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Abstract
The modelling and calibration of industrial chillers can
be challenging, especially when few measurements with
a large uncertainty are available. The use of an approx-
imate calibration model is investigated to explore its po-
tential in calibrating a chiller model, constructed in Mod-
elica. Based on the results of a well-instrumented experi-
mental rig of a chiller at the EDF laboratory recorded over
five days, with a varying outdoor air temperature, an ap-
proximated steady analysis is carried out by calibrating the
Modelica model with the experimental results (mass flow
rate, temperatures, pressures). The results indicate a good
match between the calibrated model and the experiments
and a physical sensitivity in the parameters of the model,
consistent with the operation of the machine (isentropic
efficiency, compressor flow rate, evaporator overheat reg-
ulation). Further work can be done on the unsteady mea-
surements recorded on the chiller to improve the model
and its stochastic calibration.
Keywords: Chiller modelling, Approximate Bayesian Cal-
ibration, Modelica, R507A

1 Introduction
Chillers play a key role in various industries and notably
within nuclear power: they enable to condition air that
cools down electrical rooms, which are essentials for plant
operation and safety. It is thus required to have numerical
models that can predict, with required accuracy, the key
quantities of these systems, such as the maximum avail-
able cooling power under sizing conditions or temperature
of the chilled water produced.

Several approaches exist to model these complex sys-
tems. A first approach relies on analytical models, often
based on a steady-state assumption for the system. It is
used to get a quick evaluation of the system behavior, but
accuracy is often poor and a large data-set is generally
needed to calibrate the model as exhibited by (Cecchinato,
Chiarello, and Corradi 2010).

Another model category is the zonal model which con-
sists in establishing a set of equations for each main com-
ponents of the chiller such as the evaporator, the con-
denser, the expansion valves and the compressor. Solving
the obtained equations systems, either assuming steady
state or studying dynamic response, enable to predict the
detailed behavior of the system as proposed by (Mouneer,
Aly, and Mina 2021), (Afzali and Mahalec 2017) or (Lis-
sandrin et al. 2017).

Computational Fluid Dynamics (CFD) can be used to
study the details of the flows within some parts of the
chiller. However, this approach is generally not affordable
at the integral scale.

Calibration of chiller models is a key aspect of the zonal
or analytical as the model relies on parameters that gener-
ally cannot be directly deduced from geometry and asso-
ciated input data of the system. On a design phase, cor-
relations are generally used to compute the required co-
efficients for the model to run (e.g. heat exchange coef-
ficients). Once the system is in operation, data assimi-
lation techniques can be used to calibrate model param-
eters. Various techniques can be used to calibrate mod-
els: amongst most used methods are least square meth-
ods (linear or non-linear), to minimize the differences be-
tween observed data and model prediction. In a more gen-
eral way, Bayesian calibration techniques can be set up
to estimate the posterior distribution of the parameters to
be calibrated on a given dataset as described by (Marin,
Robert, et al. 2007). (Zhen, Niu, and Tian 2023) propose
to calibrate a chiller analytical model from the Modelica
Buildings library (Wetter et al. 2014) by optimizing the
improved indicator of the mean normalized bias error of
model predictions.

The primary objective of this study is to calibrate a
zonal Modelica chiller model using experimental data ob-
tained from experiments conducted at the EDF laboratory.

First, a description of the Modelica-based chiller mod-
els is provided, along with a justification for the ap-
proaches used to model the different components of the
chiller. Next, the rationale behind the statistical calibra-
tion techniques employed is presented, followed by an
overview of the experimental facility used for the exper-
iments.

The results from the experiment, considered to be
steady, are discussed and then compared with the model
predictions resulting from the calibration process. Discus-
sions on the significance of the measurement uncertainties
are also addressed.

