
Enhancing Large-Scale Power Systems Simulations through
Functional Mock-up Unit-based Grid-Forming Inverter Models

Sagnik Basumallik1 Luigi Vanfretti2 Mohammad Ali Dashtaki3 Ziang Zhang3 Reza
Pourramezan1 Hossein Hooshyar1

1New York Power Authority, {sagnik.basumallik, reza.pourramezan, hossein.hooshyar}@nypa.gov
2Rensselaer Polytechnic Institute, vanfrl@rpi.edu

3Binghamton University, {mdashta1,zhangzia}@binghamton.edu

Abstract
New York State (NYS) faces significant challenges in
meeting the Climate Act’s bold goals of 70% renewable
energy generation by 2030 and total decarbonization of
the electric grid by 2040. Extensive simulations are re-
quired to assess the impact of numerous inverter-based
resources (IBRs) deployed to the large-scale NYS power
grid, aiming to evaluate their dynamic behavior and miti-
gate any negative interactions with their control schemes.
However, the modeling efforts required are huge and the
computational burden of large-scale simulations is ex-
tensive, and often limited by the capabilities of domain-
specific tools. This work addresses these limitations by
developing a Functional Mock-up Unit (FMU) of Grid-
Forming (GFM) Inverters for IBR control and integrat-
ing them with an electromechanical phasor-domain power
system solver. The proposed FMU facilitates the sim-
ulation and parametric studies needed to analyze large-
scale IBR usage with significantly improved manual mod-
eling and computational efforts. The paper details the
process of developing and FMU model for GFM IBRs,
including all relevant control loops implemented in the
Modelica language and FMU integrated in OPAL-RT’s
ePHASORSIMTM software. Our FMU models are used to
successfully deploy and study the impacts of up to 6,200+
MVA from IBRs on the 5000-bus NYS transmission sys-
tem.
Keywords: Power Grid, Power Systems, Droop-based
Control, Grid Forming Inverter, Inverter-based Resource,
Modelica, Functional Mock-up Unit

1 Introduction
In accordance with the NYS Climate Leadership and
Community Protection Act, 70% of New York State’s
electricity must be derived from renewable energy sys-
tems (RES) by 2030 (Senate 2023). Grid-forming (GFM)
inverter-based technology stands out as a promising solu-
tion to integrate RES that are interfaced with the NYS grid
via power electronics-based inverters, including wind, PV
solar, and fuel cells. This is due to the ability of GFM con-
trol to independently provide voltage and frequency sup-
port to the grid with fault ride-through capabilities (Du et

al. 2019). Comprehensive simulation studies are essen-
tial to evaluate the impacts of IBRs on the future NYS
grid. However, modeling and simulating a large power
system with GFM IBRs deployed at scale introduces sub-
stantial challenges including modeling efforts, interfacing
resources, and computational requirements.

To address these challenges, this paper presents the de-
velopment of a complete IBR model with a droop-based
GFM control as a Functional Mock-up Unit (FMU). An
FMU is a prepackaged, standardized container of user-
defined models that adheres to the Functional Mock-up
Interface (FMI) standard. The FMI standard is a free tool-
independent standard that defines “a container and an in-
terface to exchange dynamic simulation models using a
combination of .xml files, binaries and C code” (Model-
ica Association 2025).

The main advantage of developing IBR models in Mod-
elica is that the models can be re-utilized in different sim-
ulation platforms by exporting them as an FMU. This pro-
vides end-users with full control over model parameters
and IBR control modes, making their reuse in simulation
highly scalable and efficient. In addition, FMUs enhances
interoperability between different simulation tools (Luigi
Vanfretti, Li, et al. 2013). Common industry tools such as
PSS/E, PSCAD, EMTP and PowerFactory have different
ways of defining models and data, making it difficult to
share them between tools (Laera et al. 2022). In contrast,
using FMUs offers a “build once, deploy anywhere” ad-
vantage, allowing models to be easily shared and reused
across different simulation platforms without the need for
extensive reconfiguration. This minimizes dependencies
to the C compiler and the Modelica tool (Luigi Vanfretti,
Laughman, and Chakrabarty 2024). Some of the power
system simulation tools that currently support FMUs in-
clude ePHASORSIM, EMTP, Pandapower, and Powerfac-
tory. Users can also create custom models and interface
them as FMUs when existing native software libraries do
not offer the required models. Flexibility is key when per-
forming large-scale power system simulation and assess-
ing the impact of integrating IBRs, as required in NYS
grid studies, and FMUs offer such advantage.

The FMU developed for the GFM IBR used in this pa-
per is implemented in the Modelica language. Modelica is

DOI Proceedings of the 16th International Modelica&FMI Conference 713
10.3384/ecp218713 September 8-10, 2025, Lucerne, Switzerland

RRR

an open-access standard and a free, object-oriented math-
ematical modeling language that is generally used to de-
scribe large-scale physical systems (Fritzson and Engel-
son 1998) and build control applications that interact with
their environment (Thiele et al. 2017; Hellerer, Bellmann,
and Schlegel 2014). Modelica supports component-based
modeling and allows one to mathematically describe a
model using differential, algebraic, and discrete equations.
In addition, the Modelica Standard Library provides a
plethora of components that can be reused, for example,
as done in this paper to build several control loops of
the GFM IBR. Using object-oriented modeling constructs,
such as inheritance (Fachini, Bhattacharjee, et al. 2023),
the GFM inverter model is created hierarchically. Begin-
ning with a simple voltage source, we progressively build
a controllable voltage source that is the fundamental back-
bone of the GFM inverter model. The generated FMU
is set up to be independently tested and verified inside
a Modelica-compliant tool, Dymola (Brück et al. 2002),
prior to external deployment. This is one of the main
advantages of using the Modelica language and Dymola,
which allows to test each of the individual component of
the model in isolation, a feature currently not supported
by power system simulation software (Laera et al. 2022).

1.1 Literature Review
The Modelica language has been widely used for various
power system applications. One notable development is
the Open Instance Power System Library (OpenIPSL) (L.
Vanfretti et al. 2016; Baudette et al. 2018; de Castro et al.
2023) which has power system component models writ-
ten in the Modelica language for power system dynamic
studies, such as phasor time-domain simulations, while
allowing one to extend the modeling scope of conven-
tional power system simulators. The authors in (Luigi
Vanfretti, Mukherjee, et al. 2019; Gomez et al. 2018) de-
velop an automatic re-synchronization controller for is-
landed networks within a multi-domain gas turbine and
power system model using Modelica. Specifically, they
used Modelica libraries such as ThermoPower (Casella
and Leva 2005) to model the thermomechanical dynamics
of the gas turbine and OpenIPSL for the components of the
power system. The authors in (Mukherjee and Luigi Van-
fretti 2018) implemented a frequency controller in Mod-
elica for island operation in power distribution networks.
This work integrated multiple Modelica blocks that in-
clude a synchronous generator, a gas turbine model, and
an excitation system, Modelica noise library for stochastic
load modeling and zero-order hold, and fixedDelay
blocks for PMU reporting rates and delays.

