
Requirement Verification with CRML and OpenModelica

Lena Buffoni1 Adrian Pop1 Audrey Jardin2

1Department of Computer and Information Science, Linköping University, Sweden,
{lena.buffoni,adrian.pop}@liu.se

2R&D, Electricité de France, France, audrey.jardin@edf.fr

Abstract
Common Requirement Modeling Language (CRML) is a
language designed to express requirements in an intuitive
manner, in this paper we present the recent advancements
in tool support for the requirement modeling and verifica-
tion workflow in OpenModelica and illustrate this on the
Traffic Light use-case.
Keywords: CRML, Requirements, Verification, Complex
Systems, Digital Engineering

1 Introduction
Systems Engineering is a transdisciplinary and integra-
tive approach to enable the successful realization, use
and retirement of engineered systems (INCOSE Fellows
2019).

Thanks to an approach centered on requirements, its
main benefits lie in better consideration of the system’s en-
vironment (in terms of coordination of the various stake-
holders, support of associated constraints and interfaces
with other systems). It also provides an iterative approach
making it possible to guide choices towards solutions "just
needed" throughout the life cycle of the system. Impact
analyses of some changes during the system development
cycle (e.g. coming from regulatory tightening, partner en-
try and/or withdrawal, etc.) can be performed early in the
design process and knowledge can be better capitalized to
refine the product strategy in its whole from one imple-
mentation project to another.

Despite numerous success stories, in particular, in the
most advanced systems engineering industries such as de-
fense and aerospace, many industries still struggle to im-
plement systems engineering practically (Bretz, Kaiser,
and Dumitrescu 2019; Kiniry et al. 2022).

In addition to budgetary and socio-organizational dif-
ficulties linked to change management, one of the major
pitfalls often encountered is to limit the management of
requirements to the documentary aspect. Technical con-
tributors then perceive requirement management as an ad-
ditional task to their usual engineering activities and with
a relatively poor added value at the very limited time scale
of their responsibility in the project compared to the lifes-
pan of the system or even the company. In the worst case,
this can generate a certain disillusionment and at least par-
tial disengagement of some of the contributors.

When verification and validation of requirements are

taken into account correctly in the organization and in the
projects, the second flaw lies in the difficulty of finding
“off-the-shelf” software solutions to handle requirements
“from end to end” during the system lifecycle. In par-
ticular, beyond documenting the traceability of require-
ments and their theoretical correspondence to design el-
ements (such as requirement management tools like IBM
Doors, Polarion, etc.), using requirements as a guide for
the development process requires the ability to capitalize
this kind of industrial constraints in the form of models
to make this knowledge usable by a computer (i.e. cal-
culable) and to allow the automation of a certain number
of tasks such as checking the consistency of a set of re-
quirements, verifying the compatibility of a solution with
a set of regulations, studying the impact of changes in the
specifications or in the design, etc.

As defined by INCOSE in (SEBoK v2.11 2024), a re-
quirement is a "statement that identifies a system, prod-
uct, or process characteristic or constraint, which is un-
ambiguous, clear, unique, consistent, stand-alone (not
grouped), and verifiable, and is deemed necessary for
stakeholder acceptability" and six verification methods
are usually acknowledged:

1. Inspection requires a human sense or a simple mea-
surement method to examine the object studied once
it exists.

2. Test consists in performing some verifications on the
existing object, often with dedicated instrumentation,
and under specific controlled conditions.

3. Demonstration checks the desired characteristics of
the existing object under its classical operating con-
ditions.

4. Sampling tests also characteristics, but not only on
one realization of the object studied but on a sample
of several realizations.

5. Analogy uses the similarity of the object studied with
elements for which the desired characteristics have
already been proven.

6. Analysis shows theoretical compliance of the object
studied using analytical evidence based on mathe-
matical reasoning (calculation, modeling and / or
simulation).

DOI Proceedings of the 16th International Modelica&FMI Conference 971
10.3384/ecp218971 September 8-10, 2025, Lucerne, Switzerland

RRR

https://www.ibm.com/fr-fr/products/requirements-management
https://www.ibm.com/fr-fr/products/requirements-management
https://polarion.plm.automation.siemens.com/products/polarion-requirements

The article focuses here on the verification method
based on analysis, which is the only option one can have
for checking objects early in their design process or when
testing or demonstration in real-life conditions is not pos-
sible (e.g. for cost reasons) or even not desirable (e.g. for
safety reasons). Several approaches already exist in the
literature to formalize requirements and their verification
such as LTL (Linear Temporal Logic) and CTL (Compu-
tation Tree Logic) (Baier and Katoen 2008) , timed (Alur
1999) and hybrid (Henzinger 2000) automata or UM-
L/SysML state behavioral diagrams (OMG 2017; OMG
2025b). (Bouskela, Buffoni, et al. 2023) explains why ex-
isting solutions are not really suitable for complex systems
with strong physical aspects, the origin of the Common
Requirement Modeling Language (CRML) from ITEA
MODRIO project previous work’s on the FORM-L lan-
guage and how such a new language separate from Mod-
elica could be a possible solution. In short, the existing
formal requirements modeling methods have the follow-
ing disadvantages: they lack of object-orientation, have
difficult mathematical syntax, often do not deal with prob-
abilistic aspects and, most importantly, tend to use abstrac-
tions of the system in the form of state machines, which
already express a kind of a behavior and is not appropriate
to correctly deal with systems with strong physical aspects
that evolve continuously over time.

