Requirement Verification with CRML and OpenModelica

Lena Buffoni! Adrian Pop!

Audrey Jardin?

'Department of Computer and Information Science, Linkoping University, Sweden,
{lena.buffoni,adrian.pop}@liu.se
2R&D, Electricité de France, France, audrey. jardin@edf.fr

Abstract

Common Requirement Modeling Language (CRML) is a
language designed to express requirements in an intuitive
manner, in this paper we present the recent advancements
in tool support for the requirement modeling and verifica-
tion workflow in OpenModelica and illustrate this on the
Traffic Light use-case.

Keywords: CRML, Requirements, Verification, Complex
Systems, Digital Engineering

1 Introduction

Systems Engineering is a transdisciplinary and integra-
tive approach to enable the successful realization, use
and retirement of engineered systems (INCOSE Fellows
2019).

Thanks to an approach centered on requirements, its
main benefits lie in better consideration of the system’s en-
vironment (in terms of coordination of the various stake-
holders, support of associated constraints and interfaces
with other systems). It also provides an iterative approach
making it possible to guide choices towards solutions "just
needed" throughout the life cycle of the system. Impact
analyses of some changes during the system development
cycle (e.g. coming from regulatory tightening, partner en-
try and/or withdrawal, etc.) can be performed early in the
design process and knowledge can be better capitalized to
refine the product strategy in its whole from one imple-
mentation project to another.

Despite numerous success stories, in particular, in the
most advanced systems engineering industries such as de-
fense and aerospace, many industries still struggle to im-
plement systems engineering practically (Bretz, Kaiser,
and Dumitrescu 2019; Kiniry et al. 2022).

In addition to budgetary and socio-organizational dif-
ficulties linked to change management, one of the major
pitfalls often encountered is to limit the management of
requirements to the documentary aspect. Technical con-
tributors then perceive requirement management as an ad-
ditional task to their usual engineering activities and with
a relatively poor added value at the very limited time scale
of their responsibility in the project compared to the lifes-
pan of the system or even the company. In the worst case,
this can generate a certain disillusionment and at least par-
tial disengagement of some of the contributors.

When verification and validation of requirements are

taken into account correctly in the organization and in the
projects, the second flaw lies in the difficulty of finding
“off-the-shelf” software solutions to handle requirements
“from end to end” during the system lifecycle. In par-
ticular, beyond documenting the traceability of require-
ments and their theoretical correspondence to design el-
ements (such as requirement management tools like IBM
Doors, Polarion, etc.), using requirements as a guide for
the development process requires the ability to capitalize
this kind of industrial constraints in the form of models
to make this knowledge usable by a computer (i.e. cal-
culable) and to allow the automation of a certain number
of tasks such as checking the consistency of a set of re-
quirements, verifying the compatibility of a solution with
a set of regulations, studying the impact of changes in the
specifications or in the design, etc.

As defined by INCOSE in (SEBoK v2.11 2024), a re-
quirement is a "statement that identifies a system, prod-
uct, or process characteristic or constraint, which is un-
ambiguous, clear, unique, consistent, stand-alone (not
grouped), and verifiable, and is deemed necessary for
stakeholder acceptability" and six verification methods
are usually acknowledged:

1. Inspection requires a human sense or a simple mea-
surement method to examine the object studied once
it exists.

2. Test consists in performing some verifications on the
existing object, often with dedicated instrumentation,
and under specific controlled conditions.

3. Demonstration checks the desired characteristics of
the existing object under its classical operating con-
ditions.

4. Sampling tests also characteristics, but not only on
one realization of the object studied but on a sample
of several realizations.

5. Analogy uses the similarity of the object studied with
elements for which the desired characteristics have
already been proven.

6. Analysis shows theoretical compliance of the object
studied using analytical evidence based on mathe-
matical reasoning (calculation, modeling and / or
simulation).

DOI
10.3384/ecp218971

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

971

https://www.ibm.com/fr-fr/products/requirements-management
https://www.ibm.com/fr-fr/products/requirements-management
https://polarion.plm.automation.siemens.com/products/polarion-requirements

Requirement Verification with CRML and OpenModelica

The article focuses here on the verification method
based on analysis, which is the only option one can have
for checking objects early in their design process or when
testing or demonstration in real-life conditions is not pos-
sible (e.g. for cost reasons) or even not desirable (e.g. for
safety reasons). Several approaches already exist in the
literature to formalize requirements and their verification
such as LTL (Linear Temporal Logic) and CTL (Compu-
tation Tree Logic) (Baier and Katoen 2008) , timed (Alur
1999) and hybrid (Henzinger 2000) automata or UM-
L/SysML state behavioral diagrams (OMG 2017; OMG
2025b). (Bouskela, Buffoni, et al. 2023) explains why ex-
isting solutions are not really suitable for complex systems
with strong physical aspects, the origin of the Common
Requirement Modeling Language (CRML) from ITEA
MODRIO project previous work’s on the FORM-L lan-
guage and how such a new language separate from Mod-
elica could be a possible solution. In short, the existing
formal requirements modeling methods have the follow-
ing disadvantages: they lack of object-orientation, have
difficult mathematical syntax, often do not deal with prob-
abilistic aspects and, most importantly, tend to use abstrac-
tions of the system in the form of state machines, which
already express a kind of a behavior and is not appropriate
to correctly deal with systems with strong physical aspects
that evolve continuously over time.

