
Scalable Higher-order Nonlinear Solvers via Higher-order
Automatic Differentiation

Songchen Tan1 Keming Miao1 Alan Edelman1 Christopher Rackauckas1

1Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA,
{songchen,xbtmkmmm,edelman,crackauc}@mit.edu

Abstract
This paper demonstrates new methods and implementa-
tions of nonlinear solvers with higher-order of conver-
gence, which is achieved by efficiently computing higher-
order derivatives. Instead of computing full derivatives,
which could be expensive, we compute directional deriva-
tives with Taylor-mode automatic differentiation. We first
implement Householder’s method with arbitrary order for
one variable, and investigate the trade-off between com-
putational cost and convergence order. We find that the
second-order variant, i.e., Halley’s method, to offer the
best trade-off between computational cost and conver-
gence rate, and further generalize Halley’s method to sys-
tems of nonlinear equations and demonstrate that it can
scale efficiently to large-scale problems. We further ap-
ply Halley’s method on solving large-scale ill-conditioned
nonlinear problems, as well as solving nonlinear equations
inside stiff ODE solvers, and demonstrate that it could out-
perform Newton’s method.
Keywords: nonlinear solvers, automatic differentiation,
Householder’s method, Halley’s method

1 Introduction
Solving nonlinear equations accurately and efficiently is
crucial in many disciplines of science, where nonlinear
equations can emerge either directly from the models, or
as an intermediate step of solving ordinary differential
equations (ODEs)(Byrne and Hindmarsh 1987), partial
differential equations (PDEs)(Ames 2014), differential-
algebraic equations (DAEs)(Kunkel 2006), and integral
equations(Atkinson 1992).

Various methods are available to solve nonlinear equa-
tions, and the mostly used ones are Newton’s method and
its variants(Kelley 2003), which rely on the first-order
derivative, i.e. the Jacobian, or its approximations. New-
ton’s method is proved to have quadratic convergence un-
der certain assumptions of the nonlinear function and ini-
tial condition(Galántai 2000).

There has been extensive research on improving the
convergence order of nonlinear solvers, which can be cat-
egorized into two different approaches: (1) multi-step
methods that evaluate nonlinear functions and/or deriva-
tives at multiple points in each iteration(Potra 1984;
X. Xiao and Yin 2015; Madhu and Jayaraman 2017;

X.-Y. Xiao 2022; Singh and Sharma 2023); (2) meth-
ods that utilize higher-order derivatives of nonlinear func-
tions(Alefeld 1981; A. Cuyt and Cruyssen 1983; A. A. M.
Cuyt and Rall 1985; A. A. Cuyt 1982; K. I. Noor, M. A.
Noor, and Momani 2007; Ogbereyivwe, Izevbizua, and
Umar 2023; Sariman and Hashim 2020; Germani et al.
2006). Despite their higher convergence order, in order
to be more efficient than Newton’s method, they must be
computationally efficient for each iteration. For example,
some multi-step methods(Singh and Sharma 2023) evalu-
ate the function and Jacobian at multiple points, but only
invert the Jacobian at one point; in practice, this would
mean that for a nonlinear function with n inputs and n
outputs, the O(n3) factorization of the Jacobian, which
is the bottleneck of Newton’s method, only needs to be
done once for each iteration. This ensures that these multi-
step methods are not much more expensive than Newton’s
method for each iteration.

The same considerations also apply to methods of the
second category, where higher-order derivatives introduce
additional computation burden. It is commonly believed
that computing the higher-order full derivative of a func-
tion with large input and output dimension n would be
much more expensive than the computation of the func-
tion itself(Margossian 2019). As a result, they are often
approximated rather than exactly computed(Sariman and
Hashim 2020; Suleiman 2009; Albeanu 2008; Steihaug
2006), and it is still an open question whether nonlinear
solvers can utilize higher-order derivative information for
large-scale nonlinear problems in an exact way.

This paper demonstrates new methods and implemen-
tations that, instead of computing the full derivative, ef-
ficiently and exactly compute the higher-order directional
derivative, which is sufficient for nonlinear solvers. This
paper is organized as follows. We will first introduce the
technique of Taylor-mode automatic differentiation (AD)
for efficiently computing higher-order directional deriva-
tives, and its implementation in Julia, in section 2. Then
we will demonstrate that Taylor-mode AD can be used
to efficiently implement Householder’s method with arbi-
trary convergence order, in section 3. Finally, we demon-
strate that a special case of Householder’s method, the
cubic-convergence Halley’s method can scale elegantly
to large-scale problems, and could outperform first-order
methods by a significant margin, in section 4.

DOI Proceedings of the 16th International Modelica&FMI Conference 861
10.3384/ecp218861 September 8-10, 2025, Lucerne, Switzerland

RRR

2 Taylor-mode automatic differenti-
ation for higher-order directional
derivatives

We first introduce the notation used in this paper. Let U be
an open subset of Rn, f : U →Rm be a function that is suf-
ficiently smooth. The derivative of f at a point x ∈Rn is a
linear operator D f (x) : Rn → Rm such that it maps a vec-
tor v ∈ Rn to D f (x)[v], which is the directional derivative
of f at x in the direction of v, also known as the Jacobian-
vector product.

Similarly, for p ∈ Z+ > 1, the p-th order derivative
of f at a point x is a multilinear operator Dp f (x) :
(Rn, · · · ,Rn) → Rm such that it maps a tuple of vectors
(v1, . . . ,vp) to Dp f (x)[v1, · · · ,vp], the directional deriva-
tive of f at x in the direction of (v1, . . . ,vp).