2 Theory
2.1 Nodal modelling of a chiller
The modelling of a chiller is based on three components
developed through an in-house library in Modelica. The
motivation is to use components as generic as possible
that can be adapted to different configurations of chillers
without relying too much on geometric characteristics. As
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the motivation is to develop a methodology for calibrat-
ing chillers, reducing the number of coefficients for these
three main components is essential. The main principles
of the components used are quickly presented here:

- Compressor - it is modelled by four values: one vol-
umetric flow rate Qv and three efficiencies quantify-
ing its performance. The three efficiencies quantify
the different losses encountered on a compressor: the
mechanical efficiency ηmech for the friction losses,
the volumetric efficiency ηvol measuring how effi-
ciently used is the volume sucked in (dead volume,
impermeability, pressure loss) and the isentropic ef-
ficiency ηis quantifying the entropy increase due to
the compression of the fluid. These four parameters
are important to model the enthalpy increase result-
ing from the compression rate Π = php/pl p applied:

∆h = f (Π,Qv,ηmech,ηvol ,ηis) (1)

- Heat exchanger - the model consists of N discrete
cells in which heat exchanges occur between a fluid
1, not changing state, and a fluid 2 that absorbs or
releases heat both through sensible exchange and
change of state. The exchangers modelled can be
parallel or counter flow exchangers, with fluids mov-
ing in the same or opposite directions. The cell i−1
supplies the inlet conditions for the following cell i
(phases, pressure, enthalpy, mass flow rate) and three
heat transfer coefficients are used: Klat for the la-
tent heat exchange, Ksens,vap and Ksens,cond , respec-
tively for the sensible exchanges between the vapor-
ized fluid 2 and fluid 1 and the condensed fluid 2 and
fluid 1. In the modelling here considered, these three
coefficients are kept constant and used as parame-
ters for the calibration. For each cell i, the heat ex-
change qi per area units is modelled with the follow-
ing expression:

qi = K (T1,i −T2,i) (2)

The heat flux applied to the cell updates the tempera-
tures at the outlet of the cell i for each fluid (1 and 2)
which are then used as the inlet temperatures of the
following cell. Depending on the state of the flow
(two-phase, vapor or liquid), the coefficients Klat ,
Ksens,vap or Ksens,cond respectively apply in (2).

- Expansion valve - it is simply modelled by a rela-
tionship between the mass flow rate and the pressure
difference across the valve. The relationship is the
following, with php the high-pressure at the inlet and
pl p the low pressure at the outlet:

ṁ = Kvalve
√

php − pl p (3)

A dependency on the coefficient Kvalve can be added
to adjust the opening of the valve, for example using

the overheat, i.e. the temperature difference between
the outlet of the evaporator and the saturation tem-
perature within it.

Figure 1 shows a generic chiller model as used in
OpenModelica with four main components, represent-
ing a classical thermodynamic cycle for a chiller: com-
pression, condensation, expansion and evaporation. The
overheat regulation is indicated by the arrow starting at
the outlet of the evaporator to regulate the opening of the
expansion valve.

Figure 1. Illustration of a generic chiller model used in the
OpenModelica GUI.

2.2 Approximate Bayesian Calibration
The purpose of calibration is to estimate the posterior
mutltivariate law of the parameters θ to be calibrated of
a model function denoted g. This model, g(θ ,X), pre-
dicts observed quantities Y based the parameters to be cal-
ibrated and observed input parameters X .

Y = g(θ ,X) (4)

As implied by the Bayes theorem recalled in Equa-
tion 5, the estimation of the posterior distribution of the
parameters π(θ |Y ) usually requires to be able to express
the likelihood L of the observed variable Y , given the pre-
diction of the model Ŷ = g(θ ,X).

π(θ |Y ) = L (Y |θ)π(θ)
π(Y )

(5)

A usual approach is to assume that the discrepancies
between model prediction Ŷ and the measured variable Y ,
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denoted ε , follow a multivariate gaussian law with a null
mean. If the errors are homoscedastic, non correlated and
the model g(θ ,X) is linear or locally linear using Taylor
expansion, one can apply the Gauss-Markov theorem to
obtain the ordinary least square (OLS) estimator θ̂ and
its associated variance covariance matrix Σ. Assuming the
likelihood function L (Y |θ) is Gaussian, the posterior dis-
tribution can be expressed as:

π(θ |Y ) = N (θ̂ ,Σ) (6)

In both linear and nonlinear Gaussian calibration ap-
proaches, it is further assumed that the prior distribution
π(θ) is multivariate Gaussian. These methods rely on
the Gaussian nature of the likelihood and require that the
residuals—i.e., the differences between model predictions
and observations—have zero mean. This implies that dis-
crepancies are attributed solely to measurement uncertain-
ties, rather than model bias or structural errors.