The novelty of the current paper is to show the re-
cent progress made for supporting CRML in OpenMod-
elica and how this new feature can practically help new-
comers automating the verification of some temporal re-
quirements with the use of Modelica/FMI (or more largely
black box) models.

Section 2 briefly presents the CRML language and the
associated methodology to verify requirements through
the simulation of solution models. Section 3 provides de-
tails on how the continuous- and discrete-time domains
are handled to express dynamic requirements in CRML.
Section 4 introduces the Traffic Light System (TLS) used
as a common thread example to illustrate the CRML ap-
proach. Section 5 describes the current tooling in Open-
Modelica. Section 6 concludes with some perspectives
for improving the overall toolchain and its potential inte-
gration into a larger (Model-Based Systems Engineering)
MBSE framework.

2 CRML in a Nutshell

CRML is a language for verifying temporal requirements
on systems with strong physical concerns and for which
the dynamical interactions with its environment and inter-
faced systems are of most importance.

The main goal of CRML is to be a high-level language
enabling the definition of requirements in quite readable
but computable expressions and serving as a pivotal for-
mat capable of targeting different verification engines ei-
ther by simulation (as documented here with its integra-
tion in OpenModelica) or by formal proof (future work

X2

Which operating
action should be
. performed?
\ -
- .
\
v

x1

Figure 1. A typical realistic dynamic requirement.

not documented here about connection with model check-
ing approaches).

The following paragraphs briefly recap how a require-
ment could be expressed and verified using CRML. Ap-
pendix gives a quick overview of the CRML built-in el-
ements and most useful operators. Interested readers can
refer to the online tutorial (Buffoni et al. 2023) and the
language specifications (CRML v1.2 2023) for more de-
tails.

2.1 Requirement Expression

A requirement in CRML is defined as an expression com-
bining up to 4 items:

¢ a condition to be checked;

* a spatial locator indicating on which object the con-
dition has to be verified;

* atime locator defining when the condition has to be
satisfied;

* (optionally) a statistical target to indicate with
which performance the condition has to be satisfied.

A CRML requirement is therefore of a "special”
Boolean built-in type, here called Boolean4 stating that
a requirement value at instant t can vary among the
set {true, false, undefined, undecided}.
This is illustrated with the Traffic Light System exam-
ple of Section 4. The theoretical rationale for intro-
ducing these 4 values could be found in (Bouskela and
Jardin 2018) where a new temporal logic algebra is de-
fined to rigorously compute the value of requirement over
continuous-time periods and to enable the combination of
requirements together.

One may consider that checking requirements for phys-
ical systems always amounts more or less to checking
whether main variables of interest do not exceed thresh-
olds. The main difficulties that make the handling of re-
quirements more complex are as follows:

972

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218971

Poster Session

Table 1. CRML pattern for a typical realistic dynamic requirement.

‘ Req.

Natural Language ‘ CRML Formalization

rl | During operation, the sys-
tem should stay within its | Requirement rl is

normal domain. "during’ inOperation ’ensure’
inNormalDomain;

r2 | If the system fails to stay

within its operating do- | Requirement r2 is ‘during’ inOperation ’
main, then it should not ensure’ (not inNormalDomain ’implies’
stay outside of its normal r2_outside);
domain for more than x Requirement r2_outside is
. "during’ [inNormalDomain ’"becomes false’,
minutes. inNormalDomain ’'becomes false’ + x
mn] ’‘check at end’ b;
Boolean b is inOperation ’"implies’
inNormalDomain;

r3 | The system should not go
outside its normal domain | Requirement r3 is

morethanntimesperyear. "count’ ((b ’"becomes false’) on [b ’
becomes false’, b ’"becomes false’ + 1
year]) <= n;

r4 | If (r]1 and r2 and r3) fail,

then the system should Requirement r4 is

go to its backup domain not (rl and r2 and r3) ’implies’

withinyminutesas soon as "during’ [(rl and r2 and r3) ’becomes

the failure is detected. false’, (rl and r2 and r3) ’'becomes
false’” + y mn]

"check at end’ inBackupDomain;

R | (The "real" complete re-
quirement:) During sys- Real prob is

tem operating life, r1 and estimator Probability (rl and r2 and r3
r2 and r3 and r4 should be and rd)

satisfied with a probability at inSystemOperatingLife 'becomes false’;

£ £ Requirement R is
Ot success ot p. "during’ inSystemOperatingLife
"check at end prob’ > p;

DOI Proceedings of the 16 International Modelica&FMI Conference 973
10.3384/ecp218971 September 8-10, 2025, Lucerne, Switzerland

Requirement Verification with CRML and OpenModelica

e The authorized values vary dynamically depending
on the system operating modes and the periods of
time.