Modelica breaks through the limits of conventional
power system simulators. It allows one to conduct spe-
cialized studies that usually need various tools or sepa-
rate programs for different analyses. This is beneficial,
for example, in studies related to the stability of island
power systems, such as those presented in (Winkler 2018).
Here, different models of an island power are connected

through a single transmission line to the Icelandic power
grid, and their stability is analyzed. The entire transmis-
sion and generator models were built in Modelica using
the OpenIPSL library, and multiple scenarios are studied
for cases where connection to the national grid is lost.
Another example in (Segerstrom et al. 2023) develops a
Modelica-based approach to analyze subsynchronous os-
cillations for a lumped mass torsional shaft model with
25 masses. The Modelica implementation was shown
to have two unique advantages. In addition to includ-
ing shaft torsional dynamics, turbine, boiler, and gover-
nor dynamics were taken into account using components
from OpenIPSL. In addition, the authors emphasize that
the Modelica_LinearSystems2 library (Baur, Ot-
ter, and Thiele 2009) allows the analysis of modal-based
eigenvalues to be performed directly, eliminating the need
to develop a separate model for linear analysis or the use
of additional tools for this purpose (Nikolaev et al. 2020).

Microgrid modeling and simulation often exclude pha-
sor simulations, yet they offer benefits by being computa-
tionally efficient, as they simplify the switching behavior
of power electronics components. For example, the au-
thors of (Fachini, Bhattacharjee, et al. 2023; Fachini, Pig-
ott, et al. 2023; Fachini, Bogodorova, et al. 2024) have im-
plemented a microgrid model using Modelica standard li-
braries and the OpenIPSL library (Fachini, Bhattacharjee,
et al. 2023; Fachini, Pigott, et al. 2023). In (Fachini, Bhat-
tacharjee, et al. 2023), the microgrid was developed with
two combustion turbo generators and four steam turbo
generators using OpenIPSL machine, prime mover, and
control system models, and analyses were carried out to
study contingency and modal analysis. This study was ex-
tended in (Fachini, Pigott, et al. 2023), where distributed
energy resources such as PV were integrated, and fault
studies were carried out. These microgrid models were
also extended to perform Model Predictive Control (MPC)
in (Fachini, Bogodorova, et al. 2024), where the linearized
model was used to obtain the MPC solution, and time-
domain simulations were performed to apply the MPC ac-
tions for safe island operation and re-synchronization.

Developing power system models with Modelica pro-
vides additional benefits brought through the FMI ecosys-
tem of tools for new and emerging needs. An exam-
ple is the ModelicaGridData tool which was de-
veloped and interfaced with OpenModelica and/or Dy-
mola through their respective Python APIs to generate
large data sets of different operating conditions and distur-
bances, which were then used to train machine learning-
based stability assessment approaches (Dorado-Rojas et
al. 2023). Another example in (Castro et al. 2022) illus-
trates how power system models built using the OpenIPSL
library can be exported as FMUs to be tested on real-
time simulators such as dSPACE. Other power system
applications using Modelica include control coordination
for HVAC/HVDC power systems (Bakhos et al. 2017;
Babaeifar, Barsali, and Ceraolo 2023), implementing
and validating variable-speed drive-based induction mo-

Enhancing Large-Scale Power Systems Simulations through Functional Mockup Unit-based …

714 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218713

tor models (Fachini, Castro, et al. 2024), building energy
simulation (Luigi Vanfretti, Laughman, and Chakrabarty
2024), and special protection schemes (Jakobsen et al.
2022).

Beyond power systems, Modelica has proven effec-
tive and extensively used in other domains such as
thermofluid systems (Steinmann, Herold, and Schirmer
2024), aerospace (Reiner 2022), robotics and mechatron-
ics (Reiser and Reiner 2023), and other industrial applica-
tions (Weber, Cartignij, and Zimmer 2023).

1.2 Contributions and Paper Organization
The three specific requirements of this study include: (a)
the development of GFM inverter models suitable for
large-scale power system simulation, (b) parametrization
of GFM inverters, and (c) minimization of both manual
and computational effort required for deployment and pa-
rameterization. This paper makes the following novel con-
tributions to address the requirements:

1. Provides a guideline for modeling droop-controlled
GFM IBRs using Modelica.

2. Develops a systematic approach to validate various
subsystems of the GFM IBR model inside Modelica
prior to full-scale deployment.

3. Develop interfaces to generate FMUs for the GFM
inverter for integration with a specific power system
simulator.

4. Discusses the benefits of using FMUs for large-scale
power system simulation, such as ‘easy-to-build’
and ‘easy-to-manage’ advantages that involve min-
imal manual intervention and improved computa-
tional performance.

5. Examining scaling up of GFM IBR deployment via
FMU across the New York State 5000-bus power
grid.

The remainder of this paper is organized as follows:
Section 2 presents the overview of the Modelica GFM li-
brary, Section 3 discusses the development of the GFM
inverter model in Dymola, followed by FMU generation
in Section 4 and interfacing with OPAL-RT’s ePHASOR-
SIM in Section 5. Results from simulation studies are dis-
cussed in Section 6 followed by the conclusions from this
work in Section 7.

2 Modelica GFM Library Overview
This section presents the GFM IBR library in de-
tail, including various dependencies, packages, and sub-
packages. In addition, it describes how the object-oriented
approach is utilized to construct the GFM IBR model.

Figure 1. GFM library organization in Dymola

2.1 Organization of GFM Inverter Library
The GFM inverter components are built in the widely pop-
ular and proprietary Modelica-compliant language tool
called Dymola (Brück et al. 2002). Dymola offers an
intuitive graphical user interface with features that al-
low users to easily navigate built-in libraries and orga-
nize their own user-defined models. The GFM IBR li-
brary, called nypaAGILeComponents, needs to be
combined with other Modelica libraries. These include
two of Opal-RT’s Modelica libraries, the Opal_RT 1, a
proprietary library that uses the Opal_RT library to build
power plant sub-systems called GenUnit, the Model-
ica Standard Library, and OpenIPSL. A snapshot of the
nypaAGILeComponents library where the GFM in-
verter is built is shown in Figure 1.

There are three main components: (a) voltage source
(VS), (b) controllable voltage source with input/output
(VSIO), and (c) GFM control model REGFM_A1 (Du
2023). The library is organized reflecting the incremental
manner in which components were developed and added.
Each component has (a) the Modelica model, (b) an FMU
wrapper, and (c) the generated FMU. The wrapper is a
Modelica block that encapsulates the Modelica model and
causalizes it when the FMU is generated. It contains the
mandatory connectors, interfaces and parameters required
by ePHASORSIM (described later in Section 4). In ad-
dition, each specific wrapper includes an additional set

1Available online: https://github.com/
Opal-RT-Technologies/modelica-ephasor-components

Session: FMI for Energy Systems in Track for FMI and Related

DOI Proceedings of the 16th International Modelica&FMI Conference 715
10.3384/ecp218713 September 8-10, 2025, Lucerne, Switzerland

https://github.com/Opal-RT-Technologies/modelica-ephasor-components
https://github.com/Opal-RT-Technologies/modelica-ephasor-components

Figure 2. (a) Simple voltage source and (b) Modelica imple-
mentation

Figure 3. Simple voltage source parameters in Dymola

of parameters that the user can modify using the external
tools, e.g., to select the control mode of the GFM inverter
and parameterize it. The ‘generated FMU’ is a Modelica
model that contains within the generated FMU the appro-
priate interfaces for use within the Modelica tool.

