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Abstract

In the realm of model verification, ensuring
traceability and repeatability is paramount for
achieving Modeling & Simulation (M&S) cred-
ibility and development efficiently. This paper
explores challenges and solutions for expressing
complex model Verification & Validation (V&V)
workflows that ensures readability while still
enables automation, parallelization and advanced
customization of verification activities. This paper
contributes a practical solution that is evaluated
through a detailed implementation within an
in-house developed multi-purpose automation and
Verification & Validation (V&V) framework.
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1 Introduction

To quote Balci and Ormsby (2000): “any use of a
model in a context where it can not be proved to be
credible is by definition not credible”. Credibility
is, to say the least, a broad concept involving many
aspects of model development and use (Standard
for models and simulations 2024). As systems
and models become larger and more complex
(Ahmed, Shah, and Umar 2016), so does the need
to establish model credibility (Arthur et al. 1999).
Where previously a few verification scenarios
were executed and verified manually (Arthur et al.
1999), there is now a move towards extensive
model exploration (Bouskela et al. 2023) with
increasingly complex, multistep verification ac-
tivities being implemented (Rosenlund et al. 2024).

In several ongoing industrial research projects,
there is a large focus on traceability and frame-
works such as System Structure and Parame-
terization (SSP) Traceability and the Credible
Simulation Process (Ahmann et al. 2022). Where
traceability of verification activities was previously
based on manual documentation, as verification

activities increase in size and complexity, this
approach is no longer plausible (Arthur et al.
1999). The growing number of experiments
increases the need to automate the verification
process to maintain development efficiency. And
just as in research, one of the core pillars for
motivating trust in results is the reproducibility
of experiments (Dalle 2012), where traceability of
data, both regarding the conducted activity and its
results, enables decisions to be taken on "known
knowns" and "known unknowns" (Nallaperumal
and Krishnan 2013).

To address these needs, the primary research
question is formulated as follows:

Research question

How can automated model verification be
conducted in a manner that is both traceable,
repeatable and comprehensible?

Our proposal couples a lightweight workflow
schema based on the Extensible Markup Lan-
guage (XML) with Git-based change management
to satisfy both repeatability and traceability (Fig-
ure 1). Because every transformation and activity
are explicit in the workflow and intermediate
artifacts are version-controlled, stakeholders can
audit exactly how a simulation result was obtained.
In proposing a schema for representing complex
model verification workflows, we build upon
insights from existing solutions used in automated
data processing while adhering to requirements
specific to model verification. Furthermore, eval-
uation of existing change management methods
seek to enhance traceability throughout the veri-
fication process; potentially leveraging a mature
ecosystem for data management.

To enable close collaboration between industry
and academia, the established method denoted
as "Industry-as-laboratory" by Potts (1993) was
utilized. A number of use cases, established
from industrial needs, were used for evaluation
of different model verification and exploration
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Figure 1. Visualization of the Credible Modeling Process Layer of the Credible Simulation Process Framework
(Modelica Association 2022). The red areas showing the verification design phase and the blue area the verification

execution phase

scenarios in an in-house automation and testing
framework. The focus is here on verification,
but the solution can equally well be applied to
validation, e.g. as described in (Hallgvist 2023).
Looking ahead, our findings offer promising
avenues for further refinement and extension in
future research, addressing ongoing challenges
and exploring new opportunities in model man-
agement and V&V.

Contributions This study contributes to the
advancement of model V&V through the inte-
gration of both novel and established solutions,
aiming to promote greater transparency in the
process. This by introducing a traceable and
repeatable workflow representation—as a simple
XML schema—that promotes readability and
enabling automation.

The work is demonstrated within an in-house V&V
automation framework, integrating established
version control methods within model archives. It
explores aligning model change management with
existing software practices and the SSP Trace-
ability framework, offering a scalable approach to
managing changes and enhancing traceability and
automation both during and after initial model de-
velopment.

2 Theoretical Background

This section introduces the key frameworks and
concepts that support the development and trace-
ability of simulation models. These include the
Credible Simulation Process Framework, version
control systems, automated verification and valida-
tion mechanisms, and data pipeline architectures.

Together, they form the basis for ensuring model
credibility, enabling traceable workflows, and sup-
porting scalable, reusable simulation practices.

Credible Simulation Process Framework
and SSP Traceability To ensure that design
decisions are based on credible data, SSP Trace-
ability (which acts as an enabler of the Credible
Simulation Process) was developed. This research
focuses on a set of activities that are part of
the Credible Modeling Process layer within the
Credible Simulation Process. As illustrated in
Figure 1, the Credible Modeling Process is largely
analogous to the model development and delivery
process used at Saab Aeronautics (Andersson
and Carlsson 2012). The activities highlighted in
blue in Figure 1 are addressed in this work, while
those marked in red provide essential artifacts
that serve as prerequisites for the activities under
focus. A subset of these artifacts is discussed in
(Rosenlund et al. 2024).