* Time response and/or probabilistic criteria should be
added to make the requirements achievable by real
systems.

e The number of requirements is rapidly growing (due
to the number of stakeholders, the complexity of
the system/subsystems/components, and the possible
evolution over the system lifespan).

The CRML language enables alleviating these prob-
lems by allowing the formal expression (Table 1) of re-
alistic dynamical requirements (Figure 1).

Listing 1. Example of user-defined operator in CRML

Operator [Periods] ’'during’ Boolean b =
Periods [new Clock b, new Clock not b

1i

The user can enhance the readability of CRML state-
ments by defining his own operators with a chosen syntax
simply by combining built-in operators. For example, the
during operator in Table 1 has been defined as a time
period constructor from a Boolean input (Listing 1). This
during operator is part of a library known as FORM-L
used in CRML to define time periods and conditions con-
structors that are frequently encountered (see Appendix
for more examples of custom operators).

2.2 Requirement Verification

As stated above, a CRML requirement is a Boolean4 vari-
able. Its value is: true (resp. false) if the condition
is satisfied (resp. violated) for the defined time locator,
undefined if the time locator has not been tested over
the test scenario, undecided if the test scenario has fin-
ished before a decision could be made (i.e., before the con-
dition has been violated or before the end of the time lo-
cator).

The value of a CRML requirement is computed from
verification models made of four different kinds of model
(Figure 2):

e the behavioral model capturing the behavior of de-
sign solutions;

* the requirement model defining envelopes of accept-
able behaviors;

* the binding model mapping the variables of the two
previous models and processing the required conver-
sions (the functional variables mentioned in the re-
quirements could have different naming convention
and units than the physical quantities computed in
the behavioral model);

¢ the test model specifying the operating scenarios to

Y

Requirements
Scenarios

Natural
language

Ontologies

CRML to
compiler

. Modelica /
Behavioral Bindings CRML2Modelica.mo
model CRMLmo.
Modelica compiler
Executable
L Test

sequences code
[Legend

odelica

Initial conditions

Assumptions

Simulation runs

Formal model
generated
manually

Verification

results

D
Executable
model generated
automatically
J

Figure 2. Requirement verification workflow.

3 Time Management in CRML

The main temporal constructs in CRML are Clock, Event,
Period and Periods.

The CRML2Modelica library contains the definitions
of basic types in CRML, including events and periods.
These definitions are split into two parts, a record struc-
ture that can then be passed along an argument in subse-
quent equations, and a model containing the equations for
the record.

In Modelica Events are represented by a trigger (a 4-
valued boolean) and a time of occurrence.

A single period, as shown in Listing 2 is defined by
opening and closing events, while a set of periods is de-
fined by clocks or sets of opening and closing events (lead-
ing to possibly overlapping time periods).

For example, a new Period instance is generated and
instantiated as follows:

Listing 2. Period instance creation in Modelica

record CRMLPeriod
Boolean isLeftBoundaryIncluded "If true,
the left boundaries of the time
periods are included";
Boolean isRightBoundaryIncluded "If true,
the right boundaries of the time
periods are included";
public
Types.Event start_event;
Types.Event close_event;
Boolean is_open;

end CRMLPeriod;

model CRMLPeriod_build

CRMLPeriod P;

equation

P.is_open =

if((CRMLtoModelica.Functions.

Event2Boolean (P.start_event)
Booleand.trued) and not (
CRMLtoModelica.Functions.
Event2Boolean (P.close_event)==

be studied. Booleand.trued))
then true else false;
974 Proceedings of the 16" International Modelica& FMI Conference DOI
September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218971

Poster Session

end CRMLPeriod_build;

4 Traffic Light Use-Case

The purpose of the Traffic Light example is to illustrate
how CRML could be used in the OpenModelica frame-
work from the requirement formalization phase to verifi-
cation by simulation and analysis phases.

This example was chosen to show, on a system known
to all, how some realistic requirements could be handled
in a very practical way with CRML and OpenModelica. It
is deliberately simplified to focus on the software tooling
part.