2.2 Model Building through Inheritance
Using inheritance, hierarchical and reusable component
models were created for GFM modeling in Dymola. Each
new component (such as the IBR model) inherits proper-
ties and behaviors from existing ones (such as the volt-
age source). This approach simplifies model develop-
ment and maintenance by allowing modifications at higher
levels of the hierarchy to propagate automatically to de-
rived models. For example, the voltage source (VS) in-
side the GFM IBR extends from a “VS Droop model”
that provides the required “measurement” outputs for the
GFM controls. This component itself extends a sim-
ple VS whose voltage can be specified by external in-
puts, are applied to an internal impedance and cou-
ples with an acasual connector. An example of such
inheritance is given through the statement: extends
VSIO.Modelica.VoltageSourceIO VS().

3 Droop-based GFM Components
The GFM inverter operates as a controllable VS behind
a coupling reactance (Du et al. 2019). To understand the
GFM inverter modeling in Dymola, we start with the de-
sign and validation of a simple VS, which forms the basis
for the controllable VS that is needed for the GFM model.
The controllable VS is followed by two droop-based con-
trol architectures (P-f and Q-V), overload limiters and a
fault current limiter, as described below.

3.1 Simple Voltage Source
Consider a simple VS with an internal impedance of Ra +
jXd connected to a bus shown in Figure 2. The objective
is to find the internal voltage E ̸ δE of the source from the
active and reactive power (P and Q) measurements at the

Gen1 terminal bus. The terminal voltage is denoted as
V ̸ δV =Vr + jVi. The current equation is given as:

I∗ =
P+ jQ
Vr + jVi

=
PVr − jPVi+ jQVr +QVi

V 2
r +V 2

i
(1)

The real part of the current is:

ℜ{I∗}= Ir =
PVr +QVi

V 2
r +V 2

i
(2)

The imaginary part of the current is:

ℑ{I∗}= Ii =
PVi− jQV

V 2
r +V 2

i
(3)

With internal source impedance of Ra + jXd , the internal
voltage (E = Emag ̸ Eδ) is given as:

E = (Ir + jIi)(Ra + jXd)+(Vr + jVi) (4)

The real part of the internal voltage is:

ℜ{E}= Ereal =Vr − IiXd + IrRa (5)

The imaginary part of the internal voltage is:

ℑ{E}= Eimag =Vi + IiRa + IrXd (6)

An excerpt of the VS model with parameters such
as base and internal impedance is shown in Figure 3.
The VS is implemented in Modelica, as shown in List-
ing 1. The terminal voltage values are interfaced with
the mandatory (required by ePHASORSIM) connector of
the Opal_RT library, Powerpin (PwPin), through
p.vr and p.vi. Details on PwPin and interfacing can
be found later in Section 4.4.

3.1.1 VS Parameter Initialization
Using the VS parameters shown in Figure 4, the compo-
nent is initialized as shown in the Listing 2. Note that
we explicitly define variables with start values for ini-
tialization not only to provide a good starting guess value
for the numerical solvers when simulating from differ-
ent starting steady-state operating conditions, but also be-
cause these values need to be modified when the model is
exported as an FMU to be used in a power system simula-
tor.

Listing 1. Snippet of the Internal Voltage Source Equations

1// Change from system (SB) to machine base (M_b)
2parameter Real CoB=M_b/SB;
3// Internal voltage source equations
4Er = p.vr + CoB*R_a*p.ir - CoB*X_d*p.ii;
5Ei = p.vi + CoB*R_a*p.ii + CoB*p.ir*X_d;
6// Assing variables to outputs
7Emag = E;
8Edelta = delta;
9Ereal = Er;
10Eimag = Ei;

Enhancing Large-Scale Power Systems Simulations through Functional Mockup Unit-based …

716 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218713

Figure 4. Parameters obtained from power flow used for voltage
source initialization

Listing 2. Initialization of internal VS from power flow

1protected
2// Auxiliary parameters for initialization
3v_0 = Vt_abs "Intial terminal Vmag from pf";
4angle_0 = Modelica.Units.Conversions.from_deg(

Vt_ang) "Initial terminal V_angle from pf";
5P_0 = P_gen "o/p power from pf";
6Q_0 = Q_gen "o/p power from pf";
7
8// Terminal Voltage variables
9Real V(start=v_0) "Bus voltage magnitude";
10Real anglev(start=angle_0) "Bus voltage angle";
11
12// Public Auxiliary variables
13Real P(start=P_gen/SB) "Active power";
14Real Q(start=Q_gen/SB) "Reactive power";
15
16// Public Internal voltage source variables
17Real delta(start=delta0) "Internal VS angle";
18Real E(start=E0) "Internal VS magnitude";
19
20// Change of base
21CoB=M_b/SB;
22p0=P_0/M_b "Initial MW (machine base)";
23q0=Q_0/M_b "Initial MVAR (machine base)";
24
25// Initialization values
26vr0=v_0*cos(angle_0);
27vi0=v_0*sin(angle_0);
28ir0=CoB*(p0*vr0 + q0*vi0)/(vr0^2 + vi0^2);
29ii0=CoB*(p0*vi0 - q0*vr0)/(vr0^2 + vi0^2);
30
31// Initialization of internal VS parameters
32Er0 = vr0 + CoB*R_a*ir0 - CoB*X_d*ii0 "Initial

value of E_real";
33Ei0 = vi0 + CoB*R_a*ii0 + CoB*X_d*ir0 "Initial

value of E_imag";
34E0 = sqrt(Er0^2+Ei0^2);
35delta0 = atan2(Ei0, Er0);
36
37// Internal voltage source variables
38Real Er(start=Er0);
39Real Ei(start=Ei0);
40
41equation
42// Internal voltage source equations

p2R

abs

arg

re

im

Emag

Edelta

PwPin

Ereal

Eimag

uEmag

uEang

uEmag

uEang

Figure 5. Controllable voltage source with two inputs

43delta = delta0 "assume Constant voltage angle";
44E = E0 "assume Constant voltage magnitude";
45Er = Er0;
46Ei = Ei0

3.2 Controllable Voltage Source
The controllable VS is developed in Dymola based on
the equations of the simple VS given in Equations (1)
- (6). The controllable VS has two inputs uEmag and
uEang, as shown in Figure 5, to vary the voltage mag-
nitude and angle of the VS, respectively. To increase flex-
ibility and facilitate testing, the input to the controllable
voltage source can be provided from two sources: (a) Case
1: inject a voltage phasor to define the internal voltage
of the source from an external tool (e.g., a power system
simulator like ePHASOSRSIM), and (b) Case 2: inject a
signal that is a deviation from the initial value of E0 and
delta0 for internal testing. These two cases are shown in
Listing 3.

Listing 3. Internal equations for controllable VS

1if Case 1 then "input from external tool"
2E = uEmag;
3delta = uEang;
4Er = p2R.y_re "Real part of E";
5Ei = p2R.y_im "Imaginary part of E";
6else "deviation from initial value"
7E = E0 + uEmag;
8delta = delta0;
9Er = Er0 + p2R.y_re;
10Ei = Ei0 + p2R.y_im;

3.3 Droop-based GFM Inverter Model
The controllable VS is used as a basic building block to
build the GFM IBR model. Similarly to the controllable
VS in Figure 5, the GFM inverter model has two inputs:
uEmag and uEang. The input uEang that controls the
voltage angle is determined by the P-f control loop, and
uEmag that controls the voltage magnitude is determined
by the Q-V control loop. The complete GFM IBR model,
along with its control scheme, is shown in Figure 6.

