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Abstract
Optimization and stress testing are key aspects of the de-
sign and verification process for large, high-risk systems.
Optimization is about improving the capabilities and per-
formance of a system; stress testing is about uncovering its
weaknesses and faults. Both require a quantitative repre-
sentation of the system’s behavior, and for complex, multi-
physical systems, co-simulation can be a very powerful
method to create such a representation. However, co-
simulation frequently involves the use of black-box sub-
system models, which poses challenges to traditional opti-
mization and stress testing methods. Here, we review the
state of the art in co-simulation-based optimization and
stress testing, focusing especially on adaptive stress test-
ing in the latter case, and discuss open research questions
and promising research directions. In particular, we make
the case that a co-simulation is not an entirely black box
even when some or all of its subsystems are; it may be
possible to exploit the visible system structure, coupling
variable values, and partial subsystem information. We
use examples from the maritime industry to motivate and
illustrate the discussion, centering on the highly contem-
porary design case of an autonomous ferry.
Keywords: co-simulation, optimization, stress testing

1 Background
Like most other industries, the maritime sector finds itself
in the middle of a “twin transition”: a green transition to a
low-carbon future, intertwined with a digital transition to-
wards data-driven decision making and autonomous sys-
tems. And like any other, the maritime industry has its
own, particular set of challenges in that regard.

The main obstacle to decarbonization lies in finding al-
ternatives to the fossil fuel oils that power virtually all
of today’s ships. At this point in time, there are few
readily-available zero- or low-carbon options for ships that
spend many days or weeks away from shore, such as long-
distance transport ships and large fishing vessels. In the
meantime, fuel-saving and transitional solutions like hy-
brid and dual-fuel power systems significantly increase the
complexity of a ship in terms of design, construction, op-
eration, and maintenance.

When it comes to maritime digitization, the frontier
is moving towards remotely operated, semi-autonomous,

and eventually autonomous shipping. While automating
the navigation of a ship through well-regulated seaways is
arguably an easier problem than autopiloting a car through
chaotic city streets, the consequences of any one accident
are likely to be orders of magnitude larger – possibly in
terms of human life, depending on the ship type, but also
in terms of environmental and financial impacts. Reducing
risk and increasing safety are therefore prime concerns.

Hence, the maritime industry is, now more than ever,
in need of new methods for design, verification, and as-
surance of highly complex, energy efficient, and safe sys-
tems. Such methods must be able to account for the
fact that the design, construction, and commissioning of
a large ship is a significant undertaking which involves a
great number of stakeholders, a wide array of engineering
disciplines, and tight regulatory and budgetary constraints.

This is the context within which we have launched
the research project OptiStress: System optimization and
stress testing in co-simulations. Our basic premise is that
co-simulation,1 as a modeling and simulation paradigm,
fits the bill in terms of its suitability for multilateral virtual
prototyping of multi-physical and cyber-physical systems.
This is in large part because it enables one to build simula-
tions of complex systems from loosely coupled black-box
subsystems. However, this becomes a disadvantage when
it comes to design optimization and whole-system assur-
ance, because some of the assumptions underlying exist-
ing numerical methods no longer hold.

In OptiStress, and in this paper, we will look at two
key design and verification processes and explore how co-
simulation may be embedded within them in a way that
leverages its strengths and mitigates its drawbacks. The
first is system optimization, in particular the use of numer-
ical optimization algorithms to choose the system config-
uration and parameters that best fulfill the system design
goals. The second is stress testing, which is concerned
with pushing a system to the limits of its safe operating
space to see what breaks, how, and why. Here, we’ll look
specifically at adaptive stress testing (AST), where rein-
forcement learning is applied to find the most likely paths
to a failure event (Lee, Mengshoel, et al. 2020).

1The term “co-simulation” is sometimes used loosely in the aca-
demic literature to mean different things. Here, we refer specifically
to continuous-time co-simulation, as defined by Kübler and Schiehlen
(2000) and Gomes et al. (2019).
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The goal of this paper is to provide a concise summary
of prior work and outline the main research needs. To this
end, separate discussions on optimization and AST are
given in the context of co-simulation in sections 2 and 3,
respectively. Section 4 concludes by commenting on how
both can be combined in the same design workflow or even
the same algorithmic loop.