The mission of the Traffic Light System (TLS) is to
avoid accidents and fluidize traffic by minimizing conges-
tion. The main functions are, respectively: F1) give clear
instructions to each vehicle and F2) prioritize crossing du-
rations based on road traffic. The corresponding require-
ments could therefore check that "at most only one light
should be on" and "the time spent in a light mode must be
between two limits". A possible formalization in CRML
is given in Listing 3.

Listing 3. Requirements on the Traffic Light System

model TrafficLightSpecification is
// Import of libraries
flatten {ETL, FORM_L}
union {
// List
Boolean
Boolean
Boolean

of external variables
red is external;
yellow is external;
green 1is external;

Boolean
Boolean
Boolean

operation is external;
night_mode is external;
day_mode is not night_mode;

// Definition of requirements

// req0: "During operation, no more than
one light should be on (a flashing
mode could be specified later)"

Boolean{} lights is {red, yellow, green};

Integer n_lights_on is card { filter
lights (element == true) };

Requirement reqg0 is
("during’ operation) (’check anytime’ (
n_lights_on <= 1));

// Day mode
// reql: "After green, next step is yellow
n

Requirement reqgl is
(("after’” (green ’'becomes true’) '/
before’” (yellow ’'becomes true’))
while day_mode)
(" check count’ (red
0);

"becomes true’) ==’

// req2: "Step green should
for at least 30 seconds"
Requirement reqg2 is

stay active

>

dwemolph
1=y
duwepas

dweusaib

abejjoplamoduiew
_ N+
N
AQT=A
s1=y
o

redCom

[=]»

yellowCom

>

greenCom

aen | B>

pamsUsa6
3
g

youmsmolah
S~
Youmspas

>
> -

ground

Figure 3. Traffic Light implementation as a circuit.

(("after’ (green ’'becomes true’) ’for’
30) while day_mode)

("ensure’ green);

// req3: "After green becomes active + 30
seconds, next step should turn yellow
within 0.2 seconds"

Requirement reqg3 is

(("after’ (green ’"becomes true’
for’” 0.2) while day_mode)
("check at end’” yellow);

+ 30) 7

// Night mode
// req4: "During night, yellow should only
be used"
Requirement reg4d is
("during’” night_mode)
(" check count’” ((red or green)
true’) ’"==" 0);
// reqb5: "During night, yellow should
flash every 2 seconds"
Requirement regba is
(/during’” night_mode)
(" check count’ (yellow ’"becomes true’) '
<> 0);
Requirement regbb is

"becomes

("after’” (yellow ’'becomes true’) 'within
’ 2) while night_mode)
("ensure’ yellow);
Requirement regbc is
("after’” (yellow ’"becomes true’) ’"for’

2) while night_mode)
("check at end’” not yellow);
Requirement regb is regba and regbb and
regbc;

}i

The physical behavior of TLS could be modeled as an
electronic circuit that activates three different lights (Fig-
ure 3). The control part of TLS could be modeled in two
different ways: either as a grafcet or as a finite-state ma-
chine using the synchronous built-in operators of the Mod-
elica language as shown in Figure 4.

4.1 CRML Compilation

The CRML2Modelica compiler is a proof of concept com-
piler written in Java. It is open source and available on

DOI
10.3384/ecp218971

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

975

Requirement Verification with CRML and OpenModelica

y_red

red_active
hold(actvestate(red)) |- [\
red .
false \
P yellow_active y_yellow
hold(activestate(yellow)) [‘

vellow ==
green_active y-green

hold(activeState(green)) -

Figure 4. Traffic Light control implemented as a state machine.

GitHub !. Currently it supports almost all the Extended
Temporal Library (ETL) library blocks which define all
the operators required for computing Boolean4-status of a
requirement.

The CRML2Modelica compiler goes through the
CRML file once first, to retrieve all signatures of user-
defined operators and category’s definitions and then a
second time translating all the definitions. In addition
to temporal aspects, three CRML features require special
handling: Boolean4, categories and sets.

Boolean4

Boolean4 is defined in Modelica as an enumeration as
shown in Listing 4.

Listing 4. Boolean4 translation in Modelica

type Boolean4 = enumeration (undefined,
undecided, falsed4, trued);

Categories

Categories are applied directly to the operator definitions,
and the corresponding operators are replaced. For exam-
ple, the operator set to false in Listing 5 is trans-
lated to Modelica as shown in Listing 6 and the operator
id is replaced by cte_false as specified by the cate-
gory varyingl.