3.3.1 Active Power-Frequency Droop-based Control

The active power-frequency (or P-f droop) droop-based
control adjusts the output frequency of the inverter in re-
sponse to changes in active power output. With E ̸ δE as

Session: FMI for Energy Systems in Track for FMI and Related

DOI Proceedings of the 16th International Modelica&FMI Conference 717
10.3384/ecp218713 September 8-10, 2025, Lucerne, Switzerland

VS

P-f Drp

No PlimsPlim in

k=1/SB

gain2P0pu

No Qlims

Q-v Drp

"USER VFLAG and QVFLAG"

No PlimsQlim in

VS.P_meas

sig_Pmeas

VS.q0

sig_q0

k=1/SB

gain2Q0pu

V
S

.E
0

si
g_

E
0

VS.Q_meas

sig_Qmeas

VS.V

sig_Vmeas

VS.vt0

sig_V0
VS.P_meas

sigPmeas

VS.Q_meas

sigQmeas

VS.V

sigVmeas

VS.anglev

siganglevmeas

VS.Emag

sigaEmag

VS.Edelta

sigaEdelta

Pref

Vref

P_meas

Q_meas

V

anglev

Emag

Edelta

omega_droop

uEmag

uEang

Figure 6. GFM Inverter Dymola Model Block Diagram

the internal voltage phasor and V ̸ δv as the terminal volt-
age phasor, the active power output of the inverter P can
be written as (Du 2023),

P ≈ EV
XL

sin(δE −δv)≈
EV
XL

(δE −δv) (7)

When a setpoint change or a disturbance causes the in-
verter active power to increase, the P-f droop-based con-
trol reduces the angular frequency ω of the internal volt-
age to reduce the inverter power output (Rocabert et al.
2012), which is modeled as a change in δE (Du 2023). The
P-f droop-based control also ensures that multiple GFM
inverters share power relative to their active power capac-
ities under disturbances. The overall P-f droop-based con-
trol architecture is shown in 7, and the detailed P-f droop-
based control loop is shown in Figure 8. The P-f droop
loop takes the error between the reference active power
Pref and the measured active power Pfilt (after pass-
ing through a low pass filter) as input, and provides the
internal voltage phase angle and angular frequency of the
VS as output. There is an auxillary input signal from the
output power limiter block that prevents the active power
output of the inverter from exceeding its limits. Note that
the integrator in the control loop is initialized with the
value delta0 as discussed in Section 3.1.1 (see line 35
in Listing 2).

LFP

Pfilt

pfdroop

P-f Drp

Pmin/max

Limiters

plimiter

sig_P0

k=P0 E
de

lta
0

omega_droop

delta_droop

Pmeas

Pref

Figure 7. P-f Droop-based Control Architecture

-
DP

k=mp

mpGain
sum_Plim

+
+1

+1 k=omega0

w0Gain

add

+
+
1

+
1

om
eg
a0
va
l

k=
om
eg
a0

integrator

I

k=1

wrapAngle

Pfilt

Pref

P
lim
_i
n

omega_droop

delta_droop

Figure 8. P-f Droop-based Control Function

Enhancing Large-Scale Power Systems Simulations through Functional Mockup Unit-based …

718 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218713

u2 = true

QVFlag = 1
Set --> Qref = 0

u2 = false

QVFlag = 0
Set --> Qref = Qinv

u2 = true

VFlag = 1
Set --> PI with Limiter

u2 = false

VFlag = 0
Set --> E Limited

Q-v Drp

LFP
Qfilt

Elims

uMax=EMax

QVFlag_val

k=QVFlag_v…

QVFlag_switch

Qref0

k=0

VFlag_switch
VFlag_val

k=VFlag_val_k

ElimsPID

uMax=EMax

k=kpv

kpvGain
LFP

Vfilt

-
sum_Vcmd_…

kivInt

I

k=kiv

sum_PI

+
+1

+1

real2bool
R

B

real2bool
R

B

Qmin/max

Limiters

qlimiter

sig_Q0

k=Q0

Qmeas

Vref

Edroop

Vmeas

Figure 9. Q-V droop-based control architecture

-
feedback

k=k

mqGain
sum_Vref_Qlim_DeltaQmq

+1

+1

+1

+
Qref

Qfilt

Vref

Q
lim

Vout_qv_droop

Figure 10. Q-V Droop-based Control Function

3.3.2 Reactive Power-Voltage Droop-based Control
The reactive power-voltage (or the Q-V) droop-based con-
trol adjusts the inverter reactive power output in response
to changes in the voltage at its terminals. The reactive
power output of the inverter can be written as (Du 2023),

Q ≈ E2 −EV cos(δE −δv)

XL
≈ E(E −V)

XL
(8)

When there is a step change in voltage setpoint or an event
disturbs the terminal voltage, the Q-V droop-based control
manipulates the magnitude of the internal voltage of the
inverter to adjust the reactive power output accordingly.
The Q-V droop has two voltage control modes; it can ei-
ther regulate: (a) the internal voltage, E ̸ δE , or (b) ter-
minal voltage, V ̸ δV , which is determined by the setting
of VFlag. In addition, the Q-V droop has two reactive
power control modes that are set by QVFlag, which can

be set to represent the plant controller strategy of adjust-
ing either the reactive power or voltage setpoint. When
multiple GFM inverters are connected to the grid in paral-
lel, the Q-V droop-based control prevents the circulation
of the reactive power.

The input/output and control blocks of the Q-V droop
scheme are shown in Figure 9. The Q-V droop model
takes as input the reference voltage, the measured reac-
tive power (after passing through the low-pass filter) and
two flags, VFlag and QVFlag, and provides the internal
voltage magnitude as output, as shown in Figure 10. In ad-
dition, the auxiliary signal from the output power limiter
block prevents the reactive power output of the inverter
from exceeding the converter’s limits. Note that the inte-
grator in the control loop is initialized with the value v_0
as discussed in Section 3.1.1 (see line 9 in Listing 2).

3.4 Overload Limiters
For both control loops, there are corresponding maximum
and minimum MW and MVAR limits to prevent the in-
verter from exceeding rated capacities. The block diagram
for the limiters are shown in Figure 11 and Figure 12.

3.5 Fault Current Limiting Function
When there is a short-circuit and fault currents are very
high (exceeding inverter rated current ImaxF), the GFM in-
ternal voltage E ̸ δE will be calculated based on the in-
verter terminal voltage V ̸ δv, coupling reactance XL and
current phasor ImaxF ̸ φlim, which represents the limited
current. The GFM internal voltage under fault conditions
is given as:

E ̸ δE =V ̸ δv + jXLImaxF ̸ φlim. (9)

Session: FMI for Energy Systems in Track for FMI and Related

DOI Proceedings of the 16th International Modelica&FMI Conference 719
10.3384/ecp218713 September 8-10, 2025, Lucerne, Switzerland

Pmax_val
k=Pmax

Pmin_val

k=Pmin

-
error_Pmax_Pfilt

-
error_Pmin_Pfilt

add_Pmax_PI

+
+1

+1

add_Pmin_PI

+
+1

+1

k=kppmax

gain_kppmax_Pmax

lim_kipmax_Pmax

I

k=kipmax

lim_Pmax_out

uMax=0.0

add_Pmaxli…

+
+1

+1

lim_Pmin_out

uMax=Modelica.Constants.infk=kppmax

gain_kppmax_Pmin

lim_kipmax_Pmin

I

k=1

Pfilt Plim_out

Figure 11. MW Limiter

Due to space limitations, block diagrams for current lim-
iters are not shown in this paper.