We will use an autonomous battery-electric car ferry as
an illustrative example throughout. Challenging situations
such as waves and wind from the side or crossing traffic
in conjunction with strict safety and energy-efficiency re-
quirements, make its design, verification, and assurance
daunting tasks. With the present paper, we hope to be able
to convince the reader that co-simulation-based optimiza-
tion and adaptive stress testing are fitting tools for decreas-
ing the risk in the design of such large coupled systems.

2 Optimization
There are four main challenges when it comes to opti-
mization of large coupled systems: the number of de-
sign parameters to consider is large; there are multiple,
possibly contradictory, objectives for the system perfor-
mance; the objective functions are globally non-convex so
gradient-based optimization may yield only local optima;
and substantial computational cost can severely restrict
the exploration of the solution space. Significant progress
has been made on these issues in the field of multidisci-
plinary design optimization (MDO) (Martins and Lambe
2013; Wang, Fan, and Qiang 2023), which has so far
found most of its applications in the aerospace and au-
tomotive industries, and more recently in the maritime do-
main (Ojo, Collu, and Coraddu 2022; Serani, Scholcz, and
Vanzi 2024).

2.1 Background
Co-simulation-based optimization has recently awoken in-
terest across various domains and applications as a natural
extension of the utilization of co-simulation’s strengths:
the decoupling of the component modeling and system
simulation processes, the ability to hide sensitive informa-
tion within black-box models, the use of software tools
and solvers most suited for the individual subsystems,
and the ability to distribute the simulation burden across
several parallel processes. Additional challenges emerge
when the objective function is computed on the basis of
co-simulation, however:

• Complex or unpredictable behavior. Knowledge
of how the physics inside a subsimulator is imple-
mented is often spotty, or may lack entirely. More so,
models need not be based on physics representations
at all. A wide variety of model types may be used
in co-simulations, including discrete event models,
stochastic models, agent-based models, or even look-
up tables. Hence, assumptions about the functional
form of objective functions, such as linearity, con-
vexity, or smoothness, can often not be made.

• Lack of information. Access to gradients is typically
sparse, or lacking completely for most models. The
same goes for access to system states, which are usu-
ally not accessible at all with co-simulation.

• Lack of features. Important features such as the abil-
ity to save and restore the simulation state are often
not available.

• Coupling errors. Errors stemming solely from the
co-simulation coupling lead to significant uncer-
tainty with respect to the validity of the system re-
sponse. In turn, this can cause issues with tradi-
tional algorithms due to numerical instability or in-
valid model outputs.

• System reticulation. How the system is reticu-
lated (split into subsystems) for the purpose of co-
simulation and how the coupling between these sub-
systems is realized can have a significant influ-
ence on accuracy and stability (Sadjina, Kyllingstad,
Skjong, et al. 2017; Sadjina, Kyllingstad, Rindarøy,
et al. 2019). This is especially worth keeping in mind
if system reticulation and model interfaces are them-
selves subject to optimization (discrete component
optimization).

In light of this, it is natural to turn towards algorithms
that fall under the broad heading of black-box optimiza-
tion methods.

Black-box optimization
Perhaps the simplest, and thus highly popular, method is
ranking and selection, whereby a small number of prese-
lected scenarios are compared manually via an objective
function. It is used, for example, by Rüdenauer, Han, and
Geimer (2012) to optimize the design of a tractor’s front
axle in a collaborative co-simulation setting, and by Wirth
et al. (2017) to find (Pareto front) optimal geometry de-
signs of an airfoil in a fluid-structure co-simulation cou-
pling.

Among algorithmic methods, meta-heuristic algo-
rithms, especially genetic algorithms and swarm intelli-
gence optimization methods, are popular choices for co-
simulation optimization (Vega and Chevrier 2024). The
constrained multi-objective evolutionary algorithm with
multiple stages (CMOEA-MS) is used by Tan et al. (2022)
to optimize the design and the thermal–hydraulic perfor-
mance of nuclear plate-type fuel. Another variant, co-
variance matrix adaptation evolution strategy (CMA-ES),
is used by Ahmed, Oekermann, and Kirchner (2014) to
minimize forces acting on a steering mechanism. An
evolutionary algorithm is also used by Arslan, Suveren,
and Moghaddam (2023) to optimize the design of a co-
simulated cart-pole test system. Another example is the
non-dominated sorting genetic algorithm II (NSGA-II)
which is used by Hou et al. (2023) to optimize a valve
of a ship HVAC system, or the multi-objective genetic al-
gorithm (MOGA) used by Anguek and Bounab (2022) to
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optimize the design of a gun station bracket with respect
to minimal mass and frequency response under stress con-
straints. The differential evolution algorithm (DEA) is
used by Anderson et al. (2020) to find optimal dimensions
and bandgaps of semiconductor layers to maximize the ef-
ficiency of a solar cell. Swarm intelligence optimization
comprises nature-inspired meta-heuristic algorithms. One
popular candidate is particle swarm optimization (PSO),
an a posteriori algorithm which generates a set of alterna-
tive solutions (Pareto optimal set) and prunes them with
multi-criteria methods to present to the decision maker for
a final choice. It is used by Zadeh, Sayadi, and Kosari
(2019) to introduce a multi-objective collaborative opti-
mization framework based on surrogate models, albeit not
in conjunction with co-simulation.

