
From Simulation to Reality: Deployment of Reinforcement
Learning-Based Neural Network Controllers Trained with

Modelica Models

Joshua Brun1 Thomas Sergi1 Sylvan Mutter1 Tim Arnold1 Ulf Christian Müller1
1IME, Lucerne School of Engineering and Architecture, Switzerland,

{joshua.brun, ulfchristian.mueller}@hslu.ch

Abstract
To address limitations of traditional control methods in
complex systems, reinforcement learning (RL) combined
with simulation models provides an efficient approach for
controller development. In this work, a complete
toolchain for developing and deploying RL-based neural
network controllers using Modelica system models is
presented. Serving as a showcase, a real-world double-
inverted pendulum is constructed. The system was
modeled in Modelica by combining physics-based and
data-driven modeling approaches for efficient
development. Coupling simulation with an RL
environment is achieved through Functional Mock-up
Interface (FMI) standard. Successful training and sim-to-
real transfer are demonstrated on a single-pendulum setup,
validating the approach for extension to a double-inverted
pendulum. This paper provides a reproducible and
extensible framework which is well-suited for educational
purposes and highlights strengths of Modelica in
combination with machine learning approaches.

Keywords: data-driven system modeling, reinforcement
learning, sim-to-real transfer, FMI, Modelica, double-
inverted pendulum

1 Introduction
Combining reinforcement learning (RL) with system
models is a promising approach, as it enables generation
of training data using simulations of a system. In this
work, a neural network control system is trained using RL
coupled with a Modelica system model. After training, the
controller is successfully applied to a real system,
showcasing challenges and feasibility of this toolchain.

1.1 Motivation
Development of advanced controllers for complex
systems requires deep expertise and can even become
infeasible with traditional control system methods. This is
where RL can fill a gap by learning a control strategy on
its own, using a data-driven approach. However, real-
world data is limited and costly, which is why generating
required training data with a virtual system model is often
the only possible path. By combining RL with physics-
based simulation models, such as those typically built
using Modelica, it becomes feasible to generate efficient
training data while ensuring that learned controllers
respect underlying system dynamics.

Methods combining RL with physics-based simulation
models and sim-to-real transfer of neural network control
systems have already been successfully applied in recent
studies. Lukianykhin and Bogodorova (2019) introduced
a toolbox for integration of Modelica-based models in RL
via FMI (‘Functional Mock-up Interface’, 2014) standard.
Heuermann et al. (2023) demonstrated that machine
learning surrogate models can accelerate Modelica-based
simulations by replacing nonlinear algebraic loops,
thereby enabling more efficient training of RL controllers.
Lee, Ju and Lee (2025) showcased the use of RL-based
neural network control systems and sim-to-real transfer
for transition control in a double-inverted pendulum on a
cart-pole system, using a model based on Euler-Lagrange
differential equations. These successful applications
provide a strong foundation for further research that
combines these approaches, as pursued in this work. The
importance of such methods is expected to grow as
systems get more complex in Industry 4.0 and beyond.
While alternative approaches, such as Model Predictive
Control (MPC), which rely on online simulation or
optimization, also offer significant benefits, they are often
less practical, especially for time-critical applications, due
to their substantial computational demands (Morcego et
al., 2023). A combination of RL and physics-based
simulation models has already been addressed in research
projects conducted in collaboration with industry. Among
them is IntelliBake (INNOSUISSE, 2025), which
investigates the application of RL-based neural network
control systems for baking processes. Building upon these
related efforts, this work contributes to this growing field
by providing a demonstrator system and a reusable
toolchain for RL-based controller development and
deployment.

1.2 Goal
This work demonstrates the development of a neural-
network control system trained entirely through RL on a
Modelica model. Trained controllers are subsequently
transferred to a real-world system, expected to perform a
desired control task. This contribution establishes a
working toolchain that serves both as proof of concept and
as a foundation for future industrial and educational
applications. In doing so, it aims to highlight typical
challenges and potential solutions associated with
following steps:

DOI Proceedings of the 16th International Modelica&FMI Conference 921
10.3384/ecp218921 September 8-10, 2025, Lucerne, Switzerland

RRR

• System modeling with Modelica for state calculation
during RL process.

• Training a neural network control system using RL
and Modelica-based simulations.

