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Abstract 
To address limitations of traditional control methods in 
complex systems, reinforcement learning (RL) combined 
with simulation models provides an efficient approach for 
controller development. In this work, a complete 
toolchain for developing and deploying RL-based neural 
network controllers using Modelica system models is 
presented. Serving as a showcase, a real-world double-
inverted pendulum is constructed. The system was 
modeled in Modelica by combining physics-based and 
data-driven modeling approaches for efficient 
development. Coupling simulation with an RL 
environment is achieved through Functional Mock-up 
Interface (FMI) standard. Successful training and sim-to-
real transfer are demonstrated on a single-pendulum setup, 
validating the approach for extension to a double-inverted 
pendulum. This paper provides a reproducible and 
extensible framework which is well-suited for educational 
purposes and highlights strengths of Modelica in 
combination with machine learning approaches. 

Keywords: data-driven system modeling, reinforcement 
learning, sim-to-real transfer, FMI, Modelica, double-
inverted pendulum 

1 Introduction 
Combining reinforcement learning (RL) with system 
models is a promising approach, as it enables generation 
of training data using simulations of a system. In this 
work, a neural network control system is trained using RL 
coupled with a Modelica system model. After training, the 
controller is successfully applied to a real system, 
showcasing challenges and feasibility of this toolchain. 

1.1 Motivation 
Development of advanced controllers for complex 
systems requires deep expertise and can even become 
infeasible with traditional control system methods. This is 
where RL can fill a gap by learning a control strategy on 
its own, using a data-driven approach. However, real-
world data is limited and costly, which is why generating 
required training data with a virtual system model is often 
the only possible path. By combining RL with physics-
based simulation models, such as those typically built 
using Modelica, it becomes feasible to generate efficient 
training data while ensuring that learned controllers 
respect underlying system dynamics. 

Methods combining RL with physics-based simulation 
models and sim-to-real transfer of neural network control 
systems have already been successfully applied in recent 
studies. Lukianykhin and Bogodorova (2019) introduced 
a toolbox for integration of Modelica-based models in RL 
via FMI (‘Functional Mock-up Interface’, 2014) standard. 
Heuermann et al. (2023) demonstrated that machine 
learning surrogate models can accelerate Modelica-based 
simulations by replacing nonlinear algebraic loops, 
thereby enabling more efficient training of RL controllers. 
Lee, Ju and Lee (2025) showcased the use of RL-based 
neural network control systems and sim-to-real transfer 
for transition control in a double-inverted pendulum on a 
cart-pole system, using a model based on Euler-Lagrange 
differential equations. These successful applications 
provide a strong foundation for further research that 
combines these approaches, as pursued in this work. The 
importance of such methods is expected to grow as 
systems get more complex in Industry 4.0 and beyond. 
While alternative approaches, such as Model Predictive 
Control (MPC), which rely on online simulation or 
optimization, also offer significant benefits, they are often 
less practical, especially for time-critical applications, due 
to their substantial computational demands (Morcego et 
al., 2023). A combination of RL and physics-based 
simulation models has already been addressed in research 
projects conducted in collaboration with industry. Among 
them is IntelliBake (INNOSUISSE, 2025), which 
investigates the application of RL-based neural network 
control systems for baking processes. Building upon these 
related efforts, this work contributes to this growing field 
by providing a demonstrator system and a reusable 
toolchain for RL-based controller development and 
deployment. 

1.2 Goal 
This work demonstrates the development of a neural-
network control system trained entirely through RL on a 
Modelica model. Trained controllers are subsequently 
transferred to a real-world system, expected to perform a 
desired control task. This contribution establishes a 
working toolchain that serves both as proof of concept and 
as a foundation for future industrial and educational 
applications. In doing so, it aims to highlight typical 
challenges and potential solutions associated with 
following steps: 
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• System modeling with Modelica for state calculation 
during RL process. 

• Training a neural network control system using RL 
and Modelica-based simulations. 

• Sim-to-Real transfer of a trained neural network 
control system. 

2 Showcase Selection and Setup 
The chosen showcase system is a double-inverted 
pendulum. A motor drives the first pendulum, while the 
second pendulum is attached via a freely rotating plain 
bearing. The control task is to swing both pendulums from 
their initial downward-hanging position to an upright 
position. This involves two control phases: (1) swinging 
both pendulums upward by actuating the first joint and (2) 
stabilizing them in an upright position. 