Surrogate models

It is worth noting that the term surrogate model can have
two meanings in the context of simulation-based optimiza-
tion. In the above-mentioned paper by Zadeh, Sayadi, and
Kosari (2019), it refers to an approximation of the objec-
tive function(s) which is being maintained and updated by
the optimization algorithm based on selective evaluation
of the actual objective function. The purpose is generally
to reduce the number of computationally expensive direct
evaluations needed. Other methods in this vein include
the radial basis function optimization (RBFOpt), which
is used by Waibel, Evins, and Carmeliet (2019) to sam-
ple an unknown black-box cost function for the study of
the coupling between building energy demand and sup-
ply, and constrained optimization by linear approximation
(COBYLA), used by Yamanee-Nolin et al. (2020) to opti-
mize an evaporator process with respect to minimal prod-
uct stream mass flow oscillations.

The other meaning of “surrogate model” refers to mod-
els used within the simulation(s) that form the basis for the
objective function(s). Here, the point is to replace high-
fidelity models with approximated models that are faster
to calculate, to replace black-box models with white-
box approximations that provide more information (e.g.
derivatives), or both. Examples for co-simulation opti-
mization include the use of weighted sums of several indi-
vidual surrogate models based on either radial basis func-
tions, response surface models, or Kriging surrogate mod-
els (Hou et al. 2023), or using feed-forward artificial neu-
ral networks to approximate objective functions and cal-
culate gradients (Tuli et al. 2022).

Looking inside the box

Despite the challenges that co-simulation brings to the op-
timization table, things are not necessarily quite as bad as
they may first appear: A co-simulation itself is not entirely
a black box, even when its individual subsystems are. We
do have access to the connection structure and the signals
exchanged between the models, and this can be used to
estimate errors and speed up the simulations (Kyllingstad,
Sadjina, and Skjong 2024). Moreover, at least some of the

subsystems may just as well not be black-box models. In-
stead, they may reveal some of their internal workings to
us, granting access to gradients and, though rarer, access
to system states. For example, if both the decision vari-
ables and the objective function are associated with such
model types, it may still be possible to use gradient-based
methods.

Gradient-based optimization generally requires deriva-
tives and may only yield local optima because of globally
non-convex objective functions. Used in conjunction with
co-simulation, examples include back-propagation of gra-
dients with respect to input (GOBI) which is proposed by
Tuli et al. (2022) to find optimal scheduling decisions for
fog computing, or block coordinate descent (BCD) used
by Sadnan et al. (2021) to solve the decentralized optimal
power flow problem in a distribution grid.

Combining optimization and co-simulation

Most examples of co-simulation optimization use an opti-
mization routine on top of the co-simulation loop. Rank-
ing and selection currently seems to be the most com-
mon such strategy, solely making up almost 45% of all
methods investigated by Vega and Chevrier (2024). It
consists of simply running a batch of pre-selected co-
simulation scenarios, collecting and analyzing the results,
adjusting the design, and repeating until satisfied. Rank-
ing and selection can also be supplemented with post-
processing techniques such as Pareto front (Wirth et al.
2017), goal-driven optimization (GDO) (Zhaoju et al.
2019), or by using a weighted sum of multiple objective
functions (He et al. 2021). Verification by co-simulation
is a slightly different take used by Assadi et al. (2023)
to gauge the thermal-management performance of a high-
density electric-vehicle fast charger based on the topol-
ogy of a heatsink that was first optimized in a (monolithic)
thermo-fluid simulation.