First-order forward-mode AD can be viewed as an al-
gorithm to propagate directional derivative information
through compositions of functions(Revels, Lubin, and Pa-
pamarkou 2016). For example, let f (x) = g(h(x)) to be
a composite function for Rn → Rm, and x ∈ Rn to be
a specific point in its domain. Suppose that we already
have h0 = h(x) to represent the primal output of h, and
h1 = Dh(x)[v] representing the perturbation of h along
some direction v ∈ Rn. Now for the composite function,
we want to know what is the perturbation of f along di-
rection v; in other words, we want to know f1 = D f (x)[v]
in addition to f0 = f (x). The answer to that is simply the
chain rule:

• f0 = g(h0)

• f1 = Dg(h0)[h1]

Similarly, the Taylor-mode AD can be viewed as an al-
gorithm to propagate higher-order directional derivative
information through compositions of functions. Suppose
that we already have a Taylor coefficients for h at x along
v:

(h0,h1, . . . ,hp) = (h(x),Dh(x)[v], . . . ,Dph(x)[v, . . . ,v])

and we want to know

(f0, f1, . . . , fp) = (f (x),D f (x)[v], . . . ,Dp f (x)[v, . . . ,v])

the answer to that is, in turn, the Faà di Bruno’s formula:

• f0 = g(h0)

• f1 = Dg(h0)[h1]

• f2 = D2g(h0)[h1,h1]+Dg(h0)[h2]

• · · ·

In our practical implementation of Taylor-mode AD, a
pushforward rule is defined for every “simple” func-
tion, so that derivatives of any complicated functions

that are composed of these simple functions can be
computed automatically, either via operator-overloading
or source-code transformation techniques. Our previ-
ous work (Tan 2023a) has shown that for any func-
tions composed of elementary functions and arbitrary
control flow, the p-th order directional derivative is at
most O(p2) times more expensive than computing the
function itself, in contrast to naively nesting first-order
forward-mode AD which could be O(exp(p)) times ex-
pensive(Bettencourt, Johnson, and Duvenaud 2022). We
also provided a reference implementation of this method
in the Julia language(Bezanson, Edelman, et al. 2017) us-
ing its multiple-dispatch mechanism(Bezanson, Bolewski,
and Chen 2018), TaylorDiff.jl(Tan 2023b), featuring an
automatic generation(Gowda, Ma, Cheli, et al. 2021) of
higher-order pushforward rules from first-order pushfor-
ward rules defined in ChainRules.jl(White et al. 2023).

Below, we will demonstrate how to use Taylor-mode
AD to implement higher-order nonlinear solvers. For all
numerical experiments in this paper, we use the Julia lan-
guage v1.11.2 on a single core of Intel Xeon Platinum
8260 CPU provided by the MIT SuperCloud system.

3 Efficient implementation of House-
holder’s method

We begin by implementing Householder’s
method(Householder 1970) for solving nonlinear
equations with one variable, i.e. x ∈ R in the nonlinear
function f (x). This does not immediately generalize to
multiple variables, but it is useful to compare the behavior
of solvers with different convergence order. The method
is defined as follows: given an initial guess x0, in each
iteration we compute,

xn+1 = xn + p
(1/ f)(p−1)(xn)

(1/ f)(p)(xn)
.

which requires derivatives up to p-th order and has con-
vergence order p+1. Note that when p = 1, this method
is equivalent to Newton’s method; and when p = 2, this
method is equivalent to Halley’s method.

Given f and xn, we can compute f (xn) and its deriva-
tives up to p-th order using Taylor mode AD, and then
invert this Taylor polynomial to get the value and deriva-
tives of 1/ f up to p-th order. Our analysis leads to the
algorithm 1:

3.1 Cost-effectiveness for Householder’s
method with different orders.

We implement algorithm 1 as a part of SimpleNonlin-
earSolve.jl(Pal et al. 2024), which is a package of non-
allocating nonlinear solvers that have low-overhead and
could solve small nonlinear problems very efficiently. We
make several univariate nonlinear functions composed of
various elementary functions, and use different orders of
Householder’s method to solve f (x) = 0 given appropriate
initial guess. Results are shown in fig. 1.

Scalable Higher-order Nonlinear Solvers via Higher-order Automatic Differentiation

862 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218861

Figure 1. Cost-effectiveness for Householder’s method with different orders. Left: the computation time per iteration for each
nonlinear function and each Householder’s method with different order. Right: the relative speedup for each function of the total
computation time to solve the nonlinear equation, normalized by the p = 1 solver (Newton’s method). The functions and initial
conditions are: (1) f1(x) = x2 −2, x0 = 1.0; (2) f2(x) =

√
x−π , x0 = 10.0; (3) f3(x) = x− exp(−x), x0 = 0.0; (4) f4(x) = x2 −2x,

x0 = 3.3; (5) f5(x) = x+ sin(x)−1, x0 = 0.5; (6) f6(x) = log(x)+ x, x0 = 1.0.

Algorithm 1 Householder’s method implementation
based on higher-order AD

Define f and initial value x; tolerance t; order p
while | f (x)|> t do

Initialize Taylor coefficients (x,1,0, · · · ,0)
Apply the pushforward rule of f to get
(f (x), f ′(x), · · · , f (p)(x))
Apply the pushforward rule of (·)−1 to get
((1/ f)(x),(1/ f)′(x), · · · ,(1/ f)(p)(x))

Update x := x+ p (1/ f)(p−1)(x)
(1/ f)(p)(x)

.

end while
return x

For each of the nonlinear functions, the computation
cost per iteration only slightly increases as the order p
goes from 1 (Newton’s method) to 5, but the number of
iterations needed to converge could be cut down signif-
icantly by the higher-order methods. As the result, the
total time needed to converge could be shorter for higher-
order methods. We also notice that the most significant
improvement is from the first order to the second order,
and the improvement from the second order to an even
higher order is less significant.

