seamless
interoperability between different tools. This demonstra-
tion showcased the High-Cut and Low-Cut capabilities
based on automotive simulation use cases.

Well-known SiL software tool vendors such as
Akkodis, Altair, AVL, Bosch, dSPACE, PMSF IT Con-
sulting and Synopsys participated in this demonstration
with their tools (Bertsch 2024).

5 Other usage domains
The current focus of standard network protocols predom-
inantly targets technologies utilized within the automo-
tive sector. However, other industries, such as shipping,
aerospace, off-road machinery, and agriculture, employ
distinct network technologies tailored to their specific re-
quirements. Examples include CANaerospace, ARINC
667, AFDX, MIL-STD-1553, and ISOBUS.

With the successful integration of automotive network
technologies into the FMI-LS-BUS, there is potential
for incorporating additional domain-specific technologies.
This process can be facilitated by interested parties from
both within and outside the FMI community. Such inte-
grations may occur with or without formal endorsement
from the Modelica Association Project FMI.

6 Summary and Outlook
The increasing complexity of products and development
processes necessitates not only the standardization of sig-
nal exchange but also the harmonization of network mes-
sage exchange for simulation artifacts. The FMI-LS-BUS
addresses this need by providing a standardized frame-
work for network simulation, building upon the widely
adopted FMI 3.0 standard. By introducing two abstraction
layers, the standard enables flexible utilization of network
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communication throughout all phases of product develop-
ment. Early development stages can leverage high-level
abstractions (High-Cut), while later stages can adopt low-
level details (Low-Cut) as more specific network behav-
iors are defined.

FMI is already a standard for many OEMs and suppli-
ers when developing and exchanging vECUs. The FMI-
LS-BUS, as a key technology for cross-manufacturer de-
scription of bus simulations in FMUs, will strengthen the
core FMI standard itself and allow users to use it in new
and unprecedented areas of application. To facilitate im-
plementation, a range of resources is available, including
an FMI-LS-BUS Implementers’ Guide (MAP FMI 2025b)
and reference FMUs, which are accessible via the FMI
website www.fmi-standard.org. These resources aim to
streamline integration efforts for tool providers and their
developers.

Regarding a possible description format for the system
interconnection of buses described in FMUs for the FMI-
LS-BUS, the SSP standard (MAP SSP 2024) is a suitable
option. Current analyses regarding the possible specifica-
tion are part of ongoing work. This could offer further
simplifications for users.

Additionally, stakeholders are encouraged to participate
in the FMI community or develop their own layered stan-
dards on top of FMI 3.0. Such initiatives can occur inde-
pendently or in collaboration with the FMI project, fos-
tering innovation and extending the applicability of FMI
standards across diverse domains.
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