The Credible Simulation Process Framework al-
lows the tracking of modeling activities, digital ar-
tifacts, and decisions to provide a solid founda-
tion for model credibility assessment tasks. It pro-
vides the means of documenting data related to
simulation tasks in a transparent and comprehen-
sive manner (Modelica Association 2022). The re-
lated metadata is stored alongside the model us-
ing mechanisms implemented in SSP for coupling
metadata related to the model within the same
container. It employs various specialized meta-
data formats, such as Simulation Task Meta Data
(STMD) for tracing tasks and Simulation Resource
Meta Data (SRMD) for resource data.
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Version Control System Extensive usage of
Version Control System (VCS) is employed by soft-
ware companies to maintain collaboration and
manage evolving products (Khleel and Nehéz
2020). They are used to storing code, documen-
tation, and related artifacts in a traceable man-
ner, where each change is accompanied by meta-
data detailing its relationship to other versions, the
date, and the author (Khleel and Nehéz 2020). A
transition from Centralized Version Control Sys-
tem (CVCS), such as Apache Subversion (SVN),
to Decentralized Version Control System (DVCS),
e.g. Git, is in progress (Muslu et al. 2014), largely
to enable more fine-grained control during devel-
opment. The key benefit, in our context, of this
transition is that it enables using VCS for tracking
model changes even when the model is packaged
within archives, as is the case for Functional Mock-
up Interface (FMI) and SSP.

Verification and Validation Automation
Framework An internal automation framework
for model verification and validation, which sup-
ports extensive model exploration—the term here
referring to the activity of subjecting the model to
multiple scenarios while its behavior is checked
against requirements or validated against test
data (Hallqvist 2023)—serves as an application
playground for this research. Model exploration in
this context serves to strengthen model credibility
thus enabling efficient and large scale model
development, model-based decision-making in any
life-cycle phase, and improve anomaly detection
in model or physical product. The framework
provides mechanisms for documenting both model
and simulator Operational Domains (ODs) and
Domains of Validation (DoVs)l. The DoV are all
operating conditions where the model has been
tested, including outcomes of verification or vali-
dation activities, and it serves as a foundation for
assessing various aspects of the model’s credibility
(Standard for models and simulations 2024). In
contrast the OD (or applicability domain) defines
where the model can be used in regard to a set
of requirements, including acceptance criteria,
that reflect the model’s intended use. A result
of this is that the OD will always be a subset of
the DoV, since requirement fulfillment outside
the DoV is per definition unknown. More detailed
descriptions of mode ODs and DoVs can be found
in the literature, see for example Oberkampf and
Roy (Oberkampf and Roy 2014) and Beisbart
et al. (Beisbart and Saam 2019). Establishing

10r Domain of Verification

both ODs and DoVs is crucial for ensuring the
appropriate and credible application of a model,
promoting traceability with respect to verification
activities and facilitating model reuse by clearly
communicating model limitations (Rosenlund et al.
2024).

Data Pipeline / Workflow Frameworks A data
pipeline—or workflow—is based upon the architec-
tural pattern pipes and filters, in this case more
specifically the tee and join variant, where filters
correspond to activities and pipes to the chaining
of these activities (Buschmann et al. 1996). In
short, pipes are a set of activities arranged in
a specific order, where inputs and outputs are
connected between the activities, often creating
a Directed acyclic graph (DAG). The pattern’s
main advantage, when constructing verification
workflows, is that "changes should be possible by
exchanging processing steps or by recombination
of steps, even by users" (Buschmann et al. 1996).
The pattern also provides determinism regarding
execution order and data flows; from the activity
Directed acyclic graph (DAG), parallelization
opportunities can be identified. Due to the often
computationally expensive operations related to
running simulations, this can result in consider-
able performance gains.

There are a number of existing software solutions
that employ this pattern in various forms; two
examples of more specialized solutions are Jenk-
ins (Jenkins (software) 2025), for setting up build
flows, and dask (Dask (software) 2025) for data
processing and computation workflows. These
solutions employ various methods for express-
ing workflows, using specific Domain-specific lan-
guages (DSLs), general programming languages
such as python or existing data storage solutions
such as JavaScript Object Notation (JSON) or XML.