• Sim-to-Real transfer of a trained neural network
control system.

2 Showcase Selection and Setup
The chosen showcase system is a double-inverted
pendulum. A motor drives the first pendulum, while the
second pendulum is attached via a freely rotating plain
bearing. The control task is to swing both pendulums from
their initial downward-hanging position to an upright
position. This involves two control phases: (1) swinging
both pendulums upward by actuating the first joint and (2)
stabilizing them in an upright position.

Figure 1. 3D model of the double-inverted pendulum.

This system was selected as a suitable showcase for
following reasons:

• Simple and compact construction: This system is
lightweight, portable, and space-efficient, making it
suitable for use in various locations.

• Demonstrative system for educational purposes: A
double-inverted pendulum allows for direct visual
interpretation of control performance, making
success and failure immediately apparent.

• Benchmark character: A double-inverted pendulum
is a well-established benchmark in control theory,
enabling direct comparison with related research.

• Stepwise complexity: A double-inverted pendulum
can be easily simplified to a single pendulum,
significantly reducing complexity. This allows
initial focus on validation of the toolchain before
addressing more advanced control challenges.

• Challenging sim-to-real conditions: The System’s
sensitivity to model inaccuracies (e.g., calibration
errors) and a required high control frequency are

creating challenges for a sim-to-real transfer,
making it ideal for studying transferability.

2.1 System Construction
This mechanical setup features 3D-printed housing and
pendulums, a metal flange on the motor mount, and a plain
bearing between two pendulums. The assembly is
clamped to a table. Physical parameters listed in Table 1
were derived from a computer-aided design (CAD)
geometry.

Table 1. Physical parameters of the showcase system

Parameter Pendulum 1 Pendulum 2
Mass 0.099 kg 0.061 kg
Length 0.19 m 0.19 m
COM distance
from joint center

0.111 m 0.076 m

Moment of inertia 1.9e-3 kg·m2 7.3e-4 kg·m2

A brushless DC motor (GB54-2 Gimbal Type 3-6S UAV
Drone Motor KV26 by T-Motors) serves as actuator and
is controlled via a motor driver (SimpleFOCShield
v2.0.4). A hollow motor shaft design allows for internal
cable routing, and its permanent magnet rotor enables
unrestricted rotation of pendulums. Two 14-bit absolute
capacitive encoders (AMT222B by CUI Devices) are used
to measure joint angles of both pendulums. These
encoders provide direct high-resolution angular
measurements for sensor feedback in a control loop. A
neural network control system computes a motor voltage
in real-time based on sensor inputs. These control signals
are transmitted via serial communication to an Arduino
Uno R3, which interfaces with electronic components. In
this current configuration, the maximum achievable
control loop frequency is approximately 250 Hz.

Figure 2. Exploded view of double-inverted pendulum.

From Simulation to Reality: Deployment of Reinforcement Learning-Based Neural Network …

922 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218921

3 System Modeling: Combining
Data-based and Physics-based
Modeling in Modelica

Successful RL training of a neural-network controller
requires an adequately accurate system model. This
section outlines the modeling approach for a double-
inverted pendulum. Due to the nonlinearity of its
governing equations, a double-inverted pendulum
exhibits chaotic behavior, making modeling and
controlling particularly challenging when using analytical
or traditional numerical methods.

This model primarily utilizes components from the
Mechanics package within the Modelica Standard
Library (Modelica Association, 2020). An exception is
the brushless DC (BLDC) electric motor, which is
modeled using a data-driven approach. This method will
be described in section 3.1.

Figure 3. Graphical representation of the Modelica
model for the double-inverted pendulum system.

Figure 3 shows a graphical representation of the system
model used to train the neural network controller. The
model uses two body shape components to precisely
model unevenly distributed moments of inertia using a
simple method. The pendulums are connected to each
other by a joint with a single degree of freedom for
rotational motion. Torque is calculated from a data-driven
motor model and applied to the first pendulum. For both
joints, bearing friction is considered. Friction torque as a
function of angular velocity was derived through model
calibration using experimental data and mathematical
optimization with a Python library called Pygmo. (Biscani
and Izzo, 2020). The optimization objective was to

minimize normalized root mean squared error (NRMSE)
between measurement data and simulation results.