3.2 Generalization to multivariate functions
The theory of abstract rational approximation(A. Cuyt
and Cruyssen 1983) gives a method to generalize House-
holder’s method to multivariate functions. In the sections

below, we will focus on implementing p = 2 case, i.e.
Halley’s method, with abstract rational approximation for-
mulas, for multivariate functions. Based on the obser-
vations from simple univariate problems, we hypothesize
that higher-order methods with p ≥ 3 yield diminishing
returns in practice.

4 Scalable and Efficient implementa-
tion of Halley’s method

Halley’s method (p = 2) for a multivariate real function
f (x) : Rn → Rn, derived from abstract rational approxi-
mation(A. Cuyt and Cruyssen 1983; A. A. M. Cuyt and
Rall 1985), could be expressed as follows: given an initial
guess x0, in each iteration we compute

xn+1 = xn+(an⊙an)⊘(an+[D f (xn)]
−1D2 f (xn)[an,an]/2)

(1)
where ⊙ and ⊘ are element-wise multiplication and divi-
sion, D f and D2 f are the Jacobian and Hessian of f , and
an is the solution to D f (xn)an = − f (xn). In the equation
above, D2 f (xn)anan can be computed easily using Taylor-
mode AD, with just two times more expensive than the
computation of f (xn). After the first linear solve for an, we
need another linear solve to get [D f (xn)]

−1D2 f (xn)anan.
Among the two linear solves, the factorization of Jacobian
could be reused, similar to the case of multi-step meth-
ods(Singh and Sharma 2023). Our analysis leads to algo-
rithm 2:

Looking into the details of algorithm 2, we note that for

Poster Session

DOI Proceedings of the 16th International Modelica&FMI Conference 863
10.3384/ecp218861 September 8-10, 2025, Lucerne, Switzerland

Algorithm 2 (Multivariate) Halley’s method implementa-
tion based on higher-order AD

Define f and initial value x; tolerance t
while ∥ f (x)∥inf > t do

Obtain via first-order AD the Jacobian D f (x)
Solve a from D f (x)[a] =− f (x)
Initialize Taylor coefficients (x,a,0)
Apply the pushforward rule of f to get
(f (x),D f (x)[a],D2 f (x)[a,a])
Solve b from D f (x)[b] = D2(x)[a,a]
Update x := x+a⊙a⊘ (a+b/2)

end while
return x

either dense or sparse Jacobian, the construction and fac-
torization of D f (x) (via LU or QR factorization) should
be the bottleneck of solving, and these only need to be
done once for the two linear solves. In other words, given
the factorization, the additional linear solve for b can be
computed in O(n2) time. Therefore, each step of Hal-
ley’s method can be asymptotically as cheap as Newton’s
method, which makes it potentially faster than Newton’s
method.

4.1 Solving nonlinear problems with dense Ja-
cobian

We first test algorithm 2 on nonlinear problems where
the Jacobian of the nonlinear function f (x) : Rn → Rn

is dense and unstructured. In this case, the factoriza-
tion of the Jacobian is the bottleneck of the linear solve,
and the cost of each factorization is O(n3). For defin-
ing such a problem, we consider the Chandrasekhar’s H-
function(Chandrasekhar 2013) which is the solution to an
integral equation that arises in the study of radiative trans-
fer in astrophysics. The equation is defined as follows:

H(µ) = 1+µH(µ)
∫ 1

0

Ψ(µ ′)H(µ ′)

µ +µ ′ dµ
′ (2)

where H(µ) is defined on [0,1] and Ψ(µ) is an even poly-
nomial. We consider the most simplified case, where Ψ

is a constant. Upon discretization onto n grids for inte-
gration, the equation becomes a system of nonlinear equa-
tions of n variables, and since each equation depends on
the value of H on all positions, the Jacobian of this non-
linear problem is inherently dense. The detailed form of
the discretized nonlinear function is available as the 23rd
problem in NonlinearProblemLibrary.jl(Pal et al. 2024)
which the reader can refer to.

We solve this problem with different problem sizes
n = 4,8,16,32,64,128, and we compare the performance
of (1) Newton’s method, (2) Halley’s method as imple-
mented in algorithm 2, and (3) naive Halley’s method im-
plemented in a conventional way(A. A. M. Cuyt and Rall
1985) that computes the full Hessian and then contracts it
with vectors. Each of them is solved to the default toler-
ance. The results are shown in fig. 2.

While the performances are similar for small problems,
the naive Halley’s method quickly becomes infeasible for
large problems(Pal et al. 2024), while our implementation
of Halley’s method scales similarly as Newton’s method.
In addition, as the problem size gets larger, the advan-
tage of Halley’s method over Newton’s method becomes
more significant, as a result of fewer iterations needed to
converge. For example, for n = 128, Halley’s method
is approximately 40% faster than Newton’s method. Fi-
nally, more detailed work-precision diagrams comparing
Halley’s method and Newton’s method, within a broader
range of problem sizes (n = 4,16,64,256,1024), is shown
in fig. 3.