When the likelihood L (Y |θ) has no analytical form,
a solution is to use likelihood-free techniques such as the
approximate bayesian calibration (ABC method), as sug-
gested by (Turner and Zandt 2012) or (Cant and Evins
2023). This method mainly rely on the definition of a
metrics to compare the simulated quantities Ŷ to the same
observed quantities Y . A threshold ε0 is then associated
to this metrics to consider a candidate point θ produc-
ing calibrated quantities. This is equivalent to considering
that if the candidate point θ̂ produces predictions close
enough to the observed values, then this point has a non-
zero probability of being in the posterior parameter distri-
bution π(θ |Y ) as illustrated in Equation 7.

π(θ |Y )≈ π(θ |ρ(Ŷ ,Y )≤ ε0) (7)

This approach can also accommodate the presence of
model error by specifying a probability density function fε

to represent it. Using a fixed acceptance threshold, as de-
scribed above, is equivalent to assuming that the model er-
ror follows a uniform distribution. In this case, all discrep-
ancies within the threshold are considered equally likely,
regardless of their magnitude. A common metrics used is
the sum of the squared errors between the predictions and
the observations.

RMSEYi =

√
1

nobs
∑

observation
(Y pred

i −Y obs
i )2 (8)

MBEYi =
1

nobs
∑

observation
(Y pred

i −Y obs
i ) (9)

CvRMSEYi =
RMSEYi

Yobs −Yre f
(10)

NMBEYi =
MBEYi

Yobs −Yre f
(11)

Common threshold to retain a candidate point is to have
CvRMSE ≤ 0.2 and NMBE ≤ 0.05 for each observed vari-
able.

Using OpenTURNS (Baudin et al. 2017), a candidate
set sample is generated from the multivariate distribution
π(θ). Then, for each candidate point, the model g is
evaluated allowing the defined metrics to be computed.
The multivariate law of the posterior sample is then in-
ferred using parametric or non parametric methods to de-
fine notable the most probable posterior values of π(θ |Y ).
If the posterior sample does not contain enough points
regarding a targeted size previously defined, additional
samples from the prior distributions can be considered.
The above presented algorithm is usually called the ba-
sic ABC-rejection algorithm which can be improved using
sequential MonteCarlo approach.

3 The R507 Chiller Experiment
3.1 Global Description
The test facility (Figure 2) used in this study operates with
R507A, a hydrofluorocarbon (HFC) refrigerant (CoolProp
n.d.). The test facility is well-equipped with pressure and
temperature sensors installed at the inlet and outlet of each
component, complemented by several Coriolis flow me-
ters integrated into the test facility system.

The test facility consists of three main circuits. The
first circuit, using Temper 55 as the secondary fluid in the
evaporator, is designed to measure the cooling demand.
This circuit includes electrical resistances and a pump that
allow for the control of flow rate, temperature, and thermal
power dissipation. A second air circuit interacts with the
condenser to dissipate heat from the refrigerant. The third
circuit utilizes R507A as the working fluid and forms the
core of the experimental setup.

The refrigeration system consists primarily of a plate
evaporator with a surface area of 44.4 m², a condenser of
1157.5 m² equipped with five variable-speed fans, an elec-
tronic expansion valve, and a Grasso rotary screw com-
pressor. The compressor allows for variations in the inter-
nal swept volume. Depending on the applied compression
ratio, the refrigerant flow rate can range from 23.1m3/h
to 231m3/h.

Figure 2. Photo of the test facility
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Figure 3. Experimental setup with control loop

Figure 3 shows the four controllers (PID1, PID2, PID3,
and PID4) used to regulate the precision of the evaporator,
high pressure, overheating, and the secondary pump flow
rate of the evaporator circuit, respectively. These regula-
tions will not be considered in the current model.