3 Methodology

The methodology adopted in this work was driven
by the need to define a verification workflow repre-
sentation that could balance traceability, repeata-
bility, readability, and automation possibilities. The
foundation of the implementation lies in a set of
verification activities that must be supported, as
well as in the coupled requirements governing the
verification process. The activities and require-
ments, collected from verification engineers, are
in several cases supported by other sources to
strengthen their validity (Cederbladh, Cicchetti,
and Suryadevara 2024; Andersson and Carlsson
2012). The resulting methodology is presented in
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Figure 2. The research process employed

Figure 2, which illustrates the research and devel-
opment process: starting with the collection of key
verification activities and requirements, moving to-
ward well-defined use cases, and culminating in a
fully specified, validated workflow.

Requirements

* Traceability - Create traceability regarding
verification activities and its results, striving
for alignment against SSP Traceability

* Repeatability - Repeatability of simulation
results, this implies that any operation must
be deterministic

* Automation - The workflow needs to be auto-
mated to streamline development and enable
effective regression testing

* Human and machine-readable - To facili-
tate both manual design and verification to-
gether with a high level of automation, any
workflow representation must be both human
understandable and machine-readable

¢ Customization - To enable reuse of similar
operations between models

* Resource utilization - Computationally ex-
pensive operations require parallelization to
ensure a quick feedback loop during V&V and
development

Verification activities

¢ Custom activity - Easy implementation of
verification activities

* Activity comparison - Compare the outcome
of different activities, including simulation re-
sults for different scenarios or parameter sets

* Result aggregation - Allow aggregation of
results

Pre Condition

\ 4
(Use case lj (Use case 2) (Use case 3)
Y

Post Condition

Figure 3. Multiple use cases sharing a common pre and
post conditions

Table 1. Mapping between verification activity and use

cases
UC1 | UcC2 | UC3
Activity Comparison X
Result aggregation X X
Model Exploration X X
Design Optimization X
Design of Experiments X

* Model exploration - Enable methods of
model exploration to evaluate different sce-
narios or parameter sets

* Design optimization - Provide means of us-
ing iterative optimization methods such as
Bayesian or evolutionary algorithms

* Design of experiments - Evaluate what ex-
periments would provide the most value in re-
gard to what we currently know, often implic-
itly fulfilled by Design optimization since
this is the first step when using iterative op-
timization methods

3.1 Use case

Several different use cases were formulated to
capture the functionality needed to support the
verification activities while fulfilling the defined re-
quirements. Due to the broad nature of the activ-
ities, creating multiple smaller use cases enables
a better coverage of the activities while also en-
abling a tighter connection to the final verification,
see Figure 3. A mapping between the verification
activities and use cases is in Table 1 ensures cov-
erage.

Pre Condition The cases start with a model and
a need to verify, validate or optimize certain as-
pects of the model or system.; they all begin with
the establishment of the verification workflow rep-
resentation itself where all activities are defined
and it is decided what additional artifacts are to be
saved for traceability. This representation is stored
within the model archive for traceability and en-
abling repeatability, in alignment with SSP Trace-
ability.
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Post Condition The tasks all have a final activ-
ity where the additional traceable artifacts relating
to the verification are packaged within the model
(FMI) or system (SSP) container, this to enable a
strong traceability connection between the verifi-
cation activity and data to the model. The post con-
dition states that there should be a containerized
model that can be utilized and simulated.

3.1.1 Application Use Case 1

Description The first use case is designed to
evaluate multiple product designs over a number
of test scenarios. A real world example may be
when evaluating different pipe sizes in a system
during different load conditions. The process be-
gins by establishing what test scenarios are to be
evaluated. For each test scenario, multiple model
variants are created and simulated, and the results
are subsequently compared. Since all simulation
variants are independent of one another, they can
be executed in parallel.

Scenario

1. Load existing scenarios from a file, store the
scenarios or its location

2. Create the different design variants, store
meta data of the design variations

3. Simulate the different variants in parallel

4. Collect and compare the Quantities of Interest
(Qols), store the results associated with the
Qols

3.1.2 Application Use Case 2

Description The second use case is designed to
evaluate different behaviors of a model, this by cre-
ating multiple combinations of input stimuli and
evaluating the results. This is often applicable as
verification after model adjustments or prior to de-
ployment to verify that the model is fully function-
ing. May involve using a number of preset scenar-
ios or creating randomized permutations of scenar-
ios based on methods such as Monte Carlo, then
evaluate the resulting behavior in regard to one or
multiple requirements and finally generate a OD
that corresponds to the fulfillment of that require-
ment. Just as in the first case, the generated sce-
narios are not dependent on each other and all can
be executed in parallel. To fulfill the requirement
of repeatability, any randomization based method
must either store the full scenario or metadata en-
abling recreation of the full scenario. Metadata
could for example include reference to the soft-
ware used for scenario generation, randomization
method and/or seed.

