Selective Evaluation of RHS during Multi-Rate Simulation

Philip Hannebohm ©!

Bernhard Bachmann ®!

Unstitute for Data Science Solutions, Bielefeld University of Applied Sciences and Arts, Germany,

philip.hannebohm@hsbi.de,

Abstract

Modeling across physical domains can lead to coupled
systems that operate on different time scales. Moreover,
spatially discretized models can have dynamic behavior
on only a small portion of the whole system, while that
portion might move over time. With a single rate solver
like DASSL, the step size is restricted to fast dynamics
of a few states while the others could do much larger
time steps, degrading the overall simulation speed. Re-
cent development of the Generic Bi-rate ODE (GBODE)
solver within the OpenModelica simulation environment
addresses these models. It allows for adaptive partitioning
of slow and fast states and progresses these partitions with
different time steps. However, substantial performance
improvements were not yet observed, in part because of
the rigid evaluation structure of the generated code. Dur-
ing each small step only the derivatives of fast states are
required, but all derivatives are computed. This paper
demonstrates the use of selective equation evaluation to
reduce the computational cost of multi-rate integration as
shown on a scalable example of a distributed heating sys-
tem. Further uses for selective evaluation during the sim-
ulation process are discussed and a complexity analysis is
given.

Keywords: Equation-based modelling, Multi-rate simula-
tion, Structural analysis

1 Introduction

In computer science strategies like partial or lazy evalu-
ation are used to improve computation speeds. This pa-
per introduces a similar approach for use in the simulation
of equation-based models. These models are commonly
represented as one coupled differential algebraic equation
system (DAE), so for the purposes of this paper we con-
sider the equation

0= F(x,x,u) €))

which is solved for X at each integration step assuming
knowledge of all the states x. Further inputs # may influ-
ence the system dynamics as well.

Multi-rate integration methods are suited for systems
with dynamics on multiple time scales (Thiele, Otter, and
Matsson 2014). Furthermore, for models where a sub-
system A undergoes rapid changes while another subsys-
tem B stays relatively stationary during some interval of
the simulation time, at a later time B may have dynamic

bernhard.bachmann@hsbi.de

changes while A does not. In these scenarios adaptive
multi-rate simulation is clearly superior to statically par-
titioned multi-rate or even single-rate simulations. One
such adaptive multi-rate solver is GBODE which stands
for Generic Bi-rate ordinary differential equation (ODE)
solver and is a generic implementation for any Runge-
Kutta (RK) scheme (Bachmann 2023; Bonaventura et al.
2025). As a case study, our method is applied to the
GBODE solver of OpenModelica.

During a multi-rate simulation step a subset of fast
states is identified. For these states several small steps are
taken while the remaining states take only one large step.
At each fast step only a subset of X needs to be computed.
Thus, computing the whole right-hand side (RHS) means
superfluous calculations.

For efficiently evaluating parts of a model without eval-
uating the whole RHS, it is necessary to have a fast and
flexible way to evaluate only a selected subset of equa-
tions. We demonstrate how this can be easily done within
the OpenModelica Compiler (Fritzson, Pop, Abdelhak, et
al. 2020). For the relatively newly developed GBODE
solver this feature is crucial in providing improved simula-
tion performance compared to other integration schemes.

2 Evaluation Structure

This section builds up the notation used in this paper. A
general system of equations can be given in residual form
as
0= filxn)% @)
: (2)
0= fn(xln(l)a e axl,,(dn))

where dj, is the number of variables occurring in equation
kand It(1),...,I(dy) are their corresponding indices.

If this system is given symbolically, or the incidence
is given explicitly by the I;,...,1I,, Equation (2) can be
transformed into semi-explicit form. The OpenModelica
Compiler does this via the following steps.

A perfect matching between variables and equations is
found (Pantelides 1988). The result can be interpreted as
a directed graph with matched pairs of variables and equa-
tions as nodes and edges from equations to variables used
in the equation.

In the context of this paper it is advantageous to define
the edges in the opposite direction such that f; — f; when
Jfi depends on f;, instead of the usual definition where we
would have f; — f; as f; influences f;.

DOI
10.3384/ecp218943

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

943

https://orcid.org/0009-0003-8902-9079
https://orcid.org/0000-0002-4339-0438
mailto:philip.hannebohm@hsbi.de
mailto:bernhard.bachmann@hsbi.de

Selective Evaluation of RHS during Multi-Rate Simulation

S

(a) Directed graph based on the
given matching.

and fis6 = {f1, /5, f6}-

Figure 1. Structure of the

As an example take the following system of equations
and assume the equations are matched to the underlined
variables:

0 = f1(x2,%6) 0= f5(x1,x3,%6,%7)
0= fa(x1,xs) = fo(x2,%6,%7)
3)
0= f3(x1,x3,X5,X3) = f7(x2,%x4,x3)
0= fa(xs) 0= fs(x3)

Figure 1a shows the graph resulting from Equation (3).