3.2 Uncertainty of measurements
The expanded uncertainty of each sensor considers the
whole measuring chain, from the sensor to the automate
errors. The uncertainty given corresponds to a confidence
interval of 95%.

The mass flow rate, pressure, and temperature sensors
have an accuracy at ±0.1%, ±3%, and ±0.174◦C, respec-
tively. It must however be noted that the uncertainties
on the measurements on the air-side of the condenser are
higher and more difficult to estimate.

When a calculation includes several variables, for ex-
ample the calculation of the cooling capacity, a combined
standard uncertainty U2

c should be calculated using the
equation 12. The method is based on first-order Taylor
series, and it is referred to as the law of propagation of
uncertainty (Taylor, Barry N and Kuyatt 1994).

U2
c (y) =

n

∑
i=1

(
∂ f
∂xi

)2

u2(xi)+∑
i

∑
j

∂i f ∂ j f ri juiu j (12)

where u(xi) represents the uncertainty of each variable.
In this article, the variables are assumed to be independent
and with a linear behavior, which allows to neglect the last
term of the previous equation that refers to the correlation
between the variables.

3.3 Experimental conditions
The experimental results presented in this study were ob-
tained under the following conditions:

• The flow rate of the Temper-55 fluid was maintained
at 6kg/s using the circuit pump. The evaporator pres-
sure was kept constant at 7.5bar through compressor
regulation. To simulate a cooling demand, electri-
cal resistances installed in the Temper-55 circuit pro-
vided a constant thermal load of 100kW.

• The refrigerant overheat was regulated by the expan-
sion valve, ensuring a stable overheat of 6◦C. The
five fans of the air-condenser operated continuously
at maximum speed, allowing the refrigerant’s high
pressure to vary according to the ambient air temper-
ature.

• Data were recorded every 10 seconds over a period
of five days.

4 Results and discussions
4.1 Experimental results
The analysis of the results revealed significant oscillations
primarily due to the ambient air temperature and the si-
multaneous regulation of four controllers, see section 3.1.
While these oscillations could provide valuable insights
in a future phase, particularly when incorporating regula-
tion into our models for dynamic comparisons with exper-
imental data, our current study focuses on a steady-state
analysis.

In order to validate and calibrate the models in steady-
state conditions, the experimental results were divided
into multiple intervals where the ambient temperature
variation remained below 1◦C.

Figure 4 illustrates the fluctuations of air temperature
during the recording test. To ensure a clear and reliable
validation of the model, four representative points are se-
lected on the following criterion: the temperature remains
in a ±1◦C range for at least one hour. The different vari-
ables measured and their mean values over these intervals
are presented in Table 1.

To validate the data collected from the test facility, an
energy balance was performed for both the evaporator,
(13) and the global system (14). The energy balance in
the condenser was not calculated due to the imprecision
of the air measurements.

ṁTemper cpTemper ∆TTemper_evap = ṁR507A ∆hR507A_evap
(13)

Q̇evap + Q̇cp = Q̇cond (14)

Figure 5 shows the statistical variations in thermal ca-
pacity and the energy balance results for point 0. The data
is presented using box plots, as this format allows for the
display of key information in a single figure, such as the
mean and distribution data. The black boxes represent the
data distribution, with the blue horizontal lines inside indi-
cating the mean and the red lines representing the median.

Calibration of a Chiller Modelica model with experimental data 
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Point T_air (°C) Q_R507A (kg/s) HP (bar) BP (bar) T_evap,out (°C) T_comp,out (°C) T_cond,out (°C)
0 19.06 0.841 12.32 7.55 11.09 48.20 20.82
1 16.50 0.828 11.88 7.55 10.88 48.43 19.30
2 15.42 0.815 11.43 7.54 10.69 48.31 17.82
3 19.89 0.847 12.72 7.56 11.06 48.37 22.03

Table 1. Experimental results under different steady-state conditions

Figure 4. Evolution of the air temperature, measured at the
air condenser. The four experimental periods corresponding to
the four approximate steady conditions are indicated by the red
dashed lines.