4 FMU Generation
In this section, we briefly discuss how Modelica model is
setup to generate an FMU.

4.1 System Dependencies
To generate FMUs using Dymola, compatible with Win-
dows and Linux (required by the ePHASORSIM simula-
tor from Opal-RT), the following dependencies are neces-
sary: Windows 10 or later versions, a suitable compiler
for C++ (such as Visual Studio 2019 with the ‘Desktop
development with C++’ workload enabled), and Windows
Subsystem for Linux (WSL) 2 with Linux kernel update
package.

4.2 Windows Subsystem for Linux (WSL)
The cross-compilation feature available in Dymola allows
Dymola to compile models to be used on a Linux target.
This is done through WSL, which enables a Linux sys-
tem to run inside a Windows machine using WSL. FMUs
generated with this feature can be executed by software
tools native to Windows and Linux-based operating sys-
tems (OS). This is because the generated FMU will have
specific target binaries for each of those OSs. ePHASOR-
SIM crucially needs this feature since it relies on Windows
for offline and Linux for real-time simulations.

4.3 FMU with and without Source Codes
FMUs can be generated with or without the C source code.
With Dymola, this capability depends on whether or not
the user has a license that enables code export. Regardless,
both options are useful, since a user with a local “vanilla”
Dymola license could regenerate the FMUs and execute
off-line local simulations. Export of source code is only
required when running the ePHASORSIM in real time.
For FMUs without source code, the FMU package con-
tains only the compiled binaries of the model, not the C

Qmax_val
k=Qmax

Qmin_val

k=Qmin

-
error_Qmax_Qfilt

-
error_Qmin_Qfilt

add_Qmax_PI

+
+1

+1

add_Qmin_PI

+
+1

+1

k=kpqmax

gain_kpqmax_Qmax

lim_kiqmax_Qmax

I

k=kiqmax

lim_Qmax_out

uMax=0.0

add_Qmaxli…

+
+1

+1

lim_Qmin_out

uMax=Modelica.Constants.infk=kpqmax

gain_kpqmax_Qmax1

lim_kiqmax_Qmin

I

k=kiqmax

Qfilt

Qlim_out

Figure 12. MVAR limiter

source code used to build the binary (.dll or .so). With the
source code export, users can recompile the FMU’s code,
offering greater flexibility.

ePHASORSIM has specific requirements for the
FMUs it receives from Dymola, for example, it re-
quires that internal variables of the FMU can be
accessed, which is enabled in Dymola with the flag
Advanced.FMI.BlackBoxModelDescription
:= flase. In this paper, we create the
FMUExportUtilities feature that allows to
create FMUs both with and without source code with the
required flags for import in ePHASORSIM. Figure 13
shows the GUI of the function call used to generate the
FMU with/without source code. Listing 4 shows the flags
necessary to generate the FMU with source code from
Dymola while taking into account the requirement of the
availability of the source code generation license for code
export. Note that OPAL-RT ePHASORSIM currently
supports FMI version 1. While three types of interfaces
are defined in FMI standard, we are interested in the
FMI for Model Exchange (ME). ME implements only
the model and not the required solution. It exposes the
differential equations to an external solver that imports
the model and performs numerical integration.

Figure 13. Custom function to generate FMUs with/without
source code

Listing 4. Custom function to Generate FMU with Source Code

1function generateFMUWithSourceCode

Enhancing Large-Scale Power Systems Simulations through Functional Mockup Unit-based …

720 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218713

p…

p… p…

gE…

…

5…

constant…

pw
F

ault

GEN1 LOAD GEN2

FAULT

p… p…

SHUNT

Vref_up

duration=…

Vref_down

duration=…

add

+
+1

+1

VV

REGFM_A1

GFM

D

 QVFLAG =…

Pramp

duration=…

Figure 14. Testing GFM Model within a power system model
built using OpenIPSL

2"Call used to generate the FMU with source
code"

3extends Modelica.Icons.Function;
4input String modelname = "IBR_VS_Droop_FMU"
5input String fmuname = "GENSAL";
6algorithm
7// Flags used in "..\FMUCreator\dymolaFlag.cfg

"
8Advanced.CheckPackageRestriction :=false;
9Advanced.FMI.xmlIgnoreProtected :=false;
10Advanced.FMI.xmlIgnoreLocal :=false;
11Advanced.FMI.BlackBoxModelDescription :=false;
12Advanced.Define.AimForHighAccuracy :=false;
13Advanced.Define.NewJacobian :=false;
14Advanced.EnableCodeExport := true;
15Advanced.SourceCodeExportNormal :=true;
16Advanced.FMI.CrossExport :=true;
17Advanced.FMI.FMUIncludeSource :=true;
18Advanced.FMI.FMUSourceCodeUniqueNaming :=true;
19// Create FMU
20translateModelFMU(modelname, false, fmuname, "

1", "all", true, 1);
21end generateFMUWithSourceCode;

4.4 Testing of Models and FMUs in Dymola
The models and FMUs generated by Dymola are tested
within the Dymola interface before interfacing with
ePHASORSIM. In this section, we demonstrate both (a)
testing the Modelica model within a power system model
and (b) testing the FMU in Dymola within a power system
model.

The GFM inverter model is tested within a power
system modeled using OpenIPSL. A Single Ma-
chine Infinite Bus (SMIB) system with one load is
extended from the OpenIPSL library using extends
OpenIPSL.Tests.BaseClasses.SMIB(SysData
(fn=60), pwFault (R = 1e-6, X = 1e-3,
t1 = 32.0, t2 = 32.15)) with a fault duration
of 0.15 s. The setup is shown in Figure 14.

To connect the GFM model with the OpenIPSL SMIB
within Dymola, the Powerpin (PwPin) connector
is used by instantiating it from the OPAL_RT class
OpalRT.NonElectrical.Connector.PwPin.
The PwPin is required by ePHASORSIM, as when
the FMUs are loaded, ePHASORSIM will determine
if PwPin has been used or not. This is done by the
software to force conformance to its internal numerical
solver interface. The PwPin has two flow variables (ir

…

… …

gE…

5…

constantload

pw
F
ault

GEN1 LOAD GEN2

FAULT

… …

SHUNT

GEN…

bus_vi

GEN…

bus_vr

0

trip

GF…

add

+
+1

+1

Vref_down

duration=2s

Vref_up

duration=2s

Pramp

duration=2.5s

REGFM_A1_FMU

Figure 15. Testing GFM FMU in Dymola within a power sys-
tem model built using OpenIPSL.

and ii) and two potential variables (vr and vi). The
implementation of PwPin is given in Listing 5.