 
Figure 1. 3D model of the double-inverted pendulum. 

This system was selected as a suitable showcase for 
following reasons: 

• Simple and compact construction: This system is 
lightweight, portable, and space-efficient, making it 
suitable for use in various locations.  

• Demonstrative system for educational purposes: A 
double-inverted pendulum allows for direct visual 
interpretation of control performance, making 
success and failure immediately apparent. 

• Benchmark character: A double-inverted pendulum 
is a well-established benchmark in control theory, 
enabling direct comparison with related research. 

• Stepwise complexity: A double-inverted pendulum 
can be easily simplified to a single pendulum, 
significantly reducing complexity. This allows 
initial focus on validation of the toolchain before 
addressing more advanced control challenges. 

• Challenging sim-to-real conditions: The System’s 
sensitivity to model inaccuracies (e.g., calibration 
errors) and a required high control frequency are 

creating challenges for a sim-to-real transfer, 
making it ideal for studying transferability. 

2.1 System Construction 
This mechanical setup features 3D-printed housing and 
pendulums, a metal flange on the motor mount, and a plain 
bearing between two pendulums. The assembly is 
clamped to a table. Physical parameters listed in Table 1 
were derived from a computer-aided design (CAD) 
geometry. 

Table 1. Physical parameters of the showcase system 

Parameter Pendulum 1 Pendulum 2 
Mass 0.099 kg 0.061 kg 
Length 0.19 m 0.19 m 
COM distance 
from joint center 

0.111 m 0.076 m 

Moment of inertia 1.9e-3 kg·m2 7.3e-4 kg·m2 
 
A brushless DC motor (GB54-2 Gimbal Type 3-6S UAV 
Drone Motor KV26 by T-Motors) serves as actuator and 
is controlled via a motor driver (SimpleFOCShield 
v2.0.4). A hollow motor shaft design allows for internal 
cable routing, and its permanent magnet rotor enables 
unrestricted rotation of pendulums. Two 14-bit absolute 
capacitive encoders (AMT222B by CUI Devices) are used 
to measure joint angles of both pendulums. These 
encoders provide direct high-resolution angular 
measurements for sensor feedback in a control loop. A 
neural network control system computes a motor voltage 
in real-time based on sensor inputs. These control signals 
are transmitted via serial communication to an Arduino 
Uno R3, which interfaces with electronic components. In 
this current configuration, the maximum achievable 
control loop frequency is approximately 250 Hz. 

 

 
Figure 2. Exploded view of double-inverted pendulum. 
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3 System Modeling: Combining 
Data-based and Physics-based 
Modeling in Modelica 

Successful RL training of a neural-network controller 
requires an adequately accurate system model. This 
section outlines the modeling approach for a double-
inverted pendulum. Due to the nonlinearity of its 
governing equations, a double-inverted pendulum 
exhibits chaotic behavior, making modeling and 
controlling particularly challenging when using analytical 
or traditional numerical methods. 

This model primarily utilizes components from the 
Mechanics package within the Modelica Standard 
Library (Modelica Association, 2020). An exception is 
the brushless DC (BLDC) electric motor, which is 
modeled using a data-driven approach. This method will 
be described in section 3.1. 

 
Figure 3. Graphical representation of the Modelica 
model for the double-inverted pendulum system. 

 

Figure 3 shows a graphical representation of the system 
model used to train the neural network controller. The 
model uses two body shape components to precisely 
model unevenly distributed moments of inertia using a 
simple method. The pendulums are connected to each 
other by a joint with a single degree of freedom for 
rotational motion. Torque is calculated from a data-driven 
motor model and applied to the first pendulum. For both 
joints, bearing friction is considered. Friction torque as a 
function of angular velocity was derived through model 
calibration using experimental data and mathematical 
optimization with a Python library called Pygmo. (Biscani 
and Izzo, 2020). The optimization objective was to 

minimize normalized root mean squared error (NRMSE) 
between measurement data and simulation results. 