This model has six boundary connectors to interface with
an RL environment: two inputs (motor voltage and
angular velocity feedback) and four outputs (joint angles
and angular velocities of both pendulums). The voltage
input is controlled by an RL agent, while angular velocity
is required by the data-based motor model to compute
torque (see following section). Output signals are used as
observations and for reward calculation during training.

3.1 Data-based Methods for Efficient
Modeling

A BLDC motor, including its field-oriented control
(FOC), requires a specialized modeling approach. Due to
its physical complexity, deriving an accurate model from
first principles is both challenging and time-consuming.
To effectively capture the motor's real-world behavior, a
data-driven model was developed. It consists of a
feedforward neural network (FNN) trained on
measurement data using supervised learning. Available
data points primarily cover the motor's static behavior,
meaning that transient effects are not fully represented in
the training set. To approximate dynamic effects, a Bessel
function is included to capture transient torque responses.
This approach was deliberately chosen to start with a
simple surrogate model. This surrogate model can later be
refined, for example by replacing an FNN with a recurrent
neural network (RNN), which can leverage time-series
information to improve predictions during acceleration
and deceleration phases or sudden changes in setpoint
speed.

Torque output of a BLDC motor primarily depends on
electric current and angular velocity. Since the setup does
not permit direct electric current measurement, the motor
is controlled using pure voltage input.

For DC motors in general, torque 𝑀𝑀 is proportional to
current 𝐼𝐼, scaled by a torque constant 𝑘𝑘𝑚𝑚.

𝑀𝑀 = 𝑘𝑘𝑚𝑚 ∙ 𝐼𝐼 (1)

Current 𝐼𝐼 can be approximated as proportional to applied
voltage 𝑈𝑈, assuming a constant internal resistance 𝑅𝑅.

𝐼𝐼 =
𝑈𝑈 − 𝐸𝐸𝐸𝐸𝐸𝐸

𝑅𝑅
 → 𝐼𝐼 ∝ 𝑈𝑈 (2)

Therefore, the model assumes that torque 𝑀𝑀 is
proportional to input voltage 𝑈𝑈.

𝑈𝑈 ∝ 𝑀𝑀 (3)
These assumptions hold for angular velocities near zero,
where back- 𝐸𝐸𝐸𝐸𝐸𝐸 is negligible. Given the motor’s
application in pendulum control, this simplification is
appropriate.

Poster Session

DOI Proceedings of the 16th International Modelica&FMI Conference 923
10.3384/ecp218921 September 8-10, 2025, Lucerne, Switzerland

Following on these assumptions, torque values as a
function of velocity and input voltage were
experimentally determined to develop a motor model.
Measurement data was collected for several operational
states of a specific BLDC motor. First, no-load operation
was recorded across a range of input voltages to establish
a zero-torque line in a velocity–voltage plane, with
friction effects neglected. Second, the motor’s maximum
output torque was measured at various input voltages near
zero angular velocity. Additionally, data points from runs
involving a reversal of rotation direction were recorded
along diagonal regions of the plane. Collected
measurements are visualized in Figure 4, which displays
the motor output torque as a function of angular velocity
and input voltage. Measured data points are shown as
black dots, while the 3D mesh surface represents the
output of the trained feedforward neural network (FNN).

Figure 4. Output visualization of the data-driven motor
model.

A supervised learning algorithm was applied to train an
FNN. The high-level API Keras (Watson et al., 2024),
built on top of TensorFlow (TensorFlow Developers,
2025), provides a flexible framework for deep learning
and enables efficient training of this motor model.

The measured dataset was split into training and test
subsets using an 80/20 ratio. This approach allows model
performance to be validated on previously unseen data,
which is essential for detecting potential overfitting. A
Bayesian hyperparameter optimization strategy was
employed to efficiently determine a suitable set of
hyperparameters (listed in Table 2), after which the FNN
was trained for 120 epochs. The resulting model achieved
a mean absolute error (MAE) of less than 0.01 Nm on the
test dataset. Corresponding mean squared error (MSE)
was 0.000095 Nm2, with a maximum absolute error of
0.038 Nm.

Table 2. Hyperparameters used to train the data-driven
motor model.