Listing 5. Category in CRML

Operator [Boolean] "id” Boolean b = Db;
Operator [Boolean] "cte_false’ Boolean
b = false;

Category varyingl = { "cte_false’)
}i

Operator [Boolean]
b = apply varyingl on (

(7 id’",

"set to false’ Boolean
rid’ b) ;

Boolean b_varyingl_on_id_true is ’set to
false’ b_true; // value should be false

'https://github.com/OpenModelica/CRML

Listing 6. Category translation to Modelica

model ’'set to false’
output CRMLtoModelica.Types.Boolean4 out;
input CRMLtoModelica.Types.Booleand b;
"cte_false’ ’'cte_false(O’ (b=Db);
equation
out =’"cte_falsel’ .out;

end ’'set to false’;

Sets

Sets are handled as fixed size arrays in the current imple-
mentation, for sets with a known number of elements, the
array size is set accordingly, for sets with an unknown size,
the array size is set to a predefined buffer size. Periods are
a special case of this and are currently mapped to a record
with an array with a static size, but if a larger number of
events is expected, the buffer size can be increased with a
flag to the compiler.

In our Julia-based OpenModelica framework (Tinner-
holm, Pop, and Sjolund 2022) we support automatic re-
compilation during simulation and one can increase/shrink
the size of an array or change any other aspect of the
model. An example of a when equation triggering such
a change is given in Listing 7. Using this functionality
in the future, we can make the translated Modelica code
more flexible and more efficient as resizing can be tailored
to the needs of each variable.

Listing 7. Dynamic Array Resize

when requestedSize > N then
// Recompilation on parameter change
recompilation (N /* what to change %/,
requestedSize + 100 /% value x/);
end when;

4.2 Requirement Verification

A requirement model is verified for a behavior model and
a scenario. In this paper we focus on Modelica, but as a
requirement model can be exported as an FMU, it could be
verified against any other FMU representing a behavioral
model.

In order to identify the inputs from the behavioural
model, CRML uses external variables, that are vari-
ables that do not need to be instantiated within the model.
A list of external variables can be exported during com-
pilation into a file. This list can then be fed into a semi-
automated bindings algorithm for mapping requirements
to the behavioural model.

A verification scenario that instantiates the requirement
and behavioural models and connects them together can
then be simulated and the results analysed.

The code generated for requirements is composed to-
gether with the unmodified Modelica model and the exter-
nal variables in the CRML are bound to the Modelica vari-
ables. Usually this results in a balanced Modelica model
but is certain cases, usually with badly specified CRML it
might be possible to build invalid models.

976

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218971

Poster Session

coves| s | Asbivy | Bty | W senssns

Figure 5. CRML file display in OMEdit and its Modelica trans-
lation.

............................. [Si=ie)

“““““

oo Qs | At | oo | W5y

Figure 6. Simulation of the generated Modelica file correspond-
ing to the original CRML file.

S CRML Support in M&S tools

We have started integrating the CRML tools into Open-
Modelica. The CRML files can be loaded in the Open-
Modelica Connection Editor (OMEdit) and the text dis-
played with syntax highlighting, see Figure 5, top part.
It is also possible to load entire directories containing
CRML files.

The CRML files can be translated to Modelica from
OMEdit via menu actions (via right click) and the trans-
lated .mo files are automatically loaded into OMEdit, see
Figure 5, bottom part.

As expected, the generated Modelica files can also be
simulated, as in Figure 6.

To tell OMEdit where it can find the tools and required
Modelica libraries for the CRML translation a settings di-
alog is used, see Figure 7. If additional Modelica libraries
are needed, one can specify them here.

The CRML compiler also specifies a test suite with
about 150 test cases based on the ETL and FORML library
blocks as well as more complex use-cases. This test suite
can be run command line or from OMEdit and generates a
test report that allows to evaluate coverage progress. Cur-
rently around 30% of the tests are successful as the test
suite also includes features that are not yet supported in
the compiler.

Using CRML files as text is only the first integration
step in OpenModelica. Work is ongoing to support a

s ;. oMEdit - Options x
L

L compiter [crmi-compierilja

B veamodeica itor
=]

CRML Editor

CRML Library Paths:

CompositeMtodel Editor Jhome/adrpo33/ci Tibraries

] ssp cator
] cicr eator

‘Add Path Remove Path

ome/adrpo33/crmi-compilerjresources/modelica _ibraries

= The changes will take effect after restart oK Reset Cancel

Figure 7. CRML tools settings in OMEdit.