The ends of the boxes denote the first and third quartiles,
while the black "whiskers" extend to the minimum and
maximum values.

Figure 5. Box plot at point 0 comparing the thermal power ex-
changed at the evaporator and condenser. Energy balance of the
system. Median: red bar, Mean: blue line.

The energy balance revealed a small discrepancy, less
than 2.5 %, which validates the measurements taken in
the test facility.

4.2 R507 model and calibration

4.2.1 Presentation of the R507 model

A Modelica model has been used to capture the be-
haviour of the chiller tested experimentally. As explained
in 3.3, the aim is to model steady-like behaviors of the sys-
tem. The assumption here made considers that the air tem-
perature fluctuations are small enough to approximate the
operations of points 0 to 3 to steady conditions. The chiller
is modelled with four main components as shown in Fig-
ure 1 and presented in 2.1. Here, the different parameters
to be calibrated are presented along with the setup used in
OpenModelica.

Most of the modelling is based on an adapted version of
the Modelica Standard Libry (MSL) except for
the types of fluid used in the model. Indeed, the MSL does
not integrate the possibility of utilising fluids like R507A
and Temper-55. The two fluids can be introduced by us-
ing the open source library CoolProp (Bell et al. 2014),
whose integration into the software OpenModelica has
been done with the library ExternalMedia (Casella
and Richter 2008).

Overall, twelve uncertainties and parameters can be cal-
ibrated in the model as shown in Table 3. They correspond
to the uncertainties associated to the values measured ex-
perimentally and to the parameters of the components of
the model (heat exchange coefficients, efficiency, over-
heating). The way they are calibrated is explained in the
next section based on the methodology described in 2.2.
Large uncertainties for the air temperature and mass flow
rates were initially taken in the a priori distributions (2◦C
and 1 kg/s resp.): the resulting calibrated point is consis-
tent with this choice.

The prior distributions are chosen based on the knowl-
edge of the uncertainties (U.) and the parameters. For the
uncertainties, the value is sampled into a normal distri-
bution centred into 0 and with a standard deviation cor-
responding to the uncertainty of the probe (temperature
or mass flow rate). This is added to the observed value
experimentally as an input of the model. Regarding the
rest of the parameters, their distribution is chosen uniform
with bounds determined as much as possible from the ex-
perience of the user: the larger is the range, the more un-
physical operating points for the model will be computed,
leading to important errors between the model and the ex-
periment or simply difficulties for the model to converge.
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4.2.2 Calibration

Given a random sampling of all the uncertainties of mea-
surements and the parameters to be calibrated in the model
done N times according to prior distributions of probabil-
ity, the principle of the ABC method is to compare the
values obtained with the model to the experiment and then
select the most relevant.

Min CvRMSE Min CvRMSE Min NMBE Max NMBE
0 0.2 -0.2 0.2

Table 2. Range of acceptable errors for the selection of the pa-
rameters of the model.

The relevance is based on criteria defined by the user
depending on the values observed and the tolerance ac-
cepted for the calibration in terms, for example, of the
mean bias error (MBE) and the root mean square error
(RMSE) with the experimental measurements. These two
criteria are the ones retained for the selection of the points
in the sample and can be written as follows for each value
observed, as explained in 2.2.

The ranges for the selection of the parameters are in-
dicated in Table 2. It means that, for one set of parame-
ters from the sample, when comparing the values obtained
with the model, the set is conserved if the RMSE and MBE
are in the range indicated. The choice of 20% enables to
keep sets of parameters with a reasonable error compared
to the experiment.

The size of the design of experiments concerns 5000
simulations of approximately 30 seconds CPU, that have
been carried out. With the RMSE and MBE criteria below
20%, only 6 of them have been selected. By making the
criteria looser, for example with accepting results with a
30% error on the RMSE and MBE, 127 could have been
retained. Here, the motivation was to show the principle of
the method and the good possibilities for a calibration but
this could be improved to get a larger sample for the pos-
terior distributions. Also , out of the 5000 samples, some
lead to unphysical behaviors and never converge in the
model. These can be kept and analyzed to actually under-
stand the potential problems of robustness of the model to
the parameters. Only fifty out of the 5000 samples failed
in this case, indicating quite a robust model, numerically.