4.2 Solving large-scale ill-conditioned nonlin-
ear problems with sparse Jacobian

Nonlinear problems that appear in solving PDEs are of-
ten large, sparse and ill-conditioned(Ames 2014), impos-
ing additional challenges for nonlinear solvers. Below, we
will use a two-dimensional Brusselator reaction-diffusion
PDE problem as an example to demonstrate the capabil-
ity of Halley’s method to handle these nonlinear prob-
lems in practical applications. The Brusselator is a model
for auto-catalytic chemical systems that exhibit oscilla-
tions in time domain and pattern formation in space do-
main(Prigogine and Lefever 1968). Let functions u(x,y, t)
and v(x,y, t) be concentrations of substances that are de-
fined on (x,y) ∈ [0,1]× [0,1] and t ∈ (0,+∞), satisfying
the following differential equations,

ut = B+u2v− (A+1)u+α∆u+ f (x,y, t)

vt = Au−u2v+α∆v
(3)

where the source f is defined as

f (x,y, t)=

{
5 if (x−0.3)2 +(y−0.6)2 ≤ 0.12and t ≥ 1.1
0 otherwise

(4)
and initial conditions,

u(x,y,0) = 22(y(1− y))3/2

v(x,y,0) = 27(x(1− x))3/2
(5)

and periodic boundary conditions.

u(0,y, t) = u(1,y, t)
u(x,0, t) = u(x,1, t)
v(0,y, t) = v(1,y, t)
v(x,0, t) = v(x,1, t)

(6)

In the following numerical experiments, the parameters
are set to A = 3.4, B = 1, α = 10.

We first consider the time-independent PDE problem,
where for t ≫ 1.1 we solve the steady-state equations
ut = vt = 0 to get the long-time behavior of the spatial
distribution of concentrations u and v. In order to apply
nonlinear solvers, the spatial discretization of u and v is

Scalable Higher-order Nonlinear Solvers via Higher-order Automatic Differentiation

864 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218861

https://github.com/SciML/DiffEqProblemLibrary.jl/blob/master/lib/NonlinearProblemLibrary/src/NonlinearProblemLibrary.jl#L438

Figure 2. Scaling for solving a nonlinear problem that has a dense Jacobian, at different problem sizes. Solvers: Newton, Halley
(Taylor-mode AD), and Naive Halley (full Hessian).

Figure 3. Work-precision diagram for solving a nonlinear problem that has a dense Jacobian, with different sizes. Solvers: Newton
and Halley (Taylor-mode AD).

Poster Session

DOI Proceedings of the 16th International Modelica&FMI Conference 865
10.3384/ecp218861 September 8-10, 2025, Lucerne, Switzerland

carried out for K = 4,8,16,32,64,128 grids on x and y
directions, and the Laplacian operator ∆ is implemented
with finite differences. Therefore, each of u and v dis-
cretizes to K2 variables, and the total problem size of the
nonlinear system is n = 2K2. Since the variables only in-
teract with nearby grids, the resulting Jacobian is sparse;
in addition, when K increases, the coefficients of the finite
difference operator become larger and make the Jacobian
ill-conditioned.

In order to handle these characteristics, we first try
to generate a sparse matrix for Jacobian in order to
make factorization easier(Averick et al. 1994). This
could be achieved with sparse detection techniques, ei-
ther in a numerical way(Giering, Kaminski, and Slawig
2005; Walther and Griewank 2009) or in a symbolic
way(Gowda, Ma, Churavy, et al. 2019). After spar-
sity detection, we further use the graph coloring algo-
rithm(Gebremedhin, Manne, and Pothen 2005) to com-
pute the matrix. These tools are available in SparseD-
iffTools.jl(JuliaDiff/SparseDiffTools.jl 2024) and Spar-
seConnectivityTracer.jl(Hill and Dalle 2024) as a part
of the Julia community. Finally, factorization of the
sparse Jacobian is appropriately handled with Linear-
Solve.jl(SciML/LinearSolve.jl 2024) which has reasonable
polyalgorithms for handling ill-conditioned sparse matri-
ces. In addition, we also include the naive method of com-
puting dense Jacobian and then doing dense factorization.
The results are shown in fig. 4.

Clearly, the naive method of computing dense Jacobian
and then doing dense factorization is inefficient for large
problems, while the sparse method scales better. In ad-
dition, Halley’s method is more efficient than Newton’s
method for all problem sizes and for both sparse and
dense handling of the Jacobian matrix, and the advantage
becomes more significant as the problem size increases.
For example, for K = 32 and corresponding problem size
n = 2048, Halley’s method is approximately 25% faster
than Newton’s method.

4.3 Solving stiff ODEs
We then consider the time-dependent PDE, where we
compute the time evolution of the Brusselator system
given initial conditions and periodic boundary conditions
above. In order to implement, the PDE is again spatially
discretized with K grids on x and y directions, turning it
into an ODE. Due to the Laplacian operator, the linear part
of this equation has a high frequency, while the nonlinear
part has a low frequency. Therefore, the resulting ODE
is stiff. In solving stiff ODEs, implicit solvers are often
used to ensure accuracy and efficiency(Kim et al. 2021),
and these solvers requires nonlinear solve steps. Since the
nonlinear solve steps are often the bottleneck of implicit
solvers, impoving the nonlinear solver could accelerate the
whole ODE solving process.

We choose problem size K = 8, n = 2K2 = 128 to
construct the ODE and solve with several common stiff
solvers from t0 = 0 to te = 11.5, and in each of the

stiff solvers we test both Newton’s method and Halley’s
method for the underlying nonlinear solver. When solving
the ODE, we provide different tolerances which will deter-
mine the time step by applying adaptive time-step strate-
gies available in DifferentialEquations.jl(Rackauckas and
Nie 2017). We then use a very small tolerance to obtain
very accurate solutions to the ODE, namely uref and vref,
and we define the error to be the relative L2 error of the
final solution at te on domain D = [0,1]× [0,1], i.e.∫

D
(
|δu(x,y, te)|2 + |δv(x,y, te)|2

)
dxdy∫

D (|uref(x,y, te)|2 + |vref(x,y, te)|2)dxdy
(7)

where δu = u− uref and δv = v− vref respectively. The
results are shown in fig. 5.