(© TrafiicLightspecification

Boolean red [external]

Boolean yellow [external]

Boolean green [extemnal]

Boolean operation [external]

Boolean night_mode [external]

Boolean day_mode: not night_mode

Boolean(} lights: {red, yellow, green}

Integer n_lights_on: card { filter lights (element == true) }

Requirement reqo:
('during’ operation) (check anytime' (n_lights_on <= 1))

Requirement req1
(("after’ (green 'becomes true') ‘before" (yellow 'becomes true') while day_mode)
(‘check count’ (red ‘becomes true') '==" 0)

Requirement req2:
(("after' (green 'becomes true') ‘for' 30) while day_mode)
(ensure' green)

Requirement req3:
(("after (green 'becomes true' + 30) 'for' 0.2) while day_mode)
(check at end yellow)

Requirement reqé:
(during' night_mode)
('check count ((red or green) ‘becomes true’)'==" 0)

Requirement regsa:
(during' night_mode)
(check count! (yellow 'becomes true') '<>' 0)

Requirement reqsb:
(after (yellow ‘becomes true’) ‘within' 2) while night_mode)
(ensure’ yellow)

Requirement regsc:
(after (yellow 'becomes true') for' 2) while night_mode)
(check at end" not yellow)

Requirement reqs: reg5a and reqsb and reqsc

Figure 8. A graphical representation for CRML for the given
example.

graphical representation language for CRML similar to
UML as proposed by (Mazurié 2023), see Figure 8.

6 Conclusion and Future Work

CRML tooling is progressing to enable the formalization
of realistic dynamic requirements of complex systems. In-
tegration into OpenModelica enables a first step towards
an easy access for the Modelica/FMI community to check
requirements with simulation means. In order to be ap-
plicable to industrial-level use cases, future work plans to
improve the toolset in several areas:

* Improvement of the user interface to visualise re-
quirements simulation results as dashboards and
structured html pages.

* Integration with the ReqlF standard (OMG 2025a)
to provide a native gateway to the requirements man-
agement and traceability tools. This is in particular

DOI
10.3384/ecp218971

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

977

Requirement Verification with CRML and OpenModelica

needed to handle the metadata associated with the
lifecycle of each requirement, coordinate the teams
issuing requirements and deduce which set of re-
quirements is valid and must be verified at a given
point in time during the project.

e Alignment with the emerging SysML v2 standard
(OMG 2025b) to structure and better visualise a large
volume of requirements.

Other work is also planned, notably on the use of struc-
tural analysis techniques to statically verify consistency
between CRML requirements and the introduction of the
concept of Assume/Guarantee contract to facilitate the
generation of test scenarios from CRML constraints.

7 Acknowledgements

The CRML initiative has initially been supported by
the ITEA3 EMBrACE project, as well as National Re-
search, Development and Innovation Fund of Hungary,
financed under the [2019-2.1.1-EUREKA-2019-00001]
funding scheme. It is continued and improved within the
Open Source Modelica Consortium partly through EDF
funding.

References

Alur, Rajeev (1999). “Timed automata”. In: International Con-
ference on Computer Aided Verification. Springer, pp. 8-22.
Baier, Christel and Joost-Pieter Katoen (2008). Principles of

model checking. MIT press.

Bouskela, Daniel, Lena Buffoni, et al. (2023). “The Common
Requirement Modeling Language”. In: Proceedings of the
Modelica Conference 2023.

Bouskela, Daniel and Audrey Jardin (2018). “ETL: A New

Mazurié, Baptiste (2023). “Start of a new design method for a
competitive Small Modular Reactor (SMR) adaptable to fu-
ture uses”. MA thesis. KTH, School of Engineering Sciences
(SCI).

OMG (2017). Unified Modeling Language (UML) version 2.5.1.
URL: https://www.omg.org/spec/UML/2.5.1/PDF (visited on
2025-07-29).

OMG (2025a). Requirements Interchange Format (ReqlF). URL:
https://www.omg.org/reqif/ (visited on 2025-07-31).

OMG (2025b). Systems Modeling Language (SysML) version 2.
URL: https://github.com/Systems - Modeling/SysML - v2 -
Release/blob/master/doc/2a- OMG_ Systems_Modeling _
Language.pdf (visited on 2025-07-29).

SEBoK v2.11 (2024). Guide to the Systems Engineering Body
of Knowledge. https://sebokwiki.org/wiki/.

Tinnerholm, John, Adrian Pop, and Martin Sj6lund (2022).
“A Modular, Extensible, and Modelica-Standard-Compliant
OpenModelica Compiler Framework in Julia Supporting
Structural Variability”. In: Electronics 11.11, 1772. DOI: 10.
3390/electronics11111772.

Appendix: CRML Cheat Sheet
Key Concepts

Requirements

A requirement is a Boolean4 combining up to 4
items:
R = (Where) (When)

(What) [How well]

Multiple requirements can be combined according to
the algebra defined on the Boolean4 type.