This model has six boundary connectors to interface with 
an RL environment: two inputs (motor voltage and 
angular velocity feedback) and four outputs (joint angles 
and angular velocities of both pendulums). The voltage 
input is controlled by an RL agent, while angular velocity 
is required by the data-based motor model to compute 
torque (see following section). Output signals are used as 
observations and for reward calculation during training. 

3.1 Data-based Methods for Efficient 
Modeling 

A BLDC motor, including its field-oriented control 
(FOC), requires a specialized modeling approach. Due to 
its physical complexity, deriving an accurate model from 
first principles is both challenging and time-consuming. 
To effectively capture the motor's real-world behavior, a 
data-driven model was developed. It consists of a 
feedforward neural network (FNN) trained on 
measurement data using supervised learning. Available 
data points primarily cover the motor's static behavior, 
meaning that transient effects are not fully represented in 
the training set. To approximate dynamic effects, a Bessel 
function is included to capture transient torque responses. 
This approach was deliberately chosen to start with a 
simple surrogate model. This surrogate model can later be 
refined, for example by replacing an FNN with a recurrent 
neural network (RNN), which can leverage time-series 
information to improve predictions during acceleration 
and deceleration phases or sudden changes in setpoint 
speed. 

Torque output of a BLDC motor primarily depends on 
electric current and angular velocity. Since the setup does 
not permit direct electric current measurement, the motor 
is controlled using pure voltage input. 

For DC motors in general, torque 𝑀𝑀  is proportional to 
current 𝐼𝐼, scaled by a torque constant 𝑘𝑘𝑚𝑚.  

𝑀𝑀 =  𝑘𝑘𝑚𝑚 ∙ 𝐼𝐼 (1) 
 
Current 𝐼𝐼 can be approximated as proportional to applied 
voltage 𝑈𝑈, assuming a constant internal resistance 𝑅𝑅. 

𝐼𝐼 =  
𝑈𝑈 − 𝐸𝐸𝐸𝐸𝐸𝐸

𝑅𝑅
   →    𝐼𝐼 ∝ 𝑈𝑈 (2) 

 
Therefore, the model assumes that torque 𝑀𝑀  is 
proportional to input voltage 𝑈𝑈. 

𝑈𝑈 ∝ 𝑀𝑀 (3) 
These assumptions hold for angular velocities near zero, 
where back- 𝐸𝐸𝐸𝐸𝐸𝐸  is negligible. Given the motor’s 
application in pendulum control, this simplification is 
appropriate. 

Poster Session 
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Following on these assumptions, torque values as a 
function of velocity and input voltage were 
experimentally determined to develop a motor model. 
Measurement data was collected for several operational 
states of a specific BLDC motor. First, no-load operation 
was recorded across a range of input voltages to establish 
a zero-torque line in a velocity–voltage plane, with 
friction effects neglected. Second, the motor’s maximum 
output torque was measured at various input voltages near 
zero angular velocity. Additionally, data points from runs 
involving a reversal of rotation direction were recorded 
along diagonal regions of the plane. Collected 
measurements are visualized in Figure 4, which displays 
the motor output torque as a function of angular velocity 
and input voltage. Measured data points are shown as 
black dots, while the 3D mesh surface represents the 
output of the trained feedforward neural network (FNN). 

 
Figure 4. Output visualization of the data-driven motor 
model. 

A supervised learning algorithm was applied to train an 
FNN. The high-level API Keras (Watson et al., 2024), 
built on top of TensorFlow (TensorFlow Developers, 
2025), provides a flexible framework for deep learning 
and enables efficient training of this motor model. 

The measured dataset was split into training and test 
subsets using an 80/20 ratio. This approach allows model 
performance to be validated on previously unseen data, 
which is essential for detecting potential overfitting. A 
Bayesian hyperparameter optimization strategy was 
employed to efficiently determine a suitable set of 
hyperparameters (listed in Table 2), after which the FNN 
was trained for 120 epochs. The resulting model achieved 
a mean absolute error (MAE) of less than 0.01 Nm on the 
test dataset. Corresponding mean squared error (MSE) 
was 0.000095 Nm2, with a maximum absolute error of 
0.038 Nm. 

Table 2. Hyperparameters used to train the data-driven 
motor model. 