All strongly connected components (SCCs) of the graph
are contracted into single nodes resulting in a directed
acyclic graph (DAG). This DAG is the basis for evalu-
ating the RHS of any ODE. The nodes of a DAG can be
topologically sorted, i.e. they can be labeled with inte-
ger indices in such a way that i > j for every edge i — j.
One such choice of indices is shown in Figure 1c. A valid
order of execution is obtained by progressing from nodes
with lower index to nodes with higher index. These two
steps, contracting SCCs and topological sorting, are done
simultaneously (Tarjan 1972).

There is a map .# from variable to index corresponding
to the node that computes the variable. This can be seen
as a modification of the matching where variables solved
in the same SCC are given the same index. For the system
of Equation (3) this would be

AM (1) = M (x5) =3 jf,gj;i 4)
M (x2) = M (x6) = M (x7) =4 M (xs) = 1

Similarly, a modified incidence map .# from index to
variable sets can be constructed based on the I, as defined
in Equation (2) and the contraction of SCCs. The vari-
ables solved in the respective SCC are removed so only its

(b) DAG constructed by con-
tracting the SCCs fo3 = {f2, f3}

L () ()
> () > (#)
E) W
+ (fie t (fi)
s () s (1)
(c) Topologically (d) Transitive reduction
sorted DAG. of the DAG in (¢).

system in Equation (3).

dependencies remain. For Equation (3) this would be

J(1)=702)={}
S (3) = {x3,x5}

I(4) =
I(5) =

bash)
{x2,x8}

Applying .# to each element of .# (k), we get the direct
dependencies of the SCC with index k. This corresponds
to the direct children of node k. In general we get the
direct dependency map Z as

D(k) ={A (x) | x € I (k)}. (6)
Again, for Equation (3) the direct dependencies are
2()=22)={} 2(4)={32} e
7(3) ={2,1} 2(5) ={4,3}

Note that the indices in Z(k) are all smaller than k. This
is by construction of the topological ordering.

3 Selective Evaluation

The goal is to only evaluate the minimal part of the system
that is needed to compute values for a set X of selected
variables.

3.1 Computing Reachability

Finding all dependencies of X is equivalent to computing
the reachability of the corresponding nodes in the DAG.
Since the DAG is topologically sorted, the reachability
can be found without the need for depth-first search. This
is done in Algorithm 1 by going through the nodes from
last to first according to the topological order and on each
selected node k marking its direct dependencies Z(k) as
selected. All nodes in Z(k) are smaller than k and their
direct dependencies will be selected once the outer loop
in line 3 gets to them. In this way the deeper paths
are marked automatically by later loop iterations. The

944

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218943

Poster Session

Algorithm 1 mark reachability by backwards loop

1: forx € X do

2: select ./ (x)

3: fork=N,...,1do

4: if k is selected then

5: select all j € (k)

0&2*3 4|5]6|7 Si
T 1

Figure 2. Example of reachability computation exploiting the
topological ordering of the DAG.

> backwards

>j<k

complexity of Algorithm 1 is O(|X|+ |V|+ |E|) where
|E| = Yx Z(k) is the number of edges in the DAG and
|[V| = N is the number of vertices.

This is demonstrated in Figure 2 with a small exam-
ple. First, nodes 5 and 9 corresponding to fast states are
selected, then direct dependencies of selected nodes are
selected going from right to left, so the order of selection
1$:9-+6,6—>3,5—1,3—1.

3.2 Transitive Reduction

The transitive reduction R of a DAG G is a subgraph of
G which has the same reachability relation but minimal
number of edges (Aho, Garey, and Ullman 1972). If there
is a longer path from i to j then a direct edge i — j can be
removed, keeping the overall reachability the same. Fig-
ure 3 shows the simplest scenario where the edge from
3 to 1 can be removed because dependency is still given
through 2. The cost of computing R is O(|V ||E|) for sparse
graphs (Goral¢ikovd and Koubek 1979).

GO0 OO0

Figure 3. One step of transitive reduction.

Using R instead of G we can reduce the amount of work
in line 5 of Algorithm 1 because fewer nodes are in di-
rect dependencies. Since R needs to be computed only
once in a preprocessing step, its cost is negligible when
doing a reachability analysis many times during simula-
tion. In highly connected systems this might improve the
overall performance significantly. For the example sys-
tem in Equation (3) this removes two out of six edges as
depicted in Figure 1d.