R X . b true false | undecided | undefined
temporal language for the verification of cyber-physical sys- not b | false | true | undecided | undefined
tems”. In: Proceedings of the Annual IEEE International
Systems Conference 2018. DOI: 10.1109/SYSCON.2018. INETaRE? — e T T
8369502. true true false | undecided true

Bretz, Lukas, Lydia Kaiser, and Roman Dumitrescu (2019). “An false false false false false
analysis of barriers for the introduction of Systems Engi- 3:3::1::3 uniercuieded Ei:z Ezjzigzz E;jzi:zg
neering”. In: Proceedings of the 29th CIRP Design. Elsevier,
pp. 783-789.

Buffoni, Lena et al. (2023). Tutorial: CRML A Language for Syntax
Verifying Realistic Dynamic Requirements. Tech. rep. MOD-

PROD. URL: https://github.com/OpenModelica/CRML/tree/ = Notation
main/resources/crml_tutorial. . .

CRML v1.2 (2023). Specification v1.2 of the Common Re- [expr]oooiiiinn optional expression
quirement Modeling Language. Tech. rep. ITEA EMBrACE { @FPE J cooccononcoaoncoa expression repeated
Project. URL: https://github.com/OpenModelica/ CRML/ expr_1 | | expr_nnexpressions
blob/main/language_specification/CRML %20specification_ T ChaT o character
v1.2.pdf. M SETANG" string

Henzinger, Thomas A (2000). “The theory of hybrid automata”.

In: Verification of digital and hybrid systems. Springer,
pp- 265-292. . , Expressions

INCOSE Fellows (2019). Briefing to INCOSE Board of Direc-
tors. Tech. rep. INCOSE. [[type] ident is] [value |

Kiniry, Joseph et al. (2022). High Assurance Rigorous Digital external 1 [; | , 1 cuuuein.. expression
Engineering for Nuclear Safety (HARDENS) Final Report. // This is single-line comment
Tech. rep. Galois. /* This is a multi-line %/ .. comment

978 Proceedings of the 16" International Modelica&FMI Conference DOI
September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218971

https://doi.org/10.1109/SYSCON.2018.8369502
https://doi.org/10.1109/SYSCON.2018.8369502
https://github.com/OpenModelica/CRML/tree/main/resources/crml_tutorial
https://github.com/OpenModelica/CRML/tree/main/resources/crml_tutorial
https://github.com/OpenModelica/CRML/blob/main/language_specification/CRML%20specification_v1.2.pdf
https://github.com/OpenModelica/CRML/blob/main/language_specification/CRML%20specification_v1.2.pdf
https://github.com/OpenModelica/CRML/blob/main/language_specification/CRML%20specification_v1.2.pdf
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/reqif/
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/2a-OMG_Systems_Modeling_Language.pdf
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/2a-OMG_Systems_Modeling_Language.pdf
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/2a-OMG_Systems_Modeling_Language.pdf
https://doi.org/10.3390/electronics11111772
https://doi.org/10.3390/electronics11111772

Poster Session

if b then nl else n2 if-clause
Keywords nl at c.......... value of Integer nl at Clock ¢
.............. f ticks of k

Types: Boolean, Category, class, Clock, Event, Inte- SRS © T ST G 8.5 ff Choctt ¢

. . . card S number of elements of set S
ger, library, model, Operator, package, Period, Peri-
ods, Probability, Real, String, Template, type
?peaal values: false, true, undecided, undefined, String Operators
ime
Special characters: (,),[, 1, {, }> » 35 o " *» E, €, /7, [%, String s 1s string_value ... constructor
*/.0,1,2,3,4,5,6,7,8,9 String s is new String x ... constructor
Operators: =, +, -, *, /, <, <=, >, >=, ==, <>, °, from Real | Integer | Boolean x
acos, alias, and, asin, associate, at, card, constant, ST + S2 i concatenation

cos, duration, element, else, end, estimator, exp, ex-
tends, external, filter, flatten, forbid, if, integrate, is,
log, logl0, mod, new, not, on, or, parameter, par- Boolean Operators
tial, proj, redeclare, sin, start, then, tick, time from,

. . . . Boolean b is true | false |
union, variance, while, with

undecided | undefined constructor
Boolean b is new Boolean c constructor

Architecture from Clock ¢

cRML 1 bl and b4 ... conjunction

— g - s - o bl or b2 ..o disjunction
" Isses e -vents - Integers :
"""“"s) Objects Probabiities Clocks Pds S?iags NOL b o Ingathl’l