In the work-precision diagram, we observe that Halley’s
method is more efficient than Newton’s method for many
kinds of implicit solvers, and on average it gives a 5-10%
speedup for the whole ODE solving process.

5 Conclusions
In this paper, we have demonstrated that higher-order non-
linear solvers can be implemented efficiently and scalable
with higher-order automatic differentiation. We have im-
plemented Householder’s method with arbitrary conver-
gence order and investigated the trade-off between com-
putational cost and accelerated convergence. We have im-
plemented p = 2 variant, Halley’s method, for multivari-
ate functions and have shown that Halley’s method can
be more efficient than Newton’s method for several cases,
including problems with dense Jacobian, problems with
sparse Jacobian, as well as being integrated as a part of
stiff ODE solvers. Backed by the Julia language and Non-
linearSolve.jl framework, this method can be applied to a
wide range of problems in science and engineering, and
we believe that it could be a valuable tool for the scientific
community.

The most noticeable limitation of this work is that we
have not yet considered the case where the linear equa-
tions in each iteration must be solved iteratively, such
as the case that the Jacobian is a matrix-free operator,
which is common in even larger systems(Knoll and Keyes
2004). In this case, no factorization could be reused be-
tween two linear solves required by Halley’s method, and
the cost of each iteration could be twice as expensive as
Newton’s method, cancelling out the advantage of higher
convergence order. In future work, we might consider
constructing alternative versions of Halley’s method that
could reuse Krylov iterations of large linear solves.

Acknowledgements
This material is based upon work supported by the U.S.
National Science Foundation under award Nos CNS-
2346520, PHY-2028125, RISE-2425761, DMS-2325184,
OAC-2103804, and OSI-2029670, by the Defense Ad-
vanced Research Projects Agency (DARPA) under Agree-
ment No. HR00112490488, by the Department of Energy,

Scalable Higher-order Nonlinear Solvers via Higher-order Automatic Differentiation

866 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218861

Figure 4. Scaling for solving discretized two-dimensional Brusselator steady-state problem with different problem sizes. The
problems are solved to default tolerance. Left: computation time for Newton and Halley’s method, each with or without sparsity
detection, for each problem size. Right: relative speedup of Halley’s method over Newton’s method with or without sparsity
detection, for each problem size.

Figure 5. Work-precision diagram for solving discretized two-dimensional Brusselator time-dependent PDE. Implicit Solvers:
Trapezoid(Vladimirescu 1994), TRBDF2(Hosea and L. F. Shampine 1996), FBDF(L. F. Shampine 2002), QNDF(Lawrence F.
Shampine and Reichelt 1997), QBDF (alias of QNDF with κ = 0), KenCarp4(Kennedy and Carpenter 2003), Kvaerno5(Kværnø
2004). For each solver, the Newton’s method is drawn in circle and solid line, and the Halley’s method is drawn in diamond and
dashed line.

Poster Session

DOI Proceedings of the 16th International Modelica&FMI Conference 867
10.3384/ecp218861 September 8-10, 2025, Lucerne, Switzerland

National Nuclear Security Administration under Award
Number DE-NA0003965 and by the United States Air
Force Research Laboratory under Cooperative Agreement
Number FA8750-19-2-1000. Neither the United States
Government nor any agency thereof, nor any of their em-
ployees, makes any warranty, express or implied, or as-
sumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or ser-
vice by trade name, trademark, manufacturer, or other-
wise does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the United States
Government or any agency thereof. The views and opin-
ions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any
agency thereof. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official policies, either ex-
pressed or implied, of the United States Air Force or the
U.S. Government.

References
Albeanu, Grigore (2008). “On the generalized Halley method

for solving nonlinear equations”. In: ROMAI J 4.2, pp. 1–6.
Alefeld, Georg (1981). “On the convergence of Halley’s

Method”. In: The American Mathematical Monthly 88.7,
pp. 530–536.

Ames, William F (2014). Numerical methods for partial differ-
ential equations. Academic press.

Atkinson, Kendall E (1992). “A survey of numerical methods
for solving nonlinear integral equations”. In: The Journal of
Integral Equations and Applications, pp. 15–46.

Averick, Brett M et al. (1994). “Computing large sparse Jacobian
matrices using automatic differentiation”. In: SIAM Journal
on Scientific Computing 15.2, pp. 285–294.

Bettencourt, Jesse, Matthew J. Johnson, and David Duve-
naud (2022-07). “Taylor-Mode Automatic Differentiation for
Higher-Order Derivatives in JAX”. en. In: URL: https : / /
openreview.net/forum?id=SkxEF3FNPH (visited on 2022-
12-22).

Bezanson, Jeff, Jake Bolewski, and Jiahao Chen (2018). “Fast
flexible function dispatch in Julia”. In: arXiv preprint
arXiv:1808.03370.

Bezanson, Jeff, Alan Edelman, et al. (2017-01). “Julia: A Fresh
Approach to Numerical Computing”. In: SIAM Review 59.1.
Publisher: Society for Industrial and Applied Mathematics,
pp. 65–98. ISSN: 0036-1445. DOI: 10.1137/141000671. URL:
https://epubs.siam.org/doi/10.1137/141000671 (visited on
2022-12-22).

Byrne, George D and Alan C Hindmarsh (1987). “Stiff ODE
solvers: A review of current and coming attractions”. In:
Journal of Computational physics 70.1, pp. 1–62.