Scenario

1. Create the different scenario variants, store
meta data regarding the scenarios

2. Simulate the different variants in parallel

3. Collect the Qols, evaluate and aggregate the
fulfillment of the requirement against the DoV
as an OD, store the resulting OD using Simu-
lation Task Meta Data (STMD)

3.1.3 Application Use Case 3

Description In the third case, the goal is to
find the optimal design of a geometry under some
predefined constraints by using Bayesian meth-
ods for optimization, where the outputs of previ-
ous simulation are used to find better sampling
positions. May be applicable in cases were com-
plex interactions between models make optimiza-
tion challenging, for example in optimizing cool-
ing capabilities in relation to usage scenarios. Us-
ing iterative methods creates difficulties when it
comes to determinism and repeatability of results.
Synchronous batch-sequential methods have previ-
ously been employed in other areas using Bayesian
search methods (Tran et al. 2022). In these the
simulations are grouped in batches and when a
batch is completed the next one is allowed to start.
This allows each batch to utilize the outcome of
previous batches to calculate new sampling posi-
tions while ensuring determinism. The main down-
side of this method is that it is often less effective
than using methods that do not take batching into
consideration, since the variance of the model sim-
ulation time can greatly influence the utilization
ratio of the computational resource.

Scenario

1. Store the optimization algorithms and corre-
sponding parameters, variables and, if appli-
cable, randomization seed

2. Create the batch of design variants to evalu-
ate based upon known information, store meta
data of the design variations

3. Simulate the batch in parallel

4. Collect the Qols and evaluate if the design
goal is fulfilled, if not return to Item 2

5. Store the parameter set of the final design

3.2 Requirements of Workflow Repre-
sentation

The workflow representation is to provide clarity
as to what, and in which order, any verification
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activity is to be executed. It should help maintain
a clear trail of artifacts, enabling determinism,
traceability and repeatability. To enable complex
scenarios, it should support nested workflows,
where sub-workflows have a clear connection
to parent activities. Moreover, it should enable
the execution of independent tasks concurrently,
whether locally or in a distributed environment
such as High Performance Computing (HPC), to
optimize resource usage and efficiency.

The representation should have the ability to
encapsulate common verification actions, such
as simulation runs or result comparisons, into
reusable components, to reduce code duplication,
enhance maintainability, and lower the risk of hu-
man errors. To further enhance the possibility for
re-use of components, it should possess the capac-
ity for easy customization of activities, such as test
conditions, parameter sweeps, and simulation sce-
narios. The workflow should also enable adapta-
tion to intermediate results by using conditional
rules that change the next steps based on fac-
tors like missing artifacts or whether goals were
met. Finally, it should allow for comments, foster-
ing clarity and collaboration by documenting the
purpose and logic of each part of the workflow.

3.3 Design of Workflow Representation

We identified existing solutions for representing
verification workflows and considered established
domain-specific languages and workflow engines,
such as Jenkins, Dask, Nextflow, Prefect, Luigi,
Airflow, and Snakemake. While these tools offer
advanced parallelization and dependency manage-
ment features, our analysis came to the conclusion
that their complexity and overhead often exceeded
what was necessary for this scope.

Instead, we landed in a simplified Application Pro-
gramming Interface (API) to express these tasks
and dependencies. This approach maintained the
option to layer on more sophisticated workflow
management tools in the future, should complexity
or scalability demands increase. Once the inter-
face was established, the next decision was how
to represent the workflows themselves: using an
existing General-purpose language (GPL), such
as python or develop a custom Domain-specific
language (DSL) in the form of existing markup
languages such as xml or json. Using a GPL offers
the benefit of leveraging a mature ecosystem with
readily available tools. However, it also requires
that users are proficient in the chosen language

and capable of effectively make use of existing
tools. To keep complexity down and simplify
access, both to users and potential no code/low
code applications, the solution landed on limiting
supported features though the utilization of an
existing markup language. But to cater the more
advanced users, it was also made possible to ex-
ploit the API directly as showcased in the Appendix
under Listing 10 in cases where access and read-
ability to non developers is deemed less important.

Selection of markup language began by evaluat-
ing common existing key-value pair data formats,
including YAML Ain’t Markup Language (YAML),
JSON, Tom’s Obvious, Minimal Language (TOML)
and XML to determine how they fit the require-
ments. The final selection of XML was guided by
three main considerations. First, the chosen for-
mat had to be easily interpretable and editable
by engineers, ensuring that the workflow could be
understood, maintained, and customized without
invoking a specialized programming knowledge.
Second, the storage solution needed to supply flex-
ibility and be extensible to support a diverse range
of verification tasks, including dependency man-
agement, parameterization, and dynamic adapta-
tions. Third, we prioritized easy to use parsing pos-
sibilities and schema validation capabilities, all of
which contributed to improved maintainability and
scalability. Fourth, the selected solution should en-
able interoperability with traceability frameworks
sush as SSP Traceability. To ensure that the ver-
ification workflow remains accessible and robust,
we imposed guidelines on the structure and com-
plexity of the XML files. Using standardized field
naming conventions, encouraging descriptive com-
ments and employing schema validation provides
immediate feedback and clarity on correctness.