A different approach is optimization-in-the-loop
whereby optimization happens inside of a co-simulation.
One such example is control optimization which aims
to move the system along a desired path as it evolves
dynamically. The objective function then depends on
a set of actions taken at discrete time instances. This
could, for example, be relevant for dynamic positioning
or routing tasks. Control optimization is used by Bharati,
Chakraborty, and Darrah (2021) to find the optimal
control of consumers and generators in a hardware-in-
the-loop co-simulation of the interaction of a real-World
microgrid facility with a real-time model of a power
grid. It is also used by Tuli et al. (2022) for scheduling
optimization, or by Sadnan et al. (2021) to minimize
communications between agents controlling subgrids in
a distribution power system for optimal decentralized
power flow.

2.2 Research needs
Some black-box optimization methods seem to remain rel-
atively unexplored in the context of co-simulation still. A

Session: Maritime Applications in Track for FMI and Related 

DOI Proceedings of the 16th International Modelica&FMI Conference  787 
10.3384/ecp218785 September 8-10, 2025, Lucerne, Switzerland   



prominent example is the class of methods that go un-
der the heading of Bayesian optimization (Garnett 2023),
which has seen a resurgence in recent years due to its use-
fulness in machine learning, in particular for tuning neural
networks. In Bayesian optimization, the objective func-
tion is treated as a random variable to be inferred in light
of prior expectations (i.e., assumptions) and data collected
(i.e., function evaluations). In our opinion, this seems like
a promising approach when co-simulation is involved, one
that should be investigated further.

A fact that does not seem to be discussed much in the
current literature on co-simulation-based optimization is
that co-simulation coupling gives rise to errors that are not
present in a monolithic simulation of the same system. As
mentioned, this exacerbates issues with simulation accu-
racy and stability, both of which are difficult to estimate
or control for co-simulations (Kyllingstad, Sadjina, and
Skjong 2024). A systematic way needs to be found to
make sure that the optimization is robust enough to deal
with this situation and to avoid over-optimization. In ad-
dition, methods for co-simulation error control can help
speed up simulations and thus prove useful in optimiza-
tion contexts.

Lastly, exactly how optimization and co-simulation can
or should be used together is a matter that appears to be far
from settled. More generally, a systematic analysis iden-
tifying which optimization methods work best for system
optimization based on co-simulation, under which condi-
tions, and for which cases seems to be lacking. This is
also reflected in a large variety of strategies to be found in
the literature, see Section 2.1.

2.3 Example: Optimizing the design of an au-
tonomous battery-electric ferry

A fully battery-electric ferry needs to be fitted with a suf-
ficiently large battery capacity and be as energy-efficient
as possible to handle the vast range of environmental con-
ditions it will encounter during operation. Maneuvering,
acceleration, transit, and deceleration must all use as lit-
tle energy as possible, while different environmental and
loading conditions typically require different operational
modes for optimality. The ferry design is also constrained
by safety considerations. For example, it may have to
handle (temporarily) reduced or completely unavailable
charging capacity and stay maneuverable even under ex-
treme weather conditions. Lastly, it has to be designed in
a way that minimizes seasickness-inducing motions.

When setting up a co-simulation of such a system, a
typical approach is to split it into subsimulators represent-
ing

• the hull (including effects of waves and currents),

• the power system,

• individual propulsors (e.g. propellers),

• individual pieces of heavy machinery (e.g. car ramp
hydraulics),

• individual sensors (e.g. GPS and radar), and

• individual control systems (e.g. autopilot and power
management system).

Depending on the vendor constellation involved in its con-
struction, it may also make sense to split the power system
further into subsystems representing battery packs, fre-
quency converters, switchboards, back-up generators, and
so on.

This system is characterized by strong interdependen-
cies, foremost of which is that all on-board energy con-
sumers are powered by the same, strictly limited, energy
source. Multiple control systems are at play, control-
ling individual components, groups of components, or the
entire ship, forming a hierarchy with both upwards and
downwards dependencies. Hence, even though the sys-
tem is loosely coupled and quite naturally separable for
purposes of co-simulation, it is very tightly coupled in a
system optimization perspective.