Chandrasekhar, Subrahmanyan (2013). Radiative transfer.
Courier Corporation.

Cuyt, Annie and Paul van der Cruyssen (1983-01). “Abstract
Padé-approximants for the solution of a sytem of nonlinear
equations”. In: Computers & Mathematics with Applications
9.4, pp. 617–624. ISSN: 0898-1221. DOI: 10 . 1016 / 0898 -

1221(83) 90119 - 0. URL: https : / / www. sciencedirect . com /
science/article/pii/0898122183901190 (visited on 2024-02-
22).

Cuyt, Annie A. M. and L. B. Rall (1985-03). “Computational
implementation of the multivariate Halley method for solving
nonlinear systems of equations”. en. In: ACM Transactions
on Mathematical Software 11.1, pp. 20–36. ISSN: 0098-3500,
1557-7295. DOI: 10.1145/3147.3162. URL: https://dl.acm.
org/doi/10.1145/3147.3162 (visited on 2024-02-20).

Cuyt, Annie AM (1982). “Numerical stability of the Halley-
iteration for the solution of a system of nonlinear equations”.
In: Mathematics of Computation 38.157, pp. 171–179.

Galántai, Aurel (2000). “The theory of Newton’s method”. In:
Journal of Computational and Applied Mathematics 124.1-2,
pp. 25–44.

Gebremedhin, Assefaw Hadish, Fredrik Manne, and Alex
Pothen (2005-01). “What Color Is Your Jacobian? Graph
Coloring for Computing Derivatives”. In: SIAM Review
47.4. Publisher: Society for Industrial and Applied Math-
ematics, pp. 629–705. ISSN: 0036-1445. DOI: 10 . 1137 /
S0036144504444711. URL: https://epubs.siam.org/doi/abs/
10.1137/S0036144504444711 (visited on 2024-12-09).

Germani, A. et al. (2006-12). “Higher-Order Method for the So-
lution of a Nonlinear Scalar Equation”. en. In: Journal of
Optimization Theory and Applications 131.3, pp. 347–364.
ISSN: 1573-2878. DOI: 10.1007/s10957-006-9154-0. URL:
https : / / doi . org /10 .1007 / s10957- 006- 9154- 0 (visited on
2024-10-09).

Giering, R., T. Kaminski, and T. Slawig (2005-10). “Generat-
ing efficient derivative code with TAF: Adjoint and tangent
linear Euler flow around an airfoil”. In: Future Generation
Computer Systems 21.8, pp. 1345–1355. ISSN: 0167-739X.
DOI: 10 . 1016 / j . future . 2004 . 11 . 003. URL: https : / / www.
sciencedirect.com/science/article/pii/S0167739X04001785
(visited on 2024-12-09).

Gowda, Shashi, Yingbo Ma, Alessandro Cheli, et al. (2021-
09). “High-performance symbolic-numerics via multiple dis-
patch”. en. In: ACM Communications in Computer Algebra
55.3, pp. 92–96. ISSN: 1932-2240. DOI: 10.1145/3511528.
3511535. URL: https : / /dl .acm.org/doi /10.1145/3511528.
3511535 (visited on 2022-12-22).

Gowda, Shashi, Yingbo Ma, Valentin Churavy, et al. (2019-
09). “Sparsity Programming: Automated Sparsity-Aware Op-
timizations in Differentiable Programming”. en. In: URL:
https : / / openreview.net / forum? id=rJlPdcY38B (visited on
2024-12-09).

Hill, Adrian and Guillaume Dalle (2024-11). SparseConnectiv-
ityTracer.jl. DOI: 10 . 5281 / zenodo . 14216520. URL: https :
//zenodo.org/records/14216520 (visited on 2024-12-09).

Hosea, M. E. and L. F. Shampine (1996-02). “Analysis and im-
plementation of TR-BDF2”. In: Applied Numerical Mathe-
matics. Method of Lines for Time-Dependent Problems 20.1,
pp. 21–37. ISSN: 0168-9274. DOI: 10.1016/0168- 9274(95)
00115 - 8. URL: https : / / www. sciencedirect . com / science /
article/pii/0168927495001158 (visited on 2024-12-09).

Householder, Alston Scott (1970). “The numerical treatment of
a single nonlinear equation”. In: (No Title).

JuliaDiff/SparseDiffTools.jl (2024-11). original-date: 2019-03-
27T19:57:51Z. URL: https : / / github . com / JuliaDiff /
SparseDiffTools.jl (visited on 2024-12-09).

Kelley, Carl T (2003). Solving nonlinear equations with New-
ton’s method. SIAM.

Scalable Higher-order Nonlinear Solvers via Higher-order Automatic Differentiation