3.4 Version Control

To enable traceability of the evolving model
and not just the final version, VCS—specifically
Git—was integrated into existing model packag-
ing formats such as FMI/SSP archives. In this
use case, version control and packaging standards
serve **orthogonal purposes**. The solution does
not change the internal structure of the archive, it
merely adds data for tracking changes. The com-
bination a symbiosis; embedding a repository in-
side an archive enables tracking changes, ensures
reproducibility, and allows auditing of the lineage
of verification tasks. This approach used familiar
version control mechanics, enabling seamless col-
laboration, comparison of different versions, and
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storage of historical results for review.

3.5 Verification of Workflow Represen-
tation

Finally, the methodology was verified through tests
that confirmed its ability to meet the stated re-
quirements. The approach was stress-tested by
scaling the number and complexity of verification
scenarios according to the use cases, with obser-
vations showing stable performance, clear error-
handling mechanisms, and effective parallelization
strategies. These tests also examined the impact of
version control integration on model archive size
and complexity.

4 Results

The solution consists of two distinct parts: first,
the markup schema for defining the verification
workflow, allowing for easy customization and re-
peatability of verification activities, its inherent
portability making it optimal for providing trace-
ability by integration into FMI or SSP archives;
and second, a python function library—contained
within the in-house V&V automation framework—
defining the verification activities, providing a
static point that multiple workflows can operate
against.

4.1 Resulting Workflow Representation

The structure and attributes of the resulting XML
schema are described in this section along with the
connection to the initial requirements.

Action Starting with the smallest artifact of the
schema, the link to the automation framework li-
brary of predefined functions. It specifies a named
reference inside the library, any additional fields
within the scope are custom parameters that will
be passed to the library function as seen in Listing
1. A function together with its parameters effec-
tively creates templates for simplified re-use to re-
duce code duplication and maintenance overhead.
Instead of rewriting actions for similar tasks, engi-
neers can adapt templates by altering a few param-
eter values, making the verification process more
flexible, modular, and cost-effective.

Listing 1. Activity example

1 <action function="simulation">
2 <parameter_1l value="f"/>
3 </action>

Grouping mechanisms Due to the often compu-
tationally expensive operations involved in execut-
ing simulations, the speed-up factor of paralleliz-
ing very slow activities—such as simulations—can

often be close to optimal since any overhead will al-
most always be much smaller than the actual sim-
ulation. Therefore, enabling parallelization is es-
sential for scalability, where multiple simulations
should be processed simultaneously. To facilitate
this, two different grouping types were introduced:
sequential (Listing 2) and parallel (Listing 3).
These grouping types enable clustering of activ-
ities, the former defining a dependency chain of
execution in sequential order and the latter that
all activities within the group are independent and
could be executed individually.

Listing 2. Sequential example, creating a sequential

dependency chain between the actions, forcing execu-
tion in a specific order

1 <sequential>

2 <action function="action_1"/>

3 <! -- potential additional actions -->
4 </sequential>

Listing 3. Parallel example, all actions can be invoked
independently of each other

1 <parallel>

2 <action function="action_1"/>

3 <! -- potential additional actions -->
4 </parallel>

Structure The overall structure is based on
two main principles. First, a hierarchical struc-
ture that enables nested grouping operations,
allowing for complex scenarios while maintaining
coherence and clarity (see Listing 5). The second
principle is dynamic adaptation, which allows any
action to change or add actions downstream.

Dynamic adaptation has two main objectives, the
first being to facilitate adaptation to unknown fac-
tors. For example, an action that searches for sce-
narios in a folder has no way to know how many,
or what kind of, scenarios it will find before exe-
cution. To enable this, the action, after finding the
scenarios, will make adjustments to downstream
actions to reflect the new information, Listing 5
showcases a workflow that corresponds to this sce-
nario, simulating and verifying results for each in-
put data file it finds in a directory at runtime, the
definition of the function called shown in Listing
4. The second objective of dynamic adaptation is
to enable the workflow to take into account inter-
mediate results such as failures or fulfillment of
conditions and automatically branch to alternative
paths. This adaptability is often connected to han-
dling iterative tasks where the number of itera-
tions may not be known beforehand.
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Listing 4. Python signature of find_files
1 def find_files(path: str,

2 pattern: str = "x.csv") ->
list[Node]:
3 """Creates corresponding nodes to

availible files that match xpattern
* under xpathx."""