The optimal point for the different parameters and un-
certainties calibrated is shown in Table 3. These are deter-
mined with the resulting distributions built on the selected
points of each parameter. The most probable value in each
distribution obtained corresponds to the optimal value.

Figures 6 and 7 show the distributions of the isentropic
effiency ηis and Qv, prior and posterior to the approximate
bayesian calibration. The distribution in green represents
the distribution on which the parameters are drawn to sim-
ulate the behaviour of the chiller with the model and the
orange one represents the points for which the selection
criteria are fulfilled. The blue curve gives an approxima-
tion of the orange distribution based on a kernel smoothing

UTair UQair UTtemper UQtemper Kcond
lat Kcond

sg
-1.61 ◦C -0.78 kg/s -0.14 ◦C -0.32 kg/s 160.9 136

Kcond
sl Kevap

lat Kevap
s Qcompressor

v ∆Tvalve,nom ηis
140.8 134.5 117.9 0.022 m3/s 5.26 ◦C 0.398

Table 3. Table of the optimal values based on the calibration
done with the R507 model.

QR507 pcond pevap
Mass flow rate of R507 Pressure in the condenser Pressure in the evaporator

Tout,evap Tin,cond Tout,cond
Temperature at the outlet

of the evaporator
Temperature at the inlet

of the condenser
Temperature at the outlet

of the condenser
Pth,evap

Thermal power exchanged
at the evaporator

Table 4. Description of the observed measurements used for the
comparison with the model.

method (Baudin et al. 2017). A peak in the distribution
can be noticed in both cases, meaning that the model is
very sensitive to these two parameters for the calibration.
Given a compression ratio, the temperature at the inlet of
the condenser is strongly affected by the isentropic effi-
ciency. Being too far from ηis = 0.398 therefore seems to
lead to probable large errors on the calibration. The same
can be inferred on Qv, which controls the mass flow of
the refrigerant. For three other parameters, the posterior
distribution is quite different from the prior choice, which
indicates a sensitivity of the model to these parameters to
be consistent with the experimental observations (∆Tvalve,
UTair and Kevap

s ).

Figure 6. Distribution of the isentropic efficiency, prior and
posterior to the application of the ABC method and the selec-
tion. The blue distribution approximates the distribution of or-
ange values selected with a kernel smoothing.

It is now interesting to compare the predictions of the
model with the optimal set of parameters determined with
the ABC method to the actual observations measured ex-
perimentally as described in Table 4.
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Figure 7. Distribution of the compressor volumetric flow, prior
and posterior to the application of the ABC method and the se-
lection. The blue distribution approximates the distribution of
orange values selected with a kernel smoothing.

Figure 8 compares the predictions from the model with
the experimental values measured on the mass flow rate
of refrigerant. The blue dots show the initial predictions
based on the most probable set of parameters with the
prior distributions whilst the orange dots indicate the pre-
dictions from the posterior, built distributions from the se-
lection. The green line is the first bisector corresponding
to a perfect equality between predictions from the model
and experiments for the different observations. Over-
all, the ABC method leads to a good calibration of the
model, improving clearly the match between experiment
and modelled results.

Another view on the comparison between the experi-
ment and the model is shown in Figure 9. It compares the
cycles for point 0 (cf. Table 1). What can be observed is
the overestimate of the pressure at the condenser for four
sets of parameters. The fifth set corresponds to the optimal
point and matches quite well with the experimental cycle.
Other differences concern the enthalpy at the outlet of the
condenser (slight difference) and the specific enthalpy at
the compressor outlet.