3.3 Implementation

Prior to our changes the simulation code generated by the
OpenModelica Compiler had the following flat structure:

void functionODE ()
{

egFunction_1¢();

/1]

egFunction_N () ;

}

While very simple and efficient, the code does not allow
for partial evaluation. One way to achieve this is by giving
each egFunction_i a flag to tell whether or not it should
be evaluated. However, this would still lead to O(N) op-
erations. Replacing the function with the following eval-
uation scheme gives the desired flexibility with minimal
overhead:

void functionODE ()
{
static f_ptr egFunctions[N] = {
egFunction_1,
/][]
egFunction_N
}i
for (int i = 0; 1 < evalN;
egFunctions[evalI[i]] ();

i++)
}

Here evalrl is an array of SCC indices and evalN is the
length of evall, whereas eqFunctions is an array of
function pointers £_ptr.

During simulation, evallI needs to be recomputed via
Algorithm 1 each time X changes. If there is a rapid swap
between two unchanging sets X; and Xy, as is the case for
GBODE bi-rate integration, the corresponding evalI can
be buffered to avoid recomputation.

Some additional overhead can be expected from mak-
ing equation evaluation flexible in this way because of
the additional pointer indirection and as a consequence
the less efficient cache handling. However, this overhead
should be negligible for large systems when only a frac-
tion of equations needs to be evaluated.

4 Preliminary Results

A modified version of GBODE was tested on the model
HeatingSystem from the ScalableTestSuite Modelica Li-
brary (Casella 2015). It has the following equations:

Text = 278.15 + 8xsin(2+pixtime/86400)"f1";
Cdxder (Td) = Qd - sum(Qh) "fa2";
Qd = sat (Kpx (Td0 - Td),0, Qmax) "£3n;
for i in 1:N loop
Qhli] = Ghx(Td - Tuli])*uli] "fE4qn,;
Que[i] = Gux (Tul[i] - Text) "f5";
Cul[i]l*der (Tul[i]) = Qh[1] - Quel[i] "fe";
der(x[1i]) = axhist(x[i], Tu0 - Tuli],
Teps) £,
uli] = sat(bxx[i], -0.5, 0.5) + 0.5 "f8";
end for;

Its equation structure, depicted in Figure 4, is well suited
to selective evaluation when solving for fast states. There
are no algebraic loops involved and thus every variable
can be computed explicitly. Because of this, each node
corresponds exactly to one variable.

DOI
10.3384/ecp218943

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

945

Selective Evaluation of RHS during Multi-Rate Simulation

Figure 4. DAG of HeatingSystem. Arrays and for-loops are
kept as single nodes for better readability.

Tu[i] je-----------—----—--- -1 der (x[i])

Figure 5. Sub-DAGs of Heat i ngSystem for each state deriva-
tive. In dashed are dependencies on states that may need to be
interpolated. Self-dependencies are omitted for readability.

The various sub-DAGs for computing single derivatives
are shown in Figure 5. Here variables are used as names
for the nodes to make the structure easier to recognize.
There is some overlap between the dependencies of each
of the der (Tuli]) and der (Td) due to Qh.

We performed a simulation of Heat ingSystem with the
solver settings —s=gbode —-gbratio=0.5. Each time
a new set of fast states was identified, the fraction of equa-
tions needed to evaluate the derivatives was determined by
Algorithm 1 and logged. The top row of Table 1 shows the
number of equations to evaluate. The bottom row shows
how often these many equations were needed to evaluate
the new set of fast states. In most cases the number of
equations needed is less than 7 out of a total of 64, which is
about 11%. More than half of the time only two equations
(3%) were needed, while the number never went beyond
17 (27%).

Table 1. Number of phases that require evaluation of evalN
equations for fast states. Entries not in the table have a count of
zero.

evalN 2 4 6 13 15 17
365 184 75 4 3 3

5 Conclusions and Future Work

We showed that selectively computing parts of the equa-
tion system of a DAE is practically possible and most of
the work needed is already done by Modelica compilers.
We also demonstrated that it would be desirable for multi-
rate simulation of at least some models. Selective eval-
uation is also used to compute only needed parts of the
Jacobian when solving fast states with implicit methods.
In particular for the Heat ingSystem there are significant
savings in computational load. This is not a direct measure
of performance gain, but it gives a rough idea that selective
evaluation should lead to significantly faster simulations.