Parameter Value 

Dense Layers 4 

Neurons per Layer 80 

Learning Rate 0.001 

Activation Function  GELU 

Optimizer Adam 

Loss Mean Absolute Error 

3.2 Integration of data-driven surrogate 
models in Modelica 

To integrate a data-driven surrogate model of the motor 
into a Modelica model, the MoONNX (Sergi and Brun, 
2024) library has been used. This self-developed library 
enables execution of Open Neural Network Exchange 
(‘ONNX Project’, 2024) models within Modelica 
environments and is available on GitHub. Currently, it 
supports Windows 10 (64-bit) and newer Windows 
operating systems. During simulation, the ONNX runtime 
library (‘ONNX Runtime’, 2021), which performs neural 
network inference, is called with an external function. 
Resulting outputs can then be used for further 
computations within the Modelica model. 

4 Training Neural Network 
Controllers using RL and 
Modelica Simulations  

When a system model is available, various methods can 
be used to develop an optimal control strategy. Neural 
networks are particularly well suited for implementing 
complex control policies while keeping real-time 
computational demands manageable. Discovery of an 
optimal control policy and training of a neural network are 
carried out iteratively through RL, involving a resource-
intensive upstream training phase, resulting in a neural 
network controller that can then be executed very 
efficiently in deployment. When combined with a 
physics-based system model, it enables rapid and cost-
effective generation of large volumes of training data, 
eliminating need for real-world interaction during 
training. 

4.1 Reinforcement Learning Fundamentals 
RL is a subfield of machine learning in which an agent 
learns to make decisions by interacting with an 
environment. This process can be modeled as a Markov 
Decision Process (MDP), defined by a set of states, 
actions, transition dynamics, and a reward function. The 
goal of an RL algorithm is to find an optimal strategy that 
maps states to actions in order to maximize cumulative 
long-term reward. This strategy is typically represented as 
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a neural network, which can capture complex mappings 
between state and actions. This can even make high-
dimensional, continuous, and partially observed state 
spaces controllable. Unlike other methods of machine 
learning, RL does not require pre-collected training data. 
Instead, an agent learns through trial-and-error 
interactions with an environment, enabling autonomous 
data collection and policy improvement. 

A basic RL loop consists of an agent selecting an action 
based on its current policy, applying it to an environment, 
and receiving a new state and reward based on transition 
dynamics and reward function. The agent then updates its 
policy based on the observed outcome. In our setup, state 
transitions are computed within a Modelica model. 

 
Figure 5. Block diagram of the RL loop, illustrating the 
interaction between components and the tools applied. 

4.2 Coupling RL Environments with 
Modelica Simulations 

Building an RL environment that incorporates physics-
based simulations requires integration of multiple 
software frameworks and standardized interfaces. For this 
showcase, a training environment was constructed using 
an RL framework called Gymnasium (Mark Towers, Ariel 
Kwiatkowski et al., 2025), which enables the creation of 
customized environments via a Python API. Gymnasium 
follows a consistent structure tailored for RL tasks and is 
compatible with a wide range of existing algorithms, 
facilitating both development and testing. 

The Modelica system model was then exported as a 
Functional Mock-up Unit (FMU), encapsulating relevant 
simulation equations and parameters according to FMI 
standard (‘Functional Mock-up Interface’, 2014). To 
perform physics-based state updates within an RL loop, 
the FMU was integrated using the fmpy library (‘FMPy’, 
2024). During training, actions chosen by a RL agent are 
passed to a FMU via model inputs. In turn, FMU outputs 
are used as observations for an agent as well as values for 
reward computation. For this work, FMU version 2.0 in 
Co-simulation mode, which includes an internal solver to 
ensure stable and reliable simulations, is used. In 

comparison to Lukianykhin and Bogodorova (2019), the 
simulation is advanced in each RL step using the 
doStep()function provided by fmpy. This enables an RL 
loop that can be executed efficiently and more quickly, 
even when model complexity increases. 

Listing 1. Illustrative Python code for integrating an 
FMU into a Gymnasium-based RL environment using 
FMPy library. 