Listing 5. PwPin Connector from Opal_RT’s library

1connector PwPin
2Real vr "real part of the voltage";
3Real vi "imaginary part of the voltage";
4flow Real ir "real part of the current";
5flow Real ii "imaginary part of the current"

;
6end PwPin;

To interface the GFM model developed according to
ePHASORSIM’s requirements (with PwPin) with elec-
trical components from the OpenIPSL library inside Dy-
mola, an additional connector is required. In this connec-
tor, the variables of PwPin (instantiated as pwPinA) are
assigned to the corresponding variables of the OpenIPSL
electrical connector (instantiated as pwPinB). The inter-
face between the power pins of both libraries is shown in
Listing 6. This setup is used to test all models and sub-
models inside Dymola.

Listing 6. Code Excerpt of the Connector Interfacing the
Opal_RT and OpenIPSL Libraries

1model Opal2OpenIPSL "Interface between power
pins of both libraries"

2equation
3pwPinB.vr = pwPinA.vr;
4pwPinB.vi = pwPinA.vi;
5pwPinB.ir = pwPinA.ir;
6pwPinB.ii = pwPinA.ii;
7end Opal2OpenIPSL;

The generated FMU model is also tested within a power
system modeled in Dymola. A similar setup is shown in
Figure 15.

Note that the nypaAGILecomponents library was
developed and tested with Dymola 2024X and compati-
bility with other Modelica-compliant tools has not been
verified. Meanwhile, the Opal-RT library is compati-
ble with both OpenModelica and Dymola, while the
OpenIPSL is compatible with Dymola, OpenModelica,
Modelon Impact, and Wolfram SystemModeler.

Session: FMI for Energy Systems in Track for FMI and Related

DOI Proceedings of the 16th International Modelica&FMI Conference 721
10.3384/ecp218713 September 8-10, 2025, Lucerne, Switzerland

PIN2INOUT

Vr

Vi

PIN

ir

ii
R

E
G

F
M

_A
1

G
F

C

D P
lim

 /
Q

lim

System Base: 100 MV A

Frequency: 60 Hz

System Data

G
F

C
.P

_m
ea

s

si
g_

P
_m

ea
s

G
F

C
.Q

_m
ea

s

si
g_

Q
_m

ea
s

G
F

C
.V

si
g_

V

G
F

C
.a

ng
le

v

si
g_

an
gl

ev

G
F

C
.E

m
ag

si
g_

E
m

ag

G
F

C
.E

de
lta

si
g_

E
an

g

G
F

C
.o

m
eg

a_
…

si
g_

om
eg

a

bus0_vr

bus0_vi

bus0_ir

bus0_ii
TRIP

V
re

f

P
re

f

V

an
gl

ev

E
m

ag

E
de

lta

P
_m

ea
s

Q
_m

ea
s

om
eg

a_
dr

oo
p

Figure 16. Wrapped GFM Model with Required Interfaces by
ePHASORSIM for Export as FMU

5 Interfacing FMUs with ePHASOR-
SIM

5.1 FMU - ePHASORSIM PIN2INOUT Inter-
face

To interface the FMU with ePHASORSIM, an FMU wrap-
per is created. As discussed in Section 2.1, the wrapper in-
cludes the mandatory connectors, interfaces, and parame-
ters required by ePHASORSIM and the set of parameters
that the user can modify using external tools. The FMU
wrapper is shown in Figure 16.

A PIN2INOUT block is required by ePHASORSIM to
be used as an interface with FMU, which enforces the in-
put (voltage) and generates (current) outputs as expected
by ePHASORSIM. OPAL-RT’s ePHASORSIM requires
the mandatory PwPin. The block PIN2INOUT converts
the acasual PwPin variables to casualized signals, defin-
ing the voltages as inputs and currents as output with the
current flow direction required by ePHASORSIM. List-
ing 7 an excerpt of the PIN2INOUT block source code.

Listing 7. Excerpt of the PIN2INOUT block

1block PIN2INOUT
2equation
3p.ir = -ir;
4p.ii = -ii;
5p.vr = vr;
6p.vi = vi;
7end PIN2INOUT;

5.2 Data Exchange between ePHASORSIM
and FMU

Figure 17 shows the data exchange between OPAL-RT
ePHASORSIM and the FMU generated from Dymola. In

Figure 17. Flowchart of communication between OPAL-RT
ePHASORSIM and FMU

ePHASORSIM, all parameters for a power system model
are defined in an Excel file. Once ePHASORSIM reads
the network and FMU parameters from the Excel file, it
instantiates the FMU and passes the parameter data to
it. ePHASORSIM uses a fixed time-step solve, hence,
at each simulation step, it sends the terminal bus volt-
age real and imaginary values, bus0_vr and bus0_vi,
and any inputs defined in the wrapper to the FMU. The
FMU equations are evaluated with the received values,
and the results are sent back to ePHASORSIM in the form
of real and imaginary current injection values bus0_ir
and bus0_ii, and any of the output values included in
the FMU wrapper. ePHASORSIM then solves for all vari-
ables within its internal models and assembles the overall
network solution.

6 Simulation Results

6.1 Controllable Voltage Source

As discussed in Section 4.4, the models are interfaced to
the OpenIPSL SMIB for testing within the Dymola en-
vironment. Testing within Dymola itself offers the advan-
tage of efficient debugging, validation, and iterative devel-
opment of models and FMUs without the need for external
tools. The setup for testing the controllable VS is shown
in Figure 18.

Figure 19 shows the responses of the internal magni-
tude and angle of the controllable voltage source to the
ramp functions within Dymola. For Emag, the ramp was
activated at 4 s., changing the value from 1.01439 p.u. to
1.03439 p.u. within 1 s. For Eang, the ramp was activated
at 6s changing the value from 0.149386 rad to −0.243364
rad within 3 s. Meanwhile, Figure 20 shows the response
of the active and reactive power, P and Q. It becomes ap-
parent from the plot how a change in the internal voltage
source δE has a direct impact on P according to Equa-
tion (7), while changes in E have a direct impact on Q as
per Equation (8).

Enhancing Large-Scale Power Systems Simulations through Functional Mockup Unit-based …

722 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218713

GEN1

Controllable_VS

DEm
duration=1 s

DEang

duration=3 s

uEang

uEmag

Figure 18. Controllable voltage source connected to a bus with
inputs to change voltage magnitude and angle

0 5 10

1.0

1.1

1.2

1.3

-15

-10

-5

0

5

10

[p
.u

.]

[°
]

Time [s]

Emag Edelta*

Figure 19. Controllable voltage source internal magnitude and
angle (E ̸ δE) response to ramp function in Dymola

0 5 10

-40

-20

0

20

40

60

0

20

40

60

[M
W

]

[M
va

r]

Time [s]

P Q*

Figure 20. P and Q output of the controllable voltage source
due to a ramp applied to its reference inputs in Dymola

6.2 Implementation of GFM inverter FMU on
NYS Transmission

GFM IBRs, modeled as FMU, were integrated into
the NYS 5000-bus, 800-machine transmission system in
ePHASORSIM. In addition to the GFM components,
models of synchronous generators (SG), exciters, tur-
bines, wind generators, and power system stabilizers, de-
veloped using Modelica language and exported as FMU,
were interfaced with ePHASORSIM. A total of 9 GFM
IBR with 6,272.5 MVA capacity was configured to sub-
stitute traditional generators within the NYS transmission
system. The impact on the transient stability was analyzed
under different conditions, such as changes in GFM ac-
tive power and voltage setpoints. For example, Figure 21
shows the response of when the MW set-point on one IBR
increased from 187.46 MW to 300 MW. Figure 22 shows
the response of the IBRs when the voltage setpoint on tar-
get bus was changed from 1.019 p.u. to 1.017 p.u. This
demonstrates that the FMU generated from Dymola is suc-
cessfully integrated with a large-scale power system, high-
lighting the approach that is easy to deploy, scalable, and
computationally efficient.