3 Adaptive Stress Testing
Traditionally, safety has been based on strategies such
as introducing redundancy for critical components or by
implementing safety functions that are triggered by a
controller to prevent unsafe system states (Meulen and
Myhrvold 2022). Such strategies are insufficient when
dealing with complex and autonomous systems, however,
where safety – or lack thereof – emerges as a consequence
of the interactions of a large number of interconnected and
interdependent controllers (Leveson 2012). This makes
simulation-based validation of system safety and compli-
ance a great tool for identifying the effects of these inter-
actions at the system level.

Several approaches have been proposed for trying to
find failures2 in systems in complex interactions with their
environment. They can broadly be divided into two cate-
gories (Lee, Mengshoel, et al. 2020): Formal verification
attempts to use mathematical proofs and is able to iden-
tify failures as well as absence of failures. Of course, it
is often ill-suited for complex engineering systems with
stochastic environments. Simulation-based sampling, on
the other hand, relies on the (manual or automatic) cre-
ation of environment instances and initial conditions, and
performs searches over the parameter space to find failures
in the simulated system–environment interactions. The
main challenge is to handle the overwhelming set of pos-
sible parameters to test, not least figuring out which are
the relevant ones. This calls for methods for automatically
running, evaluating, and re-running simulations in a se-
quence which is intelligently guided towards the violation
of desired system properties. One such method is adap-
tive stress testing (AST) (Lee, Kochenderfer, et al. 2015)
which we believe is a promising candidate for use with
co-simulation.

2Here, we understand a failure as a violation of a safety property
(Corso, Moss, et al. 2021).
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3.1 Background
The principal idea behind AST is to try to identify the
most likely failures of a complex system in an environ-
ment through actively guiding failure path sampling. This
is especially useful when a formal mathematical falsifi-
cation or the exhaustive search over the space of initial
conditions, parameters, and over a significant length of
time are not feasible. This will typically be the case for
complex systems in stochastic environments for which the
governing equations are not known. AST is a powerful
method with applications in airspace safety (Lee, Kochen-
derfer, et al. 2015; Durling et al. 2021; Guo, Brittain, and
Wei 2023), autonomous road vehicle safety and control
(Koren, Alsaif, et al. 2018; Corso, Du, et al. 2019; Ko-
ren and Kochenderfer 2019; Corso, Lee, and Kochender-
fer 2020; Corso and Kochenderfer 2020), software testing
(Corradini et al. 2022; Durling et al. 2021; Hellhake et al.
2022), validation of AI systems (Julian, Lee, and Kochen-
derfer 2020), and collision avoidance of autonomous ships
(Torben et al. 2023; Hjelmeland et al. 2022).

The classic formulation of AST (Lee, Kochenderfer, et
al. 2015; Koren, Alsaif, et al. 2018) models the problem
as a sequential Markov decision process and uses deep re-
inforcement learning with tree search to find action paths
with a high failure likelihood. This approach either re-
quires full access to the system states or, when unavail-
able, full control over the generation of random numbers
in the system and the environment (Lee, Mengshoel, et al.
2020). The former case is rendered irrelevant by most in-
dustrial co-simulation use cases, while the latter is at least
challenging to implement in practice.

3.2 Research needs
Unlike for optimization, we have been able to find lit-
tle to no prior work on combining stress testing with co-
simulation. Again, the black-box nature of co-simulations
poses challenges, in this case when it comes to the inter-
pretability of the results and the inference of causal chains,
as well as issues regarding numerical accuracy and stabil-
ity. At the same time, stress testing based on reinforce-
ment learning (AST) presents itself as a good fit for co-
simulation because it relies only on subsimulator inputs
and outputs and thus goes together well with black-box
models.

Depending on the specific restrictions and requirements
of the case at hand, other approaches and formulations
could prove useful and should be further investigated for
use with co-simulation:

• If the failure paths need to be interpretable, signal
temporal logic can be used together with genetic pro-
gramming (Corso and Kochenderfer 2020) or Gaus-
sian processes (Torben et al. 2023) to optimize action
paths which lead to system failure. This approach
also allows to encode domain-relevant requirements
and compliance (such as minimal safety distances).

• The backwards algorithm (Koren, Nassar, and
Kochenderfer 2021) can significantly speed up fail-
ure discovery with AST by first running it on a low-
fidelity simulator before improving on the results us-
ing a high-fidelity simulator. Fidelity differences can
induce spurious errors and disagreement in the dis-
covered failures, though the algorithm is in principle
able to learn to overcome these issues.