# called at beginning of the training 
def __init__(…): 

fmu = fmpy.instantiate_fmu(fmu_directory, 
model_description, “CoSimulation”) 

 
# called at beginning of each training episode 
def reset(…): 

fmu.reset() 
fmu.setupExperiment(startTime=0.0) 
fmu.enterInitializationMode() 
fmu.exitInitializationMode() 

 
# called at each RL step 
def step(…): 

fmu.setReal([parameter_names], [action_values]) 
fmu.doStep(current_time, step_size) 
observations = fmu.getReal([parameter_names])  

4.3 RL Agent Setup and Training 
Configuration 

Integration of a RL agent is realized using stable-
baselines3 (Raffin et al., 2021). A library that is fully 
compatible with Gymnasium environments and provides 
a suite of reliable, state-of-the-art algorithms based on 
PyTorch (Jason Ansel et al., 2024). With only a few lines 
of code, a neural network is automatically initialized 
based on defined observation and action spaces and 
trained using a selected algorithm. Hyperparameters and 
training settings are freely adjustable to meet specific 
requirements of a control task. 

Primary determinants of a controller’s performance are 
reward functions, observation and action spaces, and an 
environment (including timestep length, episode 
termination criteria, initial state, etc.). These elements 
define an underlying mathematical optimization problem 
and thereby determine the global optimum. In contrast, the 
choice of algorithms, hyperparameters, and neural 
network architecture primarily affects training dynamics, 
convergence speed, and likelihood of reaching an optimal 
or near-optimal solution. In practice, especially for 
complex problems, training often converges only to a 
local optimum. As a result, these factors still have a 
significant impact on controllers’ performance. 

An action selected by an RL agent serves as control input 
to the system model and is derived from the current state 
and a probability distribution. In this case, the observable 
state consists of four state variables, 𝑂𝑂𝑡𝑡 = {𝜃𝜃1,𝜃𝜃2, 𝜃̇𝜃1, 𝜃̇𝜃2}, 
representing angular positions and velocities of the 
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pendulums, respectively. 𝜃𝜃1  is measured relative to the 
downward vertical, and 𝜃𝜃2 is measured relative to the first 
pendulum. Thereby, 𝜃̇𝜃1  and 𝜃̇𝜃2  denote their respective 
angular velocities. 

The action space includes the motor voltage, normalized 
to −1 ≤ 𝑎𝑎 ≤ 1 . This normalization improves learning 
efficiency, as many algorithms in stable-baselines3 
assume a Gaussian action distribution centered around 
zero. 

The reward function, which evaluates the quality of the 
action-state pair at each timestep, is based on the work of 
Lee et al. (2025) for a double-inverted pendulum on a 
cartpole. It was adapted to match the system described in 
this paper and is composed of two components described 
in Eq. (4) and Eq. (5). A first component that focuses on 
pendulum position and a second one that focuses on 
pendulum velocity. As the objective is to stabilize the 
pendulum in an upright position with minimal angular 
velocity, an upright pendulum that is not moving yields 
the highest reward. This reward increases if the 
pendulum's height gets closer to the target height. 
Additionally, the reward increases with velocity if the 
pendulum's height is close to its initial position. However, 
if the pendulum is close to the target position, the reward 
increases when its velocity decreases. Unlike the approach 
taken by Lee et al. (2025), this reward function is 
specifically designed for a double-inverted pendulum. It 
ensures a reward path from the initial to the goal position 
that provides continuously increasing rewards when 
followed. 

𝑅𝑅θ = 0.5 ∗ sin(θ1) + 0.5 ∗ sin(θ1 + θ2) (4) 

𝑅𝑅θ̇ = 𝑒𝑒
�−0.02∗�(θ̇1)2+(θ̇2)2�

 (5) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅θ ⋅ 𝑅𝑅θ̇ (6) 

 
Figure 6. Reward function visualization for the double-
inverted pendulum. 

The environment is configured with an episode duration 
of 4 𝑠𝑠, allowing the agent to interact with it up to 1’000 
times per episode, given a reinforcement learning timestep 
of 4 𝑚𝑚𝑚𝑚. At the beginning of each episode, the pendulums 

are initialized in a downward position with zero angular 
velocity, corresponding to the natural starting state of a 
real-world pendulum system. 

For training Soft Actor Critic (SAC) (Haarnoja et al., 
2018), one of the most widely used modern off-policy RL 
algorithms, was used. It supports continuous action spaces 
and demonstrates strong performance in benchmark tests 
(Haarnoja et al., 2018; Huang et al., 2024). The 
hyperparameter configuration used in this work is 
summarized in Table 3. 