Parameter Value

Dense Layers 4

Neurons per Layer 80

Learning Rate 0.001

Activation Function GELU

Optimizer Adam

Loss Mean Absolute Error

3.2 Integration of data-driven surrogate
models in Modelica

To integrate a data-driven surrogate model of the motor
into a Modelica model, the MoONNX (Sergi and Brun,
2024) library has been used. This self-developed library
enables execution of Open Neural Network Exchange
(‘ONNX Project’, 2024) models within Modelica
environments and is available on GitHub. Currently, it
supports Windows 10 (64-bit) and newer Windows
operating systems. During simulation, the ONNX runtime
library (‘ONNX Runtime’, 2021), which performs neural
network inference, is called with an external function.
Resulting outputs can then be used for further
computations within the Modelica model.

4 Training Neural Network
Controllers using RL and
Modelica Simulations

When a system model is available, various methods can
be used to develop an optimal control strategy. Neural
networks are particularly well suited for implementing
complex control policies while keeping real-time
computational demands manageable. Discovery of an
optimal control policy and training of a neural network are
carried out iteratively through RL, involving a resource-
intensive upstream training phase, resulting in a neural
network controller that can then be executed very
efficiently in deployment. When combined with a
physics-based system model, it enables rapid and cost-
effective generation of large volumes of training data,
eliminating need for real-world interaction during
training.

4.1 Reinforcement Learning Fundamentals
RL is a subfield of machine learning in which an agent
learns to make decisions by interacting with an
environment. This process can be modeled as a Markov
Decision Process (MDP), defined by a set of states,
actions, transition dynamics, and a reward function. The
goal of an RL algorithm is to find an optimal strategy that
maps states to actions in order to maximize cumulative
long-term reward. This strategy is typically represented as

From Simulation to Reality: Deployment of Reinforcement Learning-Based Neural Network …

924 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218921

a neural network, which can capture complex mappings
between state and actions. This can even make high-
dimensional, continuous, and partially observed state
spaces controllable. Unlike other methods of machine
learning, RL does not require pre-collected training data.
Instead, an agent learns through trial-and-error
interactions with an environment, enabling autonomous
data collection and policy improvement.

A basic RL loop consists of an agent selecting an action
based on its current policy, applying it to an environment,
and receiving a new state and reward based on transition
dynamics and reward function. The agent then updates its
policy based on the observed outcome. In our setup, state
transitions are computed within a Modelica model.

Figure 5. Block diagram of the RL loop, illustrating the
interaction between components and the tools applied.

4.2 Coupling RL Environments with
Modelica Simulations

Building an RL environment that incorporates physics-
based simulations requires integration of multiple
software frameworks and standardized interfaces. For this
showcase, a training environment was constructed using
an RL framework called Gymnasium (Mark Towers, Ariel
Kwiatkowski et al., 2025), which enables the creation of
customized environments via a Python API. Gymnasium
follows a consistent structure tailored for RL tasks and is
compatible with a wide range of existing algorithms,
facilitating both development and testing.

The Modelica system model was then exported as a
Functional Mock-up Unit (FMU), encapsulating relevant
simulation equations and parameters according to FMI
standard (‘Functional Mock-up Interface’, 2014). To
perform physics-based state updates within an RL loop,
the FMU was integrated using the fmpy library (‘FMPy’,
2024). During training, actions chosen by a RL agent are
passed to a FMU via model inputs. In turn, FMU outputs
are used as observations for an agent as well as values for
reward computation. For this work, FMU version 2.0 in
Co-simulation mode, which includes an internal solver to
ensure stable and reliable simulations, is used. In

comparison to Lukianykhin and Bogodorova (2019), the
simulation is advanced in each RL step using the
doStep()function provided by fmpy. This enables an RL
loop that can be executed efficiently and more quickly,
even when model complexity increases.

Listing 1. Illustrative Python code for integrating an
FMU into a Gymnasium-based RL environment using
FMPy library.

called at beginning of the training
def __init__(…):

fmu = fmpy.instantiate_fmu(fmu_directory,
model_description, “CoSimulation”)

called at beginning of each training episode
def reset(…):

fmu.reset()
fmu.setupExperiment(startTime=0.0)
fmu.enterInitializationMode()
fmu.exitInitializationMode()

called at each RL step
def step(…):

fmu.setReal([parameter_names], [action_values])
fmu.doStep(current_time, step_size)
observations = fmu.getReal([parameter_names])

4.3 RL Agent Setup and Training
Configuration

Integration of a RL agent is realized using stable-
baselines3 (Raffin et al., 2021). A library that is fully
compatible with Gymnasium environments and provides
a suite of reliable, state-of-the-art algorithms based on
PyTorch (Jason Ansel et al., 2024). With only a few lines
of code, a neural network is automatically initialized
based on defined observation and action spaces and
trained using a selected algorithm. Hyperparameters and
training settings are freely adjustable to meet specific
requirements of a control task.