The novelty of the current paper is to show the re-
cent progress made for supporting CRML in OpenMod-
elica and how this new feature can practically help new-
comers automating the verification of some temporal re-
quirements with the use of Modelica/FMI (or more largely
black box) models.

Section 2 briefly presents the CRML language and the
associated methodology to verify requirements through
the simulation of solution models. Section 3 provides de-
tails on how the continuous- and discrete-time domains
are handled to express dynamic requirements in CRML.
Section 4 introduces the Traffic Light System (TLS) used
as a common thread example to illustrate the CRML ap-
proach. Section 5 describes the current tooling in Open-
Modelica. Section 6 concludes with some perspectives
for improving the overall toolchain and its potential inte-
gration into a larger (Model-Based Systems Engineering)
MBSE framework.

2 CRML in a Nutshell
CRML is a language for verifying temporal requirements
on systems with strong physical concerns and for which
the dynamical interactions with its environment and inter-
faced systems are of most importance.

The main goal of CRML is to be a high-level language
enabling the definition of requirements in quite readable
but computable expressions and serving as a pivotal for-
mat capable of targeting different verification engines ei-
ther by simulation (as documented here with its integra-
tion in OpenModelica) or by formal proof (future work

Figure 1. A typical realistic dynamic requirement.

not documented here about connection with model check-
ing approaches).

The following paragraphs briefly recap how a require-
ment could be expressed and verified using CRML. Ap-
pendix gives a quick overview of the CRML built-in el-
ements and most useful operators. Interested readers can
refer to the online tutorial (Buffoni et al. 2023) and the
language specifications (CRML v1.2 2023) for more de-
tails.

2.1 Requirement Expression
A requirement in CRML is defined as an expression com-
bining up to 4 items:

• a condition to be checked;

• a spatial locator indicating on which object the con-
dition has to be verified;

• a time locator defining when the condition has to be
satisfied;

• (optionally) a statistical target to indicate with
which performance the condition has to be satisfied.

A CRML requirement is therefore of a "special"
Boolean built-in type, here called Boolean4 stating that
a requirement value at instant t can vary among the
set {true, false, undefined, undecided}.
This is illustrated with the Traffic Light System exam-
ple of Section 4. The theoretical rationale for intro-
ducing these 4 values could be found in (Bouskela and
Jardin 2018) where a new temporal logic algebra is de-
fined to rigorously compute the value of requirement over
continuous-time periods and to enable the combination of
requirements together.

One may consider that checking requirements for phys-
ical systems always amounts more or less to checking
whether main variables of interest do not exceed thresh-
olds. The main difficulties that make the handling of re-
quirements more complex are as follows:

Requirement Verification with CRML and OpenModelica

972 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218971

Table 1. CRML pattern for a typical realistic dynamic requirement.

Req. Natural Language CRML Formalization

r1 During operation, the sys-
tem should stay within its
normal domain.

Requirement r1 is
’during’ inOperation ’ensure’

inNormalDomain;

r2 If the system fails to stay
within its operating do-
main, then it should not
stay outside of its normal
domain for more than x
minutes.

Requirement r2 is ’during’ inOperation ’
ensure’ (not inNormalDomain ’implies’
r2_outside);

Requirement r2_outside is
’during’ [inNormalDomain ’becomes false’,

inNormalDomain ’becomes false’ + x
mn] ’check at end’ b;

Boolean b is inOperation ’implies’
inNormalDomain;

r3 The system should not go
outside its normal domain
more than n times per year.

Requirement r3 is
’count’ ((b ’becomes false’) on [b ’

becomes false’, b ’becomes false’ + 1
year]) <= n;

r4 If (r1 and r2 and r3) fail,
then the system should
go to its backup domain
within y minutes as soon as
the failure is detected.

Requirement r4 is
not (r1 and r2 and r3) ’implies’
’during’ [(r1 and r2 and r3) ’becomes

false’, (r1 and r2 and r3) ’becomes
false’ + y mn]

’check at end’ inBackupDomain;

R (The "real" complete re-
quirement:) During sys-
tem operating life, r1 and
r2 and r3 and r4 should be
satisfied with a probability
of success of p.

Real prob is
estimator Probability (r1 and r2 and r3

and r4)
at inSystemOperatingLife ’becomes false’;

Requirement R is
’during’ inSystemOperatingLife
’check at end prob’ > p;

Poster Session

DOI Proceedings of the 16th International Modelica&FMI Conference 973
10.3384/ecp218971 September 8-10, 2025, Lucerne, Switzerland

• The authorized values vary dynamically depending
on the system operating modes and the periods of
time.

• Time response and/or probabilistic criteria should be
added to make the requirements achievable by real
systems.

• The number of requirements is rapidly growing (due
to the number of stakeholders, the complexity of
the system/subsystems/components, and the possible
evolution over the system lifespan).

The CRML language enables alleviating these prob-
lems by allowing the formal expression (Table 1) of re-
alistic dynamical requirements (Figure 1).

Listing 1. Example of user-defined operator in CRML

Operator [Periods] ’during’ Boolean b =
Periods [new Clock b, new Clock not b
];

The user can enhance the readability of CRML state-
ments by defining his own operators with a chosen syntax
simply by combining built-in operators. For example, the
during operator in Table 1 has been defined as a time
period constructor from a Boolean input (Listing 1). This
during operator is part of a library known as FORM-L
used in CRML to define time periods and conditions con-
structors that are frequently encountered (see Appendix
for more examples of custom operators).

2.2 Requirement Verification
As stated above, a CRML requirement is a Boolean4 vari-
able. Its value is: true (resp. false) if the condition
is satisfied (resp. violated) for the defined time locator,