Listing 5. Dynamic adaptation, adapting to the number
of files found

1 <sequential>

2 <action function="find_files">

3 <path value="file_storage/"/>

4 </action>

5 <sequential>

6 <action function="simulate"/>

7 <action function="evaluate_results"/>
8 </sequential>

9 </sequential>

Combining these two principles enable the build-
ing of almost any workflow, including generat-
ing scenarios and design variations, comparing re-
sults, and executing different actions depending on
the outcome, all while maintaining the readability
of both simple and complex workflows. In the end,
the basis for enabling these requirements, while
keeping the representation compact and under-
standable, was to outsource much of the complex-
ity to the automation framework’s function library;
this by creating helper functions for advanced use
cases. The ability to construct templates of com-
mon verification scenarios also creates reusability
opportunities and limits code duplication between
workflows.

Global parameters Outside the scope of the
workflow, it is possible to place global parame-
ters, as seen in Listing 6. Any number of global
parameters can be created, and they will be propa-
gated to all functions, this to enable some common
understanding of context without explicitly feed-
ing the parameters, for example model location, to
each action. As seen in Listing 6, the top workflow
definition consist of a single sequential or parallel
grouping.

Listing 6. Workflow example

1 <VerificationWorkflow>

2 <model value="./model_1"/>

3 <sequential>...</sequential>
4 </VerificationWorkflow>

Limitations The order of execution is strictly
downstream, meaning that each action can only
be executed once in a specified sequence. This
results in that an action should not create a
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Figure 4. Showcasing execution order, parallelization
possibilities and data flow

downstream dependency to any action that is
upstream. Data, on the other hand, can only be
accessed upstream where a dependency exists to
ensure a deterministic result. Figure 4 showcases
how requirements regarding execution order,
parallelization opportunities and data access
relate.

To mitigate some complexities related to merging
branches executed in parallel, there is a defined
limit to the change scope for dynamic adaptations.
An action may only adjust actions or groups that
are within its own grouping scope. For example,
in Listing 7, outer_action_1 can alter everything
downstream, including the inner actions. How-
ever, when moving into the inner scope, the in-
ner_action_1 can only alter actions downstream
within its grouping scope, more specifically in-
ner_action_2.

Listing 7. Dynamic adaptation scope

1 <sequential>

2 <action function="outer_action_1"/>

3 <sequential>

4 <action function="inner_action_1"/>
5 <action function="inner_action_2"/>
6 </sequential>

7 <action function="outer_action_2"/>

8 </sequential>

4.2

The V&V framework parses the workflow repre-
sentation and constructs a corresponding Directed
acyclic graph (DAG). Any actions grouped by a
clustering mechanism are enclosed by start and
end nodes to facilitate simpler graph manipula-
tions. This design is chosen for the same reason
that most programming languages use notations
such as {} or tabs to clarify the beginning and end

Implementation
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Actions alter the graph as the workflow is traversed

Initial graph

> Final graph

Figure 5. Graph adaptation during execution for use case 1. Filled node marks completed actions

of constructs. Although the start of a construct
can often be inferred from context, it is often
challenging to distinguish where the construct
ends without a closing notation.

After finding the starting node, the application be-
gins traversing the DAG downstream, morphing
the graph as the actions execute, see Figure 5 for
a description of how the graph alters after that
actions are processed. To enable this, the full
DAG is passed to each action for modification and
when returned, it is merged back into the original
DAG before continuing execution. The graph cor-
responding to use case 1 is showcased in Figure 5;
the traceable artifacts of the activity and workflow
representation are described as SSP Traceability
artifacts in the Appendix, see Listing 8 and Listing
9.

4.3 Version Control

By integrating version control systems within
model archives, each verification activity and its
results could be linked to specific model versions,
parameters, and configurations, thereby creating a
comprehensive audit trail, see Figure 6 for a visu-
alization of the concept. This enhanced traceabil-
ity facilitated root-cause analysis in cases where
discrepancies arose and provided a robust founda-
tion for conducting credible and reproducible ver-
ification processes. But despite these successes,
some limitations surfaced. Handling large binary
artifacts within the version control system was
challenging, inflating repository sizes and compli-
cating storage. Future improvements might in-
volve adopting specialized large file storage solu-
tions or more effective strategies.