Primary determinants of a controller’s performance are
reward functions, observation and action spaces, and an
environment (including timestep length, episode
termination criteria, initial state, etc.). These elements
define an underlying mathematical optimization problem
and thereby determine the global optimum. In contrast, the
choice of algorithms, hyperparameters, and neural
network architecture primarily affects training dynamics,
convergence speed, and likelihood of reaching an optimal
or near-optimal solution. In practice, especially for
complex problems, training often converges only to a
local optimum. As a result, these factors still have a
significant impact on controllers’ performance.

An action selected by an RL agent serves as control input
to the system model and is derived from the current state
and a probability distribution. In this case, the observable
state consists of four state variables, 𝑂𝑂𝑡𝑡 = {𝜃𝜃1,𝜃𝜃2, 𝜃̇𝜃1, 𝜃̇𝜃2},
representing angular positions and velocities of the

Agent

Environment

Policy

RL Algorithm

Update

Action
At

Observation
Ot

Stable-Baselines3

SAC

Reward Rt

Poster Session

DOI Proceedings of the 16th International Modelica&FMI Conference 925
10.3384/ecp218921 September 8-10, 2025, Lucerne, Switzerland

pendulums, respectively. 𝜃𝜃1 is measured relative to the
downward vertical, and 𝜃𝜃2 is measured relative to the first
pendulum. Thereby, 𝜃̇𝜃1 and 𝜃̇𝜃2 denote their respective
angular velocities.

The action space includes the motor voltage, normalized
to −1 ≤ 𝑎𝑎 ≤ 1 . This normalization improves learning
efficiency, as many algorithms in stable-baselines3
assume a Gaussian action distribution centered around
zero.

The reward function, which evaluates the quality of the
action-state pair at each timestep, is based on the work of
Lee et al. (2025) for a double-inverted pendulum on a
cartpole. It was adapted to match the system described in
this paper and is composed of two components described
in Eq. (4) and Eq. (5). A first component that focuses on
pendulum position and a second one that focuses on
pendulum velocity. As the objective is to stabilize the
pendulum in an upright position with minimal angular
velocity, an upright pendulum that is not moving yields
the highest reward. This reward increases if the
pendulum's height gets closer to the target height.
Additionally, the reward increases with velocity if the
pendulum's height is close to its initial position. However,
if the pendulum is close to the target position, the reward
increases when its velocity decreases. Unlike the approach
taken by Lee et al. (2025), this reward function is
specifically designed for a double-inverted pendulum. It
ensures a reward path from the initial to the goal position
that provides continuously increasing rewards when
followed.

𝑅𝑅θ = 0.5 ∗ sin(θ1) + 0.5 ∗ sin(θ1 + θ2) (4)

𝑅𝑅θ̇ = 𝑒𝑒
�−0.02∗�(θ̇1)2+(θ̇2)2�

 (5)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅θ ⋅ 𝑅𝑅θ̇ (6)

Figure 6. Reward function visualization for the double-
inverted pendulum.

The environment is configured with an episode duration
of 4 𝑠𝑠, allowing the agent to interact with it up to 1’000
times per episode, given a reinforcement learning timestep
of 4 𝑚𝑚𝑚𝑚. At the beginning of each episode, the pendulums

are initialized in a downward position with zero angular
velocity, corresponding to the natural starting state of a
real-world pendulum system.

For training Soft Actor Critic (SAC) (Haarnoja et al.,
2018), one of the most widely used modern off-policy RL
algorithms, was used. It supports continuous action spaces
and demonstrates strong performance in benchmark tests
(Haarnoja et al., 2018; Huang et al., 2024). The
hyperparameter configuration used in this work is
summarized in Table 3.

Table 3. Hyperparameters used for this showcase with
the SAC algorithm from stable-baselines3.