Table 3. Hyperparameters used for this showcase with 
the SAC algorithm from stable-baselines3. 

Hyperparameter Value 

Optimizer Adam 

Learning rate 0.0003 
Discount factor (𝛾𝛾) 0.99 
Replay buffer size 1e6 

Number of hidden layers in critic 
networks 

3 

Number of neurons in hidden 
layers of critic network 

512 

Number of hidden layers of policy 
network 

2 

Number of neurons in 1st hidden 
layer of policy network 

400 

Number of neurons in 2nd hidden 
layer of policy network 

300 

Minibatch size 256 

Nonlinearity ReLU 

Target smoothing coefficient (𝛽𝛽) 0.005 
 
Training was conducted on a Windows PC, parallelized 
across 12 cores of an Intel Xeon W-2275 3.3 GHz CPU. 
With this configuration, approximately 360 timesteps per 
second were processed during training. 

4.4 Results and Discussion 
As an initial step, RL training was conducted on a single-
pendulum system. This simpler setup served as a 
validation of the toolchain by significantly reducing 
challenges associated with training and sim-to-real 
transfer. A stepwise increase in system complexity allows 
for targeted troubleshooting and a structured development 
approach. RL training for the single-pendulum system 
converged at a maximum episodic reward of 95%, using 
the reward function defined in Equation 7, where 𝜃𝜃 
represents the pendulum angle relative to the downward 
vertical. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = cos(𝜃𝜃) (7) 
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Convergence was reached after 500’000 timesteps, but 
training was extended to 1’100’000 timesteps to ensure 
model stability and robustness. The entire training process 
was completed in just 52 min. When evaluated with a 
system model, the trained neural network successfully 
stabilized the pendulum in an upright position. 

 
Figure 7. Mean episode reward during training of the 
single-pendulum system. 

To deploy the trained neural network on a real-world 
system, it was converted into ONNX format, enabling 
interoperability and execution across different tools. The 
sim-to-real transfer introduced no additional issues, and 
the neural network successfully controlled the real-world 
system with performance comparable to the virtual 
system. The deployed controller for the single pendulum 
was also capable of handling external disturbances (e.g., 
applied forces) and inevitable model inaccuracies, 
demonstrating robust real-world performance. 

Following the successful validation of the toolchain's 
functionality, it is applied to the double pendulum case. In 
that the toolchain was used to test various training 
configurations, each employing different training and 
pendulum parameters. These trainings have only been 
successful when system parameters have been chosen 
carefully. Figure 8 shows the mean reward progress for a 
representative successful training. 

 
Figure 8. Mean episode reward during training of the 
double-inverted pendulum system. 

In this example, training convergence was reached after 
1’100’000 timesteps with a maximum mean episode 
reward of 86.5%. Despite some successful trainings, a 

sim-to-real transfer has not yet been achieved. In many 
cases, the controller could make the real-world double-
inverted pendulum swing upwards but failed to balance it. 

The conducted grid search indicates that stable control is 
much more likely when the proportions of the pendulums 
meet specific conditions. The first observed requirement 
is an appropriate ratio between the time constants of the 
motor and second pendulum that must be bigger than 28.5 
to ensure stable control. (Eq. 8) The time constant of the 
second pendulum is determined solely by its geometry and 
friction, whereas the motor's time constant depends on the 
geometry of the first pendulum and a small control loop 
delay. Since this delay is minimal, it can be considered 
negligible. The second condition is related to the ratio 
between the damping coefficient D (i.e., the friction in the 
joint) and the second pendulum's moment of inertia. (Eq. 
9) In the trainings, successful controllability could only be 
observed if this ratio was lower than 3.0. 

𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟,2

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
=
𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟,2(𝐼𝐼2,𝑚𝑚2, 𝑙𝑙𝑐𝑐𝑐𝑐 ,𝐷𝐷)
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚̇ (𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐼𝐼1) > 28.5 

(8) 

𝐷𝐷
2 ∗ 𝐼𝐼2

< 3.0 (9) 

 

 
Figure 9. Controllability Analysis for double-inverted 
pendulum parameters. 