The technique of selective RHS-evaluation and the cor-
responding dependency analysis can be used even more
broadly. During event search of hybrid DAE simulations
only the zero crossings need to be computed in order to
narrow down the exact event time. Then during event iter-
ation only parts influenced by discrete changes need to be
recomputed iteratively. For this the dependency analysis
needs to be extended on discrete variables and a slightly
different selection mechanism needs to be developed. This
will be investigated in future works.

Acknowledgements

This work was conducted as part of the OpenSCALING
project (Grant No. 01IS23062E) at the University of Ap-
plied Sciences and Arts Bielefeld, in collaboration with
Linkoping University. The authors would like to ex-
press their sincere appreciation to both the OpenSCAL-
ING project and the Open Source Modelica Consortium
(OSMQ) for their support, collaboration, and shared com-
mitment to advancing open-source modeling and simula-
tion technologies.

References

Aho, A. V., M. R. Garey, and J. D. Ullman (1972). “The Tran-
sitive Reduction of a Directed Graph”. In: SIAM Journal on
Computing 1.2, pp. 131-137. DO1: 10.1137/0201008.

Bachmann, Bernhard (2023). “GBODE - The Generic Bi-
Rate Ordinary Differential Equation Solver in OpenMod-
elica”. In: OpenModelica Annual Workshop. Linkoping,
Sweden. URL: https : / / openmodelica . org / images /
M _ images / OpenModelicaWorkshop _ 2023 / GBODE -
OpenModelicaWorkshop_2023.pdf.

Bonaventura, Luca et al. (2025). “Self-Adjusting Multi-Rate
Runge-Kutta Methods: Analysis and Efficient Implementa-
tion in An Open Source Framework”. In: Journal of Scientific
Computing 105. DOI: 10.1007/s10915-025-03049-y.

Casella, Francesco (2015). “Simulation of Large-Scale Models
in Modelica: State of the Art and Future Perspectives”. In:
Proceedings of the 11th International Modelica Conference.
Versailles, France, pp. 459-468. DOI: 10.3384/ecp15118459.

Fritzson, Peter, Adrian Pop, Karim Abdelhak, et al. (2020-10).
“The OpenModelica Integrated Environment for Modeling,
Simulation, and Model-Based Development”. In: Modeling,
Identification and Control: A Norwegian Research Bulletin
41, pp. 241-295. por: 10.4173/mic.2020.4.1.

946

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218943

https://doi.org/10.1137/0201008
https://openmodelica.org/images/M_images/OpenModelicaWorkshop_2023/GBODE-OpenModelicaWorkshop_2023.pdf
https://openmodelica.org/images/M_images/OpenModelicaWorkshop_2023/GBODE-OpenModelicaWorkshop_2023.pdf
https://openmodelica.org/images/M_images/OpenModelicaWorkshop_2023/GBODE-OpenModelicaWorkshop_2023.pdf
https://doi.org/10.1007/s10915-025-03049-y
https://doi.org/10.3384/ecp15118459
https://doi.org/10.4173/mic.2020.4.1

Poster Session

Goralcikova, Alla and Vaclav Koubek (1979). “A reduct-and-
closure algorithm for graphs”. In: Mathematical Foundations
of Computer Science 1979. Ed. by Jifi Be¢var. Berlin, Hei-
delberg: Springer Berlin Heidelberg, pp. 301-307. DOI: 10.
1007/3-540-09526-8_27.

Pantelides, Constantinos C. (1988). “The Consistent Initializa-
tion of Differential-Algebraic Systems”. In: STAM Journal on
Scientific and Statistical Computing 9.2, pp. 213-231. DOI:
10.1137/0909014.

Tarjan, Robert (1972). “Depth-First Search and Linear Graph
Algorithms”. In: SIAM Journal on Computing 1.2, pp. 146—
160. por: 10.1137/0201010.

Thiele, Bernhard, Martin Otter, and Sven Erik Matsson (2014).
“Modular Multi-Rate and Multi-Method Real-Time Simula-
tion”. In: Proceedings of the 10th International Modelica
Conference. Lund, Sweden, pp. 381-393. por: 10.3384/
ecp14096381.

DOI Proceedings of the 16" International Modelica&FMI Conference
10.3384/ecp218943 September 8-10, 2025, Lucerne, Switzerland

947

https://doi.org/10.1007/3-540-09526-8_27
https://doi.org/10.1007/3-540-09526-8_27
https://doi.org/10.1137/0909014
https://doi.org/10.1137/0201010
https://doi.org/10.3384/ecp14096381
https://doi.org/10.3384/ecp14096381

	Introduction
	Evaluation Structure
	Selective Evaluation
	Computing Reachability
	Transitive Reduction
	Implementation

	Preliminary Results
	Conclusions and Future Work