SsP

Git version control Git version control

Git version control

=

Y

1 1
[— [E——
Verification workflow Parameter set 2

Figure 6. Showcasing the version control methodol-
ogy, each step a snapshot in time enabling traceability
of model creation and alterations

4.4 Verification

When applied to the use cases, the workflow con-
sistently produced traceable and reproducible ver-
ification results. Stakeholders perceived the en-
hanced traceability as increasing the trustworthi-
ness of verification outcomes. Preliminary evalua-
tions suggested that the new workflow format of-
fered clearer logic navigation and easier interpre-
tation than previous solutions. The workflow rep-
resentation was perceived to minimize the need
for code duplication between projects. Addition-
ally, the options for using templates for common
functions to further simplify the workflow design
are promising and warrant further evaluation.

5 Discussion

Workflow representation By comparing the
verification method to established practices high-
lights some improvements. Traditional methods,
such as the Saab Aeronautics Handbook for
Development of Simulation Models (Andersson
and Carlsson 2012), often rely on non machine
readable, document-centric tracking, which may
be error-prone and sometimes difficult to main-
tain. By consolidating workflow definitions and
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model data into a consistent, machine-readable
form, the proposed approach reduces human
error, enhances discoverability, and aligns well
with growing industry trends toward continuous
integration and continuous delivery.

The function library contained within the automa-
tion framework offloads much of the complexity
from the workflow representation and direct
manipulation of the DAG, enabling a simpler rep-
resentation of the workflow. Offering fine-grained
control via arguments or flags enabled teams to
adapt the workflow to various conditions without
creating entirely new test definitions. However,
this raises questions whether it might sometimes
be too simplistic. For example, in Listing 5, it
is not possible to determine how the function
find_files will alter the downstream actions by
only looking at the representation. This places
requirements on the function library to provide
clarity regarding what functions do and how they
affect the workflow; Underscoring the need for
intuitive defaults, comprehensive documentation,
and clear guidance to ensure broad and consistent
user adoption. It is identified that a possible
mitigative action is to foster collaboration best
practices regarding workflow adaptations among
users.

During the design, the discussion rose early to
include the possibility to let workflow designers
work directly in python, skipping the markup
schema. In some cases one is preferred, in others
not. It almost always comes back to how to
enable easy access for all stakeholders, not only
developers, to the verification workflows. We
identified that XML would align more closely with
standards such as SSP and FMI but may in some
cases be quite explicit provide less readability for
use cases such as this. If a port to some other
format would be deemed necessary in the future,
XML is highly convertible into almost any other
key-value pair format.

Implementation By breaking large verification
tasks into parallel segments, total execution time
was reduced; however, coordinating these tasks
introduced new challenges in synchronizing data
states and results. Many of these challenges relate
to how branches should be merged; for example,
how to handle situations where two branches
have made different changes to future common
activities. To cope with this, it was necessary
to place restrictions on how dynamic adaptation

functions in order to mitigate some complex cases.
Prohibiting feedback loops in the graph is one
such restriction that minimizes the chance of
overwriting artifacts at consecutive invocations.
Disallowing loops does lead to some complexity
when taking iterative workflows into account, and
creative workarounds are sometimes needed to
achieve certain complex cases. For example, in
iterative workflows to achieve conditional effects
the solution could be to copy the desired actions
to the end when a condition is triggered, thus
creating the next iteration.

The chosen implementation solution for paral-
lelization has created a high level of complexity
when coupled to the ability for dynamic adaptation
of the graph. The design decision not to use a
central graph handler to orchestrate the paral-
lelization, but to let parallel threads traverse the
graph independently of each other, enables a very
high degree of parallelization. In hindsight, most
likely unnecessarily high since any simulation
activities will be magnitudes slower, a clear case
of premature optimization. The implication of the
design is that each parallel branch has its own
notion of the DAG. Without a central authority, the
branches must negotiate the new notion of truth
before continuing when merging branches.

Traceability The intention originally was to
utilize Simulation Resource Meta Data (SRMD)
for storing and the resulting workflow definition.
After delving deeper into the definition of SSP
Traceability, it was later adjusted to utilizing
an external resource together with STMD. Both
SRMD and STMD are connected to the Credible
simulation process, but more fitting would be
to have a stronger connection to the credible
modeling process by utilizing Modeling Task
Meta Data (MTMD). But at the moment this is not
included into the released version of the standard
and the content between the metadata formats
are in large interchangeable, thus the choice went
to using the released STMD

Embedding version control systems directly within
the model archives offers a transparent, main-
tainable history that aligned well with established
practices such as FMI/SSP. The resulting bene-
fits, including easier reproduction of results, bet-
ter understanding of model evolution, and stronger
stakeholder confidence, generally outweighed the
overhead and complexity of managing multiple
branches, commits, and binary data within a repos-
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itory. Data management and storage considera-
tions emerged as another critical aspect of the so-
lution. Storing binary artifacts within version con-
trol systems allowed for a single source of truth
and integrated traceability, but also increased
repository sizes, potentially affecting performance
and long-term maintainability. Strategies like in-
troducing binary files early, employing artifact
repositories or Git LFS, and limiting unnecessary
duplication can mitigate these issues. Nonethe-
less, as verification activities scale up, organiza-
tions will need to carefully balance repository com-
plexity against the benefits of having all artifacts
co-located and tracked within the same environ-
ment.