Hyperparameter Value

Optimizer Adam

Learning rate 0.0003
Discount factor (𝛾𝛾) 0.99
Replay buffer size 1e6

Number of hidden layers in critic
networks

3

Number of neurons in hidden
layers of critic network

512

Number of hidden layers of policy
network

2

Number of neurons in 1st hidden
layer of policy network

400

Number of neurons in 2nd hidden
layer of policy network

300

Minibatch size 256

Nonlinearity ReLU

Target smoothing coefficient (𝛽𝛽) 0.005

Training was conducted on a Windows PC, parallelized
across 12 cores of an Intel Xeon W-2275 3.3 GHz CPU.
With this configuration, approximately 360 timesteps per
second were processed during training.

4.4 Results and Discussion
As an initial step, RL training was conducted on a single-
pendulum system. This simpler setup served as a
validation of the toolchain by significantly reducing
challenges associated with training and sim-to-real
transfer. A stepwise increase in system complexity allows
for targeted troubleshooting and a structured development
approach. RL training for the single-pendulum system
converged at a maximum episodic reward of 95%, using
the reward function defined in Equation 7, where 𝜃𝜃
represents the pendulum angle relative to the downward
vertical.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = cos(𝜃𝜃) (7)

From Simulation to Reality: Deployment of Reinforcement Learning-Based Neural Network …

926 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218921

Convergence was reached after 500’000 timesteps, but
training was extended to 1’100’000 timesteps to ensure
model stability and robustness. The entire training process
was completed in just 52 min. When evaluated with a
system model, the trained neural network successfully
stabilized the pendulum in an upright position.

Figure 7. Mean episode reward during training of the
single-pendulum system.

To deploy the trained neural network on a real-world
system, it was converted into ONNX format, enabling
interoperability and execution across different tools. The
sim-to-real transfer introduced no additional issues, and
the neural network successfully controlled the real-world
system with performance comparable to the virtual
system. The deployed controller for the single pendulum
was also capable of handling external disturbances (e.g.,
applied forces) and inevitable model inaccuracies,
demonstrating robust real-world performance.

Following the successful validation of the toolchain's
functionality, it is applied to the double pendulum case. In
that the toolchain was used to test various training
configurations, each employing different training and
pendulum parameters. These trainings have only been
successful when system parameters have been chosen
carefully. Figure 8 shows the mean reward progress for a
representative successful training.

Figure 8. Mean episode reward during training of the
double-inverted pendulum system.

In this example, training convergence was reached after
1’100’000 timesteps with a maximum mean episode
reward of 86.5%. Despite some successful trainings, a

sim-to-real transfer has not yet been achieved. In many
cases, the controller could make the real-world double-
inverted pendulum swing upwards but failed to balance it.

The conducted grid search indicates that stable control is
much more likely when the proportions of the pendulums
meet specific conditions. The first observed requirement
is an appropriate ratio between the time constants of the
motor and second pendulum that must be bigger than 28.5
to ensure stable control. (Eq. 8) The time constant of the
second pendulum is determined solely by its geometry and
friction, whereas the motor's time constant depends on the
geometry of the first pendulum and a small control loop
delay. Since this delay is minimal, it can be considered
negligible. The second condition is related to the ratio
between the damping coefficient D (i.e., the friction in the
joint) and the second pendulum's moment of inertia. (Eq.
9) In the trainings, successful controllability could only be
observed if this ratio was lower than 3.0.

𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟,2

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
=
𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟,2(𝐼𝐼2,𝑚𝑚2, 𝑙𝑙𝑐𝑐𝑐𝑐 ,𝐷𝐷)
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚̇ (𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐼𝐼1) > 28.5

(8)

𝐷𝐷
2 ∗ 𝐼𝐼2

< 3.0 (9)

Figure 9. Controllability Analysis for double-inverted
pendulum parameters.

Figure 9 visualizes the subset of our sweep that yielded
mean rewards > 0.82. Within this empirical region
controllability was consistently observed. This region can
be accessed through a variety of parameter combinations.
A straightforward approach would involve utilization of
an electrical motor characterized by a low time constant.
It is also plausible to utilize a secondary pendulum with
an enhanced time constant. However, this requires a more
detailed evaluation due to the dependence of the
previously mentioned second condition on properties of
the second pendulum.