Figure 21. GFM response to changes in MW setpoint in OPAL-
RT ePHASORSIM

Figure 22. GFM response to changes in voltage setpoint in
OPAL-RT ePHASORSIM

Session: FMI for Energy Systems in Track for FMI and Related

DOI Proceedings of the 16th International Modelica&FMI Conference 723
10.3384/ecp218713 September 8-10, 2025, Lucerne, Switzerland

Table 1. Comparison between Simulink-Based and FMU-Based GFM IBR Deployment in ePHASORSIM

Aspect Simulink-Based Deployment FMU-Based Deployment
Controller Integration Manual copy-paste of droop-based

GFM controller block each time
Controller is pre-embedded in FMU;
no need for repetition

Signal Wiring Manual setup for each new GFM (all
inputs/outputs to/from solver)

Minimal signal mapping (e.g., Pset,
Vset) required

Model Scalability Tedious and error-prone with more
GFMs

Easily scalable to large numbers of
GFMs (e.g., hundreds)

Transformer Setup Details must be manually specified in
Transformer sheet

Can be included directly in FMU or
in the additional FMU-named sheet

Error Probability High, especially with manual wiring
and naming

Lower, due to fewer steps and more
automation

Time Efficiency Time-consuming due to repetitive
steps and complex wiring

Very time-efficient and streamlined
for high GFM penetration

Maintenance & Debugging Difficult to trace and fix due to signal
complexity

Easier maintenance

One significant advantage observed during the devel-
opment process was the ease and efficiency of deploy-
ing FMUs with ePHASORSIM compared to using MAT-
LAB/SIMULINK to build and deploy IBRs manually. A
detailed comparison of both approaches is given in Ta-
ble 1. These demonstrate that FMUs are the ideal can-
didates for efficient and scalable simulation.

7 Conclusion
This paper demonstrates the advantage of developing and
deploying FMUs for large-scale power system simula-
tions. A grid-forming inverter model was developed in
Modelica with Dymola and integrated as an FMU with
OPAL-RT’s ePHASORSIM simulator to evaluate the im-
pact of widespread renewable energy integration on the
NYS transmission system. The development of the GFM
FMU inverter was made easier through the object-oriented
modeling features of Modelica. First, a generic voltage
source model was implemented which was then extended
to create a controllable voltage source and was further ex-
tended to develop the GFM-controlled inverter. With a
‘build-once deploy-anywhere’ approach, this paper shows
that FMU offers significant time savings in modeling, de-
bugging, and parametrization compared to other power
system simulation approaches. The FMUs were tested in-
side Dymola and integrated with the NYS 5000−bus sys-
tem in ePHASORSIM. In future, we will extend our work
by (a) building FMU models for the virtual synchronous
machine GFM model, (b) exploring FMU interoperability
by deploying FMUs on different power system simulation
tools and (c) investigating the impact of IBR parameter
uncertainties on overall system stability.

References
Babaeifar, Mohammad, Stefano Barsali, and Massimo Ceraolo

(2023). “Simulation of Sapei HVDC using modelica lan-
guage”. In: 2023 AEIT HVDC International Conference
(AEIT HVDC). IEEE, pp. 1–6.

Bakhos, Gianni et al. (2017). “Hybrid AC/DC Power System
Stability: An Attempt of Global Approach”. In: Available at
SSRN 4704802.

Baudette, Maxime et al. (2018). “OpenIPSL: Open-instance
power system library—update 1.5 to “iTesla power systems
library (iPSL): A modelica library for phasor time-domain
simulations””. In: SoftwareX 7, pp. 34–36.

Baur, Marcus, Martin Otter, and Bernhard Thiele (2009). “Mod-
elica libraries for linear control systems”. In: Proceedings 7th
Modelica Conference. DOI: 1, pp. 593–602.

Brück, Dag et al. (2002). “Dymola for multi-engineering model-
ing and simulation”. In: Proceedings of modelica. Vol. 2002.
Oberpfaffenhofen, pp. 1–6.

Casella, Francesco and Alberto Leva (2005). “Object-oriented
modelling & simulation of power plants with modelica”. In:
Proceedings of the 44th IEEE Conference on Decision and
Control. IEEE, pp. 7597–7602.

Castro, Marcelo de et al. (2022). “Power System Real-Time
Simulation using Modelica and the FMI”. In: Modelica Con-
ferences, pp. 85–92.

de Castro, Marcelo et al. (2023-02). “Version [OpenIPSL 2.0.0]
- [iTesla Power Systems Library (iPSL): A Modelica li-
brary for phasor time-domain simulations]”. In: SoftwareX
21, p. 101277. ISSN: 2352-7110. DOI: 10.1016/j.softx.2022.
101277. URL: https://www.sciencedirect.com/science/article/
pii/S2352711022001959 (visited on 2023-10-17).

Dorado-Rojas, Sergio A et al. (2023). “ModelicaGridData: Mas-
sive power system simulation data generation and label-
ing tool using Modelica and Python”. In: SoftwareX 21,
p. 101258.

Du, Wei (2023). Model specification of droop-controlled, grid-
forming inverters (REGFM_A1). Tech. rep. Pacific Northwest
National Laboratory (PNNL), Richland, WA (United States).

Du, Wei et al. (2019). “A comparative study of two widely used
grid-forming droop controls on microgrid small-signal stabil-
ity”. In: IEEE Journal of Emerging and Selected Topics in
Power Electronics. Vol. 8. 2. IEEE, pp. 963–975.

Fachini, Fernando, Srijita Bhattacharjee, et al. (2023). “Ex-
ploiting Modelica and the OpenIPSL for University Campus
Microgrid Model Development”. In: Modelica Conferences,
pp. 285–292.

Enhancing Large-Scale Power Systems Simulations through Functional Mockup Unit-based …

724 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218713

https://doi.org/10.1016/j.softx.2022.101277
https://doi.org/10.1016/j.softx.2022.101277
https://www.sciencedirect.com/science/article/pii/S2352711022001959
https://www.sciencedirect.com/science/article/pii/S2352711022001959

Fachini, Fernando, Tetiana Bogodorova, et al. (2024). “A
microgrid control scheme for islanded operation and re-
synchronization utilizing Model Predictive Control”. In: Sus-
tainable Energy, Grids and Networks 39, p. 101464. ISSN:
2352-4677. DOI: https : / / doi . org / 10 . 1016 / j . segan . 2024 .
101464. URL: https://www.sciencedirect.com/science/article/
pii/S2352467724001930.