Figure 9 visualizes the subset of our sweep that yielded 
mean rewards > 0.82. Within this empirical region 
controllability was consistently observed. This region can 
be accessed through a variety of parameter combinations. 
A straightforward approach would involve utilization of 
an electrical motor characterized by a low time constant. 
It is also plausible to utilize a secondary pendulum with 
an enhanced time constant. However, this requires a more 
detailed evaluation due to the dependence of the 
previously mentioned second condition on properties of 
the second pendulum. 
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5 Conclusion and Outlook 
This work presents a comprehensive toolchain for training 
and deploying neural network control systems using 
reinforcement learning (RL) in combination with physics-
based simulations developed in Modelica. A key 
achievement of this work is the successful transfer of a 
controller trained entirely in a virtual environment to a 
real-world system, demonstrating the feasibility of 
simulation-based training for physical control tasks. By 
offering a unified and structured workflow, this approach 
provides an accessible toolchain for both research and 
educational purposes. The use of well-established tools 
and frameworks ensures an efficient, reliable, and 
reproducible development process, laying the foundation 
for future applications of RL-based neural network 
controllers in complex, real-time dynamic systems across 
academic and industrial domains. 

The RL training process poses a complex optimization 
challenge, where success relies heavily on the selected 
training setup, including algorithm choice, neural network 
architecture, and reward-shaping strategies. Numerous 
environment and training parameters, such as 
hyperparameters, observation augmentation, and initial 
state distributions, are highly system-specific and interact 
in intricate ways, adding further complexity to the 
optimization task. Identifying a configuration that allows 
a RL agent to reliably converge toward an optimal or near-
optimal policy often requires repeated experimentation, 
with each training run being both time- and computation-
intensive. Leveraging prior domain knowledge, 
heuristics, and insights from previous experiments can 
help reduce this search space, yet the process remains 
inherently challenging and iterative. 

During the development of this showcase, it became 
evident that achieving good system controllability is a 
fundamental yet challenging prerequisite for successful 
RL training. The controllable region of this system is not 
intuitively defined, making it difficult to identify suitable 
configurations, and even a well-designed RL setup cannot 
compensate for a system that is only partially or poorly 
controllable. For this double-inverted pendulum case, 
ensuring controllability requires carefully selecting 
parameter ratios between the pendulum components, such 
as their respective moments of inertia, damping 
coefficients, and lengths, to guarantee that the system can, 
in principle, be well stabilized. Ongoing work focuses on 
improving these mechanical design aspects and thereby 
enabling a sim-to-real transfer of the learned policies. 
Completing these steps will be essential not only for 
finalizing the double-pendulum showcase but also for 
strengthening the reliability, scalability, and educational 
value of the entire toolchain as a practical teaching and 
research platform for reinforcement learning in real-world 
control applications. 

 

5.1 Future Work 
The next phase in the development of this showcase 
focuses on redesigning the physical system to enable a 
sim-to-real transfer for the double-inverted pendulum. 
This involves adjusting the system’s proportions to align 
with the empirical guidelines identified in Chapter 4.4. 

Optimization efforts will primarily target pendulum 
components. The first pendulum will be redesigned to 
reduce its moment of inertia, thereby improving the 
motor’s time constant. In parallel, the second pendulum 
will be modified to increase its moment of inertia. Since 
replacing the motor would be significantly more complex, 
optimizing the pendulum design presents a more practical 
and effective approach to start with.  

Other potential further steps will be focused on: 

• Controller implementation for embedded systems: 
Investigating the use of trained neural network 
controllers on embedded platforms such as industrial 
PLCs (e.g., Beckhoff SPS)  

• Enhancing controller robustness through system 
randomization: Applying randomization techniques 
during training to improve sim-to-real transfer, 
increasing resilience to virtual–physical 
discrepancies, sensor noise, and limitations in the 
control loop or actuators 

• Educational applications: The developed showcase 
can be utilized in lectures to teach reinforcement 
learning (RL) in an engaging and interactive manner. 
A possible exercise would involve designing and 
comparing different reward functions for balancing 
the pendulums in an upright position. Using this 
provided toolchain, students can gain practical, 
hands-on experience with RL training. Furthermore, 
the most promising neural networks trained in 
simulation could be deployed on the physical 
system, enabling a real-world demonstration of RL. 
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