Poster Session

DOI Proceedings of the 16th International Modelica&FMI Conference 927
10.3384/ecp218921 September 8-10, 2025, Lucerne, Switzerland

5 Conclusion and Outlook
This work presents a comprehensive toolchain for training
and deploying neural network control systems using
reinforcement learning (RL) in combination with physics-
based simulations developed in Modelica. A key
achievement of this work is the successful transfer of a
controller trained entirely in a virtual environment to a
real-world system, demonstrating the feasibility of
simulation-based training for physical control tasks. By
offering a unified and structured workflow, this approach
provides an accessible toolchain for both research and
educational purposes. The use of well-established tools
and frameworks ensures an efficient, reliable, and
reproducible development process, laying the foundation
for future applications of RL-based neural network
controllers in complex, real-time dynamic systems across
academic and industrial domains.

The RL training process poses a complex optimization
challenge, where success relies heavily on the selected
training setup, including algorithm choice, neural network
architecture, and reward-shaping strategies. Numerous
environment and training parameters, such as
hyperparameters, observation augmentation, and initial
state distributions, are highly system-specific and interact
in intricate ways, adding further complexity to the
optimization task. Identifying a configuration that allows
a RL agent to reliably converge toward an optimal or near-
optimal policy often requires repeated experimentation,
with each training run being both time- and computation-
intensive. Leveraging prior domain knowledge,
heuristics, and insights from previous experiments can
help reduce this search space, yet the process remains
inherently challenging and iterative.

During the development of this showcase, it became
evident that achieving good system controllability is a
fundamental yet challenging prerequisite for successful
RL training. The controllable region of this system is not
intuitively defined, making it difficult to identify suitable
configurations, and even a well-designed RL setup cannot
compensate for a system that is only partially or poorly
controllable. For this double-inverted pendulum case,
ensuring controllability requires carefully selecting
parameter ratios between the pendulum components, such
as their respective moments of inertia, damping
coefficients, and lengths, to guarantee that the system can,
in principle, be well stabilized. Ongoing work focuses on
improving these mechanical design aspects and thereby
enabling a sim-to-real transfer of the learned policies.
Completing these steps will be essential not only for
finalizing the double-pendulum showcase but also for
strengthening the reliability, scalability, and educational
value of the entire toolchain as a practical teaching and
research platform for reinforcement learning in real-world
control applications.

5.1 Future Work
The next phase in the development of this showcase
focuses on redesigning the physical system to enable a
sim-to-real transfer for the double-inverted pendulum.
This involves adjusting the system’s proportions to align
with the empirical guidelines identified in Chapter 4.4.

Optimization efforts will primarily target pendulum
components. The first pendulum will be redesigned to
reduce its moment of inertia, thereby improving the
motor’s time constant. In parallel, the second pendulum
will be modified to increase its moment of inertia. Since
replacing the motor would be significantly more complex,
optimizing the pendulum design presents a more practical
and effective approach to start with.

Other potential further steps will be focused on:

• Controller implementation for embedded systems:
Investigating the use of trained neural network
controllers on embedded platforms such as industrial
PLCs (e.g., Beckhoff SPS)

• Enhancing controller robustness through system
randomization: Applying randomization techniques
during training to improve sim-to-real transfer,
increasing resilience to virtual–physical
discrepancies, sensor noise, and limitations in the
control loop or actuators

• Educational applications: The developed showcase
can be utilized in lectures to teach reinforcement
learning (RL) in an engaging and interactive manner.
A possible exercise would involve designing and
comparing different reward functions for balancing
the pendulums in an upright position. Using this
provided toolchain, students can gain practical,
hands-on experience with RL training. Furthermore,
the most promising neural networks trained in
simulation could be deployed on the physical
system, enabling a real-world demonstration of RL.

Acknowledgements
The authors acknowledge Lucerne University of Applied
Sciences and Arts (School of Engineering and
Architecture) for supporting this study.

Language editing and writing style improvements were
assisted by generative AI tools, including ChatGPT and
DeepL. Scientific content, concepts, and results were
independently developed by the authors.

References
Biscani, F. and Izzo, D. (2020) ‘A parallel global
multiobjective framework for optimization: pagmo’,
Journal of Open Source Software, 5(53), p. 2338.
Available at: https://doi.org/10.21105/joss.02338.