• The use of domain-specific heuristics for the reward
function can improve AST performance, for exam-
ple, by encoding improper system behavior or the in-
clusion of a dissimilarity measure between paths to
try to avoid finding the same failure types repeatedly
(Corso, Du, et al. 2019).

• If heuristic rewards are not available, AST perfor-
mance can suffer from impeded learning due to a lack
of reward information before a failure is found. The
go explore (GE) algorithm can be used to improve
AST performance under such conditions (Koren and
Kochenderfer 2020).

• The use of a recurrent neural network with long
short-term memory layers can yield a more robust
and efficient detection of failures across the entire
space of initial conditions (Koren and Kochenderfer
2019) by being able to learn relationships between
different paths.

• AST also allows for differential stress testing (Lee,
Mengshoel, et al. 2020) to compare failure paths
against a baseline. This is useful, for example, when
changes to an existing design need to be validated.

Other interesting approaches include the direct estimation
of the distribution of failures (Corso, Lee, and Kochender-
fer 2020), trying to find the boundary between compliant
and non-compliant behavior based on parametric scenar-
ios (Petrov et al. 2022), or extending AST to complex fail-
ures involving several autonomous agents and improper
environment conditions together (Guo, Brittain, and Wei
2023).

3.3 Example: Stress testing the design of an
autonomous battery-electric ferry

Our prior discussion of a battery-electric autonomous
ferry in section 2.3 came short in terms of making sure
that the design solutions are not only optimal but also safe.
The ferry will have to handle all kinds of potentially dan-
gerous situations, such as: vital sensor signals dropping
out, becoming unreliable, or even actively being manipu-
lated; collisions with crossing traffic; propulsors becom-
ing unavailable; battery errors and other power electronics
errors; or communications issues with a remote operation
center. Worse, it will have to handle all sorts of combi-
nations of such situations because the most severe system
failures in complex systems stem from the interdependen-
cies between subsystems.
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A typical AST approach here would be to have a rein-
forcement learning agent define a policy that determines
how a simulated scenario unfolds, for example how a
crossing ship behaves or how the weather changes. The
agent would then learn from the scenario outcomes, in par-
ticular how close the system came to failure, and in what
sense. A proper evaluation of the latter could quite nat-
urally depend on information which would normally be
hidden in a co-simulation. One example might be the on-
board control systems’ internal representation of the state
of the system and its environment; another might be the
internal causal structure of a complex subsystem (e.g. the
power system).

4 Outlook
Optimization and stress testing are not completely separa-
ble aspects of a complex system design workflow. Safety
is an important design objective, and therefore something
to be optimized for. Conversely, optimization of other fac-
tors could easily affect safety. Keeping to the maritime do-
main, one example would be a ship power plant which is
tightly optimized for energy efficiency in ordinary operat-
ing conditions, but which does not have sufficient reserve
power and therefore causes a critical black-out in extreme
weather conditions. Having found good methods to im-
plement optimization and AST with co-simulation-in-the-
loop, the next obvious step is therefore to integrate the two
processes in one design loop.

At least two strategies seem to be worthy of further in-
vestigation here:

• nested: including the results of stress testing when
computing the objective function(s) in an optimiza-
tion loop

• sequential: optimize the system, perform stress test-
ing, evaluate, adjust optimization constraints/goals,
repeat

We suspect that the first would, at least in principle, be
capable of yielding the best results, but be very computa-
tionally expensive. The second might be more tractable in
terms of computation time, but determining how to con-
strain or target the optimization procedure to reduce the
likelihood of identified failure paths seems a highly non-
trivial task, especially when dealing with black-box sys-
tems. Lastly, some synergies could potentially be ex-
ploited when it comes to surrogate models (optimiza-
tion) or the use of low-fidelity simulators (AST with the
backwards algorithm) to speed up implementations of co-
simulation optimization and stress testing. But for now,
this all remains conjecture and a highly interesting direc-
tion for future research.

This being a contribution to the International Modelica
& FMI Conference, we would be amiss if we did not com-
ment on FMI’s role. Luckily, the standard already pro-
vides the complete feature set needed for co-simulation
optimization and stress testing. The abilities to read and

set derivatives and to store and restore model states, for
example, are both already part of the FMI specification
(Blochwitz et al. 2011). Therefore, it is up to the model
developers to make use of the already implemented fea-
tures to allow for their models to be used in optimization
and stress testing settings.
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