The advantages of the ABC calibration method over
more traditional approaches are clearly demonstrated in
this case. Due to the complexity of the model, certain
parameter evaluations may lead to simulation failures—
situations that ABC is uniquely equipped to handle, as
it does not require explicit likelihood evaluations. As il-
lustrated in Figure 6 and Figure 7, the resulting poste-
rior distributions are approximately Gaussian. ABC en-
ables the generation of a discrete sample from this poste-
rior, providing a flexible and robust inference framework.
Given the typically nonlinear nature of the models, con-
ventional methods such as nonlinear least squares or non-
linear Gaussian calibration often suffer from poor explo-

Figure 8. Distribution of the compressor volumetric flow, prior
and posterior to the application of the ABC method and the se-
lection. The blue distribution approximates the distribution of
orange values selected with a kernel smoothing.

Figure 9. Representation of the experimental cycle for point 0
(black lines) and the ones obtained with the model after calibra-
tion with the ABC method. The point resulting from the opti-
mum values in the calibration is shown by the arrow.

ration of the parameter space and high sensitivity to initial
conditions. In contrast, ABC facilitates a more compre-
hensive exploration, especially when the likelihood is in-
tractable or the model is prone to numerical instabilities.
Moreover, due to limited prior knowledge about the model
parameters, a uniform prior distribution is often the most
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appropriate choice. Gaussian priors, by contrast, may in-
troduce unwarranted assumptions and overly constrain the
calibration process.

Generally, the calibration enables a quite satisfying fit
of the model with the experiment for the four observations
on the different values. Although a larger shift can be ob-
served for the inlet temperature at the condenser (or out-
let temperature of the compressor), the overall prediction
is improved with the calibration. That shift could be ex-
plained by the choice made for modelling the compressor
with constant efficiencies: a variation of the volumetric
and isentropic efficiencies with the pressure ratio may im-
prove these results (Gicquel 2001).

5 Conclusions and further work
This study was motivated by the use of an approximate
calibration method for the modelling of a chiller. To the
knowledge of the authors, this kind of methods for this
type of applications has rarely been done before. Exper-
imental results on a chiller test facility at EDF have been
obtained and used to make a calibration of a model repre-
senting the chiller in Modelica.

With four experimental points approximated as being in
a steady state, a calibration has been performed based on
the approximate bayesian calibration method. Consider-
ing seven variables observed experimentally for these four
points, a set of parameters is varied in the model follow-
ing a design of experiments constructed on probabilistic
distributions a priori. The calibration done has consisted
in selecting the sets of parameters ensuring an acceptable
error between the experiments and the variables modelled.

The results obtained with the calibration are satisfying
as they enable to maintain the error below 20% for the sets
of parameters kept. Given the initial number of parameters
in the model, the ABC method also offers a very interest-
ing way of priorizing the parameters regarding the sensi-
tivity of the variables of interest in the model. In our case,
consistently with what is physically modelled, the isen-
tropic efficiency, the volumetric flow rate and the nominal
overheating for the expansion valve are the most sensitive
parameters.

It is interesting to comment on the use of such meth-
ods to analyze further experimental results. In this study,
the choice was to start with approximating steady regimes
for the chiller with the experimental results based on an
assumption of low variations of the outdoor air tempera-
ture. The analysis here presented shows that it is possible
to calibrate the model to these experimental conditions but
it also shows that only a few points are kept in the end, out
of the 5000 samples. Different improvements to the cur-
rent application of the method can be listed here for further
work:

• Treating the problem as an unsteady one by consider-
ing the variations of the variables over time. In prac-
tice, it means that for each time step in the sample
considered, the variables observed correspond to an

experimental point and the same method can be used
with more experimental points. This would imply an
improvement of the model to account for the regula-
tion loops in the experiment but also an increase in
the CPU cost, with more observations in the method.

• Improving the components of the model: the com-
pressor efficiencies depend on the pressure ratio,
which is not the case in the current model. Also, the
air-cooled condenser is modelled with a counterflow
heat exchanger whilst in reality, it is a cross-flow ex-
changer.

• With more points selected for the probabilistic dis-
tributions, it would then be interesting to transpose
the posterior distributions to more extreme air tem-
perature conditions, beyond 40◦C, to make an evalu-
ation of the uncertainties, in particular on the cooling
power of the chiller.

• The choice of the prior distributions is essential to
avoid non-physical and unstable numerical points in
the model. A careful investigation of that choice can
significantly help the process of calibration.
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