6 Conclusion

This work has presented a method for managing
model verification activities that meet the stated
research objective of achieving traceability and
repeatability in verification workflows, while
ensuring readability and enabling automation.
By preserving the complete history of verifi-
cation activities, providing a transparent and
evidence-based record that in the end supports
more informed decision-making during and after
development. Binding verification logic closely
to model versions, harnessing parallel execution,
and embracing dynamic adaptation, the approach
supports more rigorous and scalable verification
scenarios. By integrating traceable verification
workflows with version control embedded into
model archives, the approach provides a platform
for managing complex and evolving verification
processes.

The Modelica association standards FMI, SSP,
and SSP Traceability serve as key enablers to
the presented work. Relying on such standards
allow the presented functionality to interplay,
through portable and stand-alone simulation
packages, with similar functionality provided in
both open source and commercial tools, such
as Dymola (Bruck 2023). Work to initiate this
described interplay between testing frameworks
and development tools has been initiated in the
OpenSCALING project and at Saab through, for
example, the work of Matstoms (Matstoms 2025).
Matstoms realizes SSP Traceability, and automa-
tion, in an existing regression testing framework
including model development tools in the loop,
particularly Dymola, OpenModelica (Mengist et al.
2015), and easySSP (exxellent Solutions 2025).

The positive reception, strong performance gains,
and improved user experience provide a solid foun-
dation for ongoing refinements and broader inte-
gration into current software development prac-
tices, continuous integration processes, and sim-
ulation ecosystems that use standards such as
FMI or SSP. As best practices and tools continue
to evolve, integrated, traceable, and machine-
readable verification workflows are likely to con-
tinue evolving and becoming more mature, in the
end benefiting a wide range of simulation and mod-
eling applications.
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Appendix

Listing 8. Simulation task metadata, verification task for use case 1

<stmd:SimulationTaskMetaData>
<stmd:EvaluationPhase>
<stmd:AssureSimulationQuality id="eval _step_01" description="Evaluate simulation results
against requirements">
<stc:Input>
<stc:Resource kind="system" source="../../SystemStructure.ssd" type="application/x-ssp
-definition"/>
<stc:Resource kind="testcase" type="application/xml" source="eval_task_01.xml"
description="Evaluation task definition"/>
</stc:Input>
<stc:Procedure>
<stc:Resource kind="method" type="application/xml" source="procedure.xml" description=
"Evaluation procedure document"/>
</stc:Procedure>
<stc:Qutput>
<stc:Resource kind="result" type="application/xml" source="results/evaluation_report.
xml" description="Evaluation report"/>
</stc:0utput>
<stc:LifeCycleInformation>
<stc:Validated date="2025-04-11T09:30:00+01:00">
<stc:Responsible organization="Team A" name="John Doe" role="Evaluation Engineer"/>
</stc:Validated>
</stc:LifeCycleInformation>
</stmd:AssureSimulationQuality>
</stmd:EvaluationPhase>
</stmd:SimulationTaskMetaData>

Listing 9. Verification workflow use case 1. Referenced above as eval task 01.xml

<VerificationWorkflow>
<model value="./model_1"/>
<sequential>
<action function="find_test_cases">
<path value="./test"/>
</action>
<sequential>
<action function="parameter_sweep">
<parameter_name value="parameter_1"/>
<values value="5, 10, 15"/>
</action>
<sequential>
<action function="simulate"/>
</sequential>
<action function="compare_parameter_sweep"/>
</sequential>
</sequential>

<action function="compare_results"/>
</VerificationWorkflow>
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Listing 10. Verification workflow as Python for use case 1

1 common_parameters = {"model": "./model_1",}
2
3 simulate_seq = Sequential(
4 Action("simulate")
5 )
6 sweep_seq = Sequential(
7 Action("parameter_sweep", parameter="parameter_1", values=[5, 10, 15]),
8 simulate_seq,
9 Action("compare_parameter_sweep")
10 )
11 top_seq = Sequential(
12 Action("find_test_cases", path="./test"),
13 sweep_seq,
14 Action("compare_results")
15 )
16
17 result = Test_Framework(parameters = common_parameters, seq=top_seq)
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