B . S DL % 02 oo filter

— bl + D2 o accumulation
CRML function libraries . . .
integrate bl on P integration over a Period
ETL FORM-L .
S ks bl == b2 equality
if b then bl else b2 if-clause
bl at € ovvviiiiiiiiii value at Clock ¢
Real Operators x1 > x2 strictly greater than for Real | Integer xi
Real x is decimal value constructor x1 < x2 ... strictly less than for Real | Integer xi
Real x is new Real n ... constructor from nl >= | <=n2...... comparison of Integer ni
Integer n nl <> n2.......... different from for Integer ni
x1 + | - %2 binary addition | subtraction xl == x2 equality for Integer | Type xi
S unary addition | subtraction el < | <= e2 (strictly) before for Event ei
KL % K2 e multiplication el > | >=e2...... (strictly) after for Event ei
XL /[R2 division
XL R2 o exponentiation
Event Operators
if b then x1 else X2 if-clause Event e is new Event b . constructor from
XL at Cviiiii value at Clock ¢ first occurence of Boolean b
duration b on P duration during which el proj c projection on ticks of Clock ¢
Boolean b is true over a Period P el proj(d) c .. projection for duration Real d
e2 - el ... elapsed duration between two Event €1 + A i delay of Real d
time frome el ... elapsed time from an Event tick C vivviiriineinnnn. current tick of Clock ¢
p start opening event of Period p
pendooii.n closing event of Period p
Integer Operators
Integer n is integer_value constructor
Integer n is new Integer x constructor Clock Operators
from Real x Clock ¢ is new Clock b . constructor from
nl + | = n2 binary addition | subtraction Boolean b
t 1 - nl ...l unary addition | subtraction cl proj c2 projection on ticks of Clock c2
Nl * N2 .. multiplication cl proj (d) c2 . projection for duration Real d
Nl / N2 ..o division cl + d delay of Real d
Nl N2 ... exponentiation cl filter cond tick ..o . filter
DOI Proceedings of the 16 International Modelica&FMI Conference 979

10.3384/ecp218971 September 8-10, 2025, Lucerne, Switzerland

Requirement Verification with CRML and OpenModelica

cl and C2 ..ottt conjunction
Cl OF C2 it disjunction

Period and Periods Operators

Period P is [|] el, e2 []|] constructor
from Event
Periods P is {P1l, P2, ..., Pn} . con-

structor from a set of Period

Periods P is [|] c¢l, c2 [|] con-
structor from Clock
P2 while Pl ..., filter

Probability Operators

Probability px is new Probability

Libraries

ETL Operators for Evaluating Booleans

FInside’ P i
"becomes
"becomes
"becomes
"becomes

false inside’ p
count’ c ’inside’ P ...,
"decide’ b ’over’ p . decision event, could
be violation of Boolean b or end of Period p

SN0 O 0O 0O Q

"evaluate’ b ’'over’ p accumulated value
over a Period p
"check’ b ’'over’ P accumulated value over

a set of Periods

o T constructor from Boolean b FORML Operators for Expressing Periods
Probability px is new Probability T
bat c........... constructor at ticks of Clock ¢
estimator PxX ..., estimator from
estimator variance px . variance estimator 41 s
"from’ c D CGED !
] master time period
Sets Operators et
B E—
[T{ } S lS] {Ul 7 oo o un} oo non—empty typed rafter’ c 10 ctickl) cftick2) t
Set] master time period
[T{} S is]{} empty typed set of type T before
T.{ } S is {expr} special .set with elements of +— = N
different types (=class, model, library, or package) "before’ c O o) i
S1 union S2iiiiiiiiniin... union of sets e ima pekod
flatten S1cooevnin... flattening of a set unti
filter (S1 cond (element)) filter
4 unt i l 4 C to citick1) cltick2) i
"during’ b o
TWhen C e
Customisation
Type Constructors FORML Operators for Expressing Conditions
type T2 is (Tl x is value(al, ..., e et
an)) {Type D1, ...Dn; D1 al [is cneck —
valuel; ...} oo custom type | — i
partial type T is value partial type "check at end’ @ =ie e 0
. . . master time period
Tl alias s renaming type T1 with String s ’
Tl forbid f1,...,fn forbidding operators fi e —
anytime b==true b==true
+— n ——
"check anytime’ m g
Operator Constructors e
Operator [T] ’wl’ T1 ul ... ’wn’ | | e |
= ’ ’ +— n F——
.Tn un. fexplrfr.. custom operator "'wlw2wn’ on P ’ensure’ b iy i
LI UL @F 7 10 P 'check count’ c "<=" n..............
Template wl ul wn un =
expr custom operator 'wlw2wn’ on Boolean
980 Proceedings of the 16" International Modelica&FMI Conference DOI

September 8-10, 2025, Lucerne, Switzerland

10.3384/ecp218971

	Introduction
	CRML in a Nutshell
	Requirement Expression
	Requirement Verification

	Time Management in CRML
	Traffic Light Use-Case
	CRML Compilation
	Requirement Verification

	CRML Support in M&S tools
	Conclusion and Future Work
	Acknowledgements