868 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218861

https://openreview.net/forum?id=SkxEF3FNPH
https://openreview.net/forum?id=SkxEF3FNPH
https://doi.org/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://doi.org/10.1016/0898-1221(83)90119-0
https://doi.org/10.1016/0898-1221(83)90119-0
https://www.sciencedirect.com/science/article/pii/0898122183901190
https://www.sciencedirect.com/science/article/pii/0898122183901190
https://doi.org/10.1145/3147.3162
https://dl.acm.org/doi/10.1145/3147.3162
https://dl.acm.org/doi/10.1145/3147.3162
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.1137/S0036144504444711
https://epubs.siam.org/doi/abs/10.1137/S0036144504444711
https://epubs.siam.org/doi/abs/10.1137/S0036144504444711
https://doi.org/10.1007/s10957-006-9154-0
https://doi.org/10.1007/s10957-006-9154-0
https://doi.org/10.1016/j.future.2004.11.003
https://www.sciencedirect.com/science/article/pii/S0167739X04001785
https://www.sciencedirect.com/science/article/pii/S0167739X04001785
https://doi.org/10.1145/3511528.3511535
https://doi.org/10.1145/3511528.3511535
https://dl.acm.org/doi/10.1145/3511528.3511535
https://dl.acm.org/doi/10.1145/3511528.3511535
https://openreview.net/forum?id=rJlPdcY38B
https://doi.org/10.5281/zenodo.14216520
https://zenodo.org/records/14216520
https://zenodo.org/records/14216520
https://doi.org/10.1016/0168-9274(95)00115-8
https://doi.org/10.1016/0168-9274(95)00115-8
https://www.sciencedirect.com/science/article/pii/0168927495001158
https://www.sciencedirect.com/science/article/pii/0168927495001158
https://github.com/JuliaDiff/SparseDiffTools.jl
https://github.com/JuliaDiff/SparseDiffTools.jl

Kennedy, Christopher A. and Mark H. Carpenter (2003-
01). “Additive Runge–Kutta schemes for convec-
tion–diffusion–reaction equations”. In: Applied Numerical
Mathematics 44.1, pp. 139–181. ISSN: 0168-9274. DOI:
10 . 1016 / S0168 - 9274(02) 00138 - 1. URL: https : / / www.
sciencedirect .com/science/article /pii /S0168927402001381
(visited on 2024-12-09).

Kim, Suyong et al. (2021). “Stiff neural ordinary differen-
tial equations”. In: Chaos: An Interdisciplinary Journal of
Nonlinear Science 31.9. Publisher: AIP Publishing LLC,
p. 093122.

Knoll, D.A. and D.E. Keyes (2004). “Jacobian-free New-
ton–Krylov methods: a survey of approaches and applica-
tions”. In: Journal of Computational Physics 193.2, pp. 357–
397. ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.jcp.
2003.08.010. URL: https://www.sciencedirect.com/science/
article/pii/S0021999103004340.

Kunkel, Peter (2006). Differential-algebraic equations: analysis
and numerical solution. Vol. 2. European Mathematical So-
ciety.

Kværnø, A. (2004-08). “Singly Diagonally Implicit
Runge–Kutta Methods with an Explicit First Stage”.
en. In: BIT Numerical Mathematics 44.3, pp. 489–502. ISSN:
1572-9125. DOI: 10.1023/B:BITN.0000046811.70614.38.
URL: https://doi.org/10.1023/B:BITN.0000046811.70614.38
(visited on 2024-12-09).

Madhu, Kalyanasundaram and Jayakumar Jayaraman (2017).
“Some higher order Newton-like methods for solving sys-
tem of nonlinear equations and its applications”. In: Inter-
national Journal of Applied and Computational Mathematics
3.3, pp. 2213–2230.

Margossian, Charles C (2019). “A review of automatic differ-
entiation and its efficient implementation”. In: Wiley interdis-
ciplinary reviews: data mining and knowledge discovery 9.4,
e1305.

Noor, Khalida Inayat, Muhammad Aslam Noor, and Shaher Mo-
mani (2007). “Modified Householder iterative method for
nonlinear equations”. In: Applied mathematics and compu-
tation 190.2, pp. 1534–1539.

Ogbereyivwe, Oghovese, Orobosa Izevbizua, and Salisu Shehu
Umar (2023). “Some high-order convergence modifications
of the Householder method for nonlinear equations”. In:
Communications in Nonlinear Analysis 11.2, pp. 1–11.

Pal, Avik et al. (2024-03). NonlinearSolve.jl: High-Performance
and Robust Solvers for Systems of Nonlinear Equations in
Julia. en. arXiv:2403.16341 [cs, math]. URL: http://arxiv.org/
abs/2403.16341 (visited on 2024-06-15).

Potra, FA (1984). “Nondiscrete induction and iterative pro-
cesses”. In: Pitman Publ.

Prigogine, Ilya and René Lefever (1968). “Symmetry breaking
instabilities in dissipative systems. II”. In: The Journal of
Chemical Physics 48.4, pp. 1695–1700.

Rackauckas, Christopher and Qing Nie (2017).
“Differentialequations.jl–a performant and feature-rich
ecosystem for solving differential equations in julia”. In:
Journal of Open Research Software 5.1, p. 15.

Revels, Jarrett, Miles Lubin, and Theodore Papamarkou (2016).
“Forward-mode automatic differentiation in Julia”. In: arXiv
preprint arXiv:1607.07892.

Sariman, Syahmi Afandi and Ishak Hashim (2020). “New op-
timal Newton-Householder methods for solving nonlinear
equations and their dynamics”. In: Computers, Materials &
Continua 65.1, pp. 69–85.

SciML/LinearSolve.jl (2024-12). original-date: 2021-07-
02T19:56:38Z. URL: https://github.com/SciML/LinearSolve.
jl (visited on 2024-12-09).

Shampine, L. F. (2002-12). “Solving 0 = F(t, y(t), y’(t)) in Mat-
lab”. en. In: 10.4. Publisher: De Gruyter Section: Journal
of Numerical Mathematics, pp. 291–310. ISSN: 1569-3953.
DOI: 10.1515/JNMA.2002.291. URL: https://www.degruyter.
com/document/doi/10.1515/JNMA.2002.291/html (visited
on 2024-12-09).

Shampine, Lawrence F. and Mark W. Reichelt (1997-01). “The
MATLAB ODE Suite”. en. In: SIAM Journal on Scientific
Computing 18.1, pp. 1–22. ISSN: 1064-8275, 1095-7197.
DOI: 10.1137/S1064827594276424. URL: http://epubs.siam.
org/doi/10.1137/S1064827594276424 (visited on 2024-12-
09).