Fachini, Fernando, Marcelo de Castro, et al. (2024). “Mod-
eling of Induction Motors and Variable Speed Drives for
Multi-Domain System Simulations Using Modelica and the
OpenIPSL Library”. In: Electronics 13.9, p. 1614.

Fachini, Fernando, Aisling Pigott, et al. (2023). “Develop-
ing a campus microgrid model utilizing modelica and
the OpenIPSL library”. In: 2023 11th Workshop on Mod-
elling and Simulation of Cyber-Physical Energy Systems
(MSCPES). IEEE, pp. 1–6.

Fritzson, Peter and Vadim Engelson (1998). “Modelica—A uni-
fied object-oriented language for system modeling and simu-
lation”. In: ECOOP’98—object-oriented programming: 12th
European conference Brussels, Belgium, July 20–24, 1998
proceedings 12. Springer, pp. 67–90.

Gomez, Francisco J et al. (2018). “Multi-domain semantic in-
formation and physical behavior modeling of power systems
and gas turbines expanding the common information model”.
In: IEEE access 6, pp. 72663–72674.

Hellerer, Matthias, Tobias Bellmann, and Florian Schlegel
(2014). “The DLR Visualization Library-recent development
and applications”. In.

Jakobsen, Sigurd Hofsmo et al. (2022). “Modelica-based paral-
lel computing framework for power system adaptive special
protection schemes”. In: 2022 Open Source Modelling and
Simulation of Energy Systems (OSMSES). IEEE, pp. 1–6.

Laera, Giuseppe et al. (2022). “Guidelines and Use Cases for
Power Systems Dynamic Modeling and Model Verification
using Modelica and OpenIPSL”. In: Modelica Conferences,
pp. 146–157.

Modelica Association (2025). FMI 3.0 Implementers’ Guide.
URL: https://modelica.github.io/fmi-guides/main/fmi-guide/
(visited on 2025-04-03).

Mukherjee, Biswarup and Luigi Vanfretti (2018). “Modeling of
PMU-based islanded operation controls for power distribu-
tion networks using Modelica and openIPSL”. In: Proceed-
ings of The American Modelica Conference, pp. 9–10.

Nikolaev, Nikolay et al. (2020). “PSS/E Based Power System
Stabilizer Tuning Tool”. In: 2020 21st International Sympo-
sium on Electrical Apparatus & Technologies (SIELA). IEEE,
pp. 1–6.

Reiner, Matthias J (2022). “Simulation of the on-orbit construc-
tion of structural variable modular spacecraft by robots”. In:
Modelica Conferences, pp. 38–46.

Reiser, Robert and Matthias J Reiner (2023). “Modeling and
simulation of dynamically constrained objects for limited
structurally variable systems in Modelica”. In: Modelica
Conferences, pp. 151–158.

Rocabert, Joan et al. (2012). “Control of power converters in
AC microgrids”. In: IEEE transactions on power electronics
27.11, pp. 4734–4749.

Segerstrom, Eric et al. (2023). “Modeling Components of a
Turbine-Generator System for Sub-Synchronous Oscillation
Studies with Modelica”. In: Modelica Conferences, pp. 541–
550.

Senate, NY State (2023-05). N.Y. Pub. Svc. Law § 66-P – Estab-
lishment of a renewable energy program. en. Section: Public

Service Law. URL: https : / /newyork .public . law/ laws /n .y.
_public_service_law_section_66-p (visited on 2025-05-01).

Steinmann, Christoph, Johannes Herold, and Jens Schirmer
(2024). “Model-Based Design and Characterization of an Ac-
tuator with Low-Boiling Liquid”. In: Modelica Conferences,
pp. 7–14.

Thiele, Bernhard et al. (2017). “Towards a standard-conform,
platform-generic and feature-rich Modelica device drivers
library”. In: Proceedings of the 12th International Model-
ica Conference. Linköping University Electronic Press, 2017,
pp. 713–723.

Vanfretti, L. et al. (2016). “iTesla Power Systems Library
(iPSL): A Modelica library for phasor time-domain simula-
tions”. In: SoftwareX 5, pp. 84–88. ISSN: 2352-7110. DOI:
https : / / doi . org / 10 . 1016 / j . softx . 2016 . 05 . 001. URL:
https : / / www . sciencedirect . com / science / article / pii /
S2352711016300097.

Vanfretti, Luigi, Christopher R Laughman, and Ankush
Chakrabarty (2024). “Integrating Generative Machine Learn-
ing Models and Physics-Based Models for Building Energy
Simulation”. In: Modelica Conferences, pp. 178–188.

Vanfretti, Luigi, Wei Li, et al. (2013). “Unambiguous power sys-
tem dynamic modeling and simulation using modelica tools”.
In: 2013 IEEE Power & Energy Society General Meeting.
IEEE, pp. 1–5.

Vanfretti, Luigi, Biswarup Mukherjee, et al. (2019). “Automatic
re-synchronization controller analysis within a multi-domain
gas turbine and power system model”. In: 2019 7th Workshop
on Modeling and Simulation of Cyber-Physical Energy Sys-
tems (MSCPES). IEEE, pp. 1–5.

Weber, Niels, Camiel Cartignij, and Dirk Zimmer (2023). “Us-
ing the DLR Thermofluid Stream Library for Thermal Man-
agement of Fuel Cell Systems in Aviation”. In: Modelica
Conferences, pp. 415–422.

Winkler, Dietmar (2018). “Analysing the stability of an Islanded
hydro-electric power system”. In: Modelica Conferences.

Session: FMI for Energy Systems in Track for FMI and Related

DOI Proceedings of the 16th International Modelica&FMI Conference 725
10.3384/ecp218713 September 8-10, 2025, Lucerne, Switzerland

https://doi.org/https://doi.org/10.1016/j.segan.2024.101464
https://doi.org/https://doi.org/10.1016/j.segan.2024.101464
https://www.sciencedirect.com/science/article/pii/S2352467724001930
https://www.sciencedirect.com/science/article/pii/S2352467724001930
https://modelica.github.io/fmi-guides/main/fmi-guide/
https://newyork.public.law/laws/n.y._public_service_law_section_66-p
https://newyork.public.law/laws/n.y._public_service_law_section_66-p
https://doi.org/https://doi.org/10.1016/j.softx.2016.05.001
https://www.sciencedirect.com/science/article/pii/S2352711016300097
https://www.sciencedirect.com/science/article/pii/S2352711016300097

	Introduction
	Literature Review
	Contributions and Paper Organization

	Modelica GFM Library Overview
	Organization of GFM Inverter Library
	Model Building through Inheritance

	Droop-based GFM Components
	Simple Voltage Source
	VS Parameter Initialization

	Controllable Voltage Source
	Droop-based GFM Inverter Model
	Active Power-Frequency Droop-based Control
	Reactive Power-Voltage Droop-based Control

	Overload Limiters
	Fault Current Limiting Function

	FMU Generation
	System Dependencies
	Windows Subsystem for Linux (WSL)
	FMU with and without Source Codes
	Testing of Models and FMUs in Dymola

	Interfacing FMUs with ePHASORSIM
	FMU - ePHASORSIM PIN2INOUT Interface
	Data Exchange between ePHASORSIM and FMU

	Simulation Results
	Controllable Voltage Source
	Implementation of GFM inverter FMU on NYS Transmission

	Conclusion