From Simulation to Reality: Deployment of Reinforcement Learning-Based Neural Network …

928 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218921

‘FMPy’ (2024). Dassault Systems. Available at:
https://github.com/CATIA-Systems/FMPy (Accessed: 25
April 2025).

‘Functional Mock-up Interface’ (2014). Modelica
Association. Available at: https://fmi-standard.org/
(Accessed: 25 April 2025).

Haarnoja, T. et al. (2018) ‘Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor’. arXiv. Available at:
https://doi.org/10.48550/ARXIV.1801.01290.

Heuermann, A. et al. (2023) ‘Accelerating the simulation
of equation-based models by replacing non-linear
algebraic loops with error-controlled machine learning
surrogates’, in. 15th International Modelica Conference
2023, Aachen, October 9-11, pp. 275–284. Available at:
https://doi.org/10.3384/ecp204275.

Huang, S. et al. (2024) ‘Open RL Benchmark:
Comprehensive Tracked Experiments for Reinforcement
Learning’. arXiv. Available at:
https://doi.org/10.48550/ARXIV.2402.03046.

INNOSUISSE (2025) IntelliBake, ARAMIS. Available at:
https://www.aramis.admin.ch/Grunddaten/?ProjectID=54
123 (Accessed: 23 April 2025).

Jason Ansel et al. (2024) ‘PyTorch 2: Faster Machine
Learning Through Dynamic Python Bytecode
Transformation and Graph Compilation’, in Proceedings
of the 29th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, Volume 2. ASPLOS ’24: 29th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems,
Volume 2, La Jolla CA USA: ACM, pp. 929–947.
Available at: https://doi.org/10.1145/3620665.3640366.

Lee, T., Ju, D. and Lee, Y.S. (2025) ‘Transition Control
of a Double-Inverted Pendulum System Using Sim2Real
Reinforcement Learning’, Machines, 13(3), p. 186.
Available at: https://doi.org/10.3390/machines13030186.

Lukianykhin, O. and Bogodorova, T. (2019)
‘ModelicaGym: Applying Reinforcement Learning to
Modelica Models’. Available at:
https://doi.org/10.48550/ARXIV.1909.08604.

Mark Towers, Ariel Kwiatkowski et al. (2025)
‘Gymnasium: A Standard Interface for Reinforcement
Learning Environments’. Farama Foundation. Available
at: https://gymnasium.farama.org/ (Accessed: 23 April
2025).

Modelica Association (2020) ‘Modelica Standard
Library’. Modelica Association.

Morcego, B. et al. (2023) ‘Reinforcement Learning
Versus Model Predictive Control on Greenhouse Climate
Control’. arXiv. Available at:
https://doi.org/10.48550/ARXIV.2303.06110.

‘ONNX Project’ (2024). ONNX Community. Available
at: https://onnx.ai.

‘ONNX Runtime’ (2021). ONNX Runtime developers.
Available at: https://onnxruntime.ai/ (Accessed: 25 April
2025).

Raffin, A. et al. (2021) ‘Stable-Baselines3: Reliable
Reinforcement Learning Implementations’, Journal of
Machine Learning Research, 22(268), pp. 1–8.

Sergi, T. and Brun, J. (2024) ‘MoONNX’. Available at:
https://github.com/sertho/modelica-ONNX.

TensorFlow Developers (2025) ‘TensorFlow’. Zenodo.
Available at: https://doi.org/10.5281/ZENODO.4724125.

Watson et al. (2024) ‘KerasHub’. Available at:
https://github.com/keras-team/keras-hub.

Poster Session

DOI Proceedings of the 16th International Modelica&FMI Conference 929
10.3384/ecp218921 September 8-10, 2025, Lucerne, Switzerland

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Goal

	2 Showcase Selection and Setup
	2.1 System Construction

	3 System Modeling: Combining Data-based and Physics-based Modeling in Modelica
	3.1 Data-based Methods for Efficient Modeling
	3.2 Integration of data-driven surrogate models in Modelica

	4 Training Neural Network Controllers using RL and Modelica Simulations
	4.1 Reinforcement Learning Fundamentals
	4.2 Coupling RL Environments with Modelica Simulations
	4.3 RL Agent Setup and Training Configuration
	4.4 Results and Discussion

	5 Conclusion and Outlook
	5.1 Future Work

	Acknowledgements
	References