Singh, Harmandeep and Janak Raj Sharma (2023-02). “Simple
yet highly efficient numerical techniques for systems of non-
linear equations”. en. In: Computational and Applied Math-
ematics 42.1, p. 22. ISSN: 2238-3603, 1807-0302. DOI: 10.
1007/s40314-022-02159-9. URL: https://link.springer.com/
10.1007/s40314-022-02159-9 (visited on 2024-06-03).

Steihaug, Trond (2006). “Newton and Halley are one step apart”.
In: Institute for Scientific Computing.

Suleiman, Sara Tagelsir Mohamed (2009). “Solving System of
Nonlinear Equations Using Methods in the Halley Class”.
MA thesis. The University of Bergen.

Tan, Songchen (2023a-06). “Higher-Order Automatic Differen-
tiation and Its Applications”. en. MA thesis. Massachusetts
Institute of Technology. URL: https://dspace.mit.edu/handle/
1721.1/151501.

Tan, Songchen (2023b-05). TaylorDiff.jl. original-date: 2022-
11-09T17:21:07Z. URL: https : / / github . com / JuliaDiff /
TaylorDiff.jl (visited on 2023-05-11).

Vladimirescu, Andre (1994-03). The Spice Book. USA: John
Wiley & Sons, Inc. ISBN: 978-0-471-60926-1.

Walther, Andrea and Andreas Griewank (2009). “Getting Started
with ADOL-C.” In: Combinatorial scientific computing
1.06.02.

White, Frames et al. (2023-04). JuliaDiff/ChainRules.jl: v1.49.0.
DOI: 10 .5281 /zenodo .7870094. URL: https : / / zenodo .org /
record/7870094 (visited on 2023-05-11).

Xiao, Xiao-Yong (2022-09). “New techniques to develop higher
order iterative methods for systems of nonlinear equations”.
en. In: Computational and Applied Mathematics 41.6, p. 243.
ISSN: 2238-3603, 1807-0302. DOI: 10 . 1007 / s40314 - 022 -
01959-3. URL: https://link.springer.com/10.1007/s40314-
022-01959-3 (visited on 2024-05-17).

Xiao, Xiaoyong and Hongwei Yin (2015-08). “A new class of
methods with higher order of convergence for solving sys-
tems of nonlinear equations”. In: Applied Mathematics and
Computation 264, pp. 300–309. ISSN: 0096-3003. DOI: 10 .
1016/j.amc.2015.04.094. URL: https://www.sciencedirect.
com / science / article / pii / S0096300315005561 (visited on
2024-10-09).

Poster Session

DOI Proceedings of the 16th International Modelica&FMI Conference 869
10.3384/ecp218861 September 8-10, 2025, Lucerne, Switzerland

https://doi.org/10.1016/S0168-9274(02)00138-1
https://www.sciencedirect.com/science/article/pii/S0168927402001381
https://www.sciencedirect.com/science/article/pii/S0168927402001381
https://doi.org/https://doi.org/10.1016/j.jcp.2003.08.010
https://doi.org/https://doi.org/10.1016/j.jcp.2003.08.010
https://www.sciencedirect.com/science/article/pii/S0021999103004340
https://www.sciencedirect.com/science/article/pii/S0021999103004340
https://doi.org/10.1023/B:BITN.0000046811.70614.38
https://doi.org/10.1023/B:BITN.0000046811.70614.38
http://arxiv.org/abs/2403.16341
http://arxiv.org/abs/2403.16341
https://github.com/SciML/LinearSolve.jl
https://github.com/SciML/LinearSolve.jl
https://doi.org/10.1515/JNMA.2002.291
https://www.degruyter.com/document/doi/10.1515/JNMA.2002.291/html
https://www.degruyter.com/document/doi/10.1515/JNMA.2002.291/html
https://doi.org/10.1137/S1064827594276424
http://epubs.siam.org/doi/10.1137/S1064827594276424
http://epubs.siam.org/doi/10.1137/S1064827594276424
https://doi.org/10.1007/s40314-022-02159-9
https://doi.org/10.1007/s40314-022-02159-9
https://link.springer.com/10.1007/s40314-022-02159-9
https://link.springer.com/10.1007/s40314-022-02159-9
https://dspace.mit.edu/handle/1721.1/151501
https://dspace.mit.edu/handle/1721.1/151501
https://github.com/JuliaDiff/TaylorDiff.jl
https://github.com/JuliaDiff/TaylorDiff.jl
https://doi.org/10.5281/zenodo.7870094
https://zenodo.org/record/7870094
https://zenodo.org/record/7870094
https://doi.org/10.1007/s40314-022-01959-3
https://doi.org/10.1007/s40314-022-01959-3
https://link.springer.com/10.1007/s40314-022-01959-3
https://link.springer.com/10.1007/s40314-022-01959-3
https://doi.org/10.1016/j.amc.2015.04.094
https://doi.org/10.1016/j.amc.2015.04.094
https://www.sciencedirect.com/science/article/pii/S0096300315005561
https://www.sciencedirect.com/science/article/pii/S0096300315005561

	Introduction
	Taylor-mode automatic differentiation for higher-order directional derivatives
	Efficient implementation of Householder's method
	Cost-effectiveness for Householder's method with different orders.
	Generalization to multivariate functions

	Scalable and Efficient implementation of Halley's method
	Solving nonlinear problems with dense Jacobian
	Solving large-scale ill-conditioned nonlinear problems with sparse Jacobian
	Solving stiff ODEs

	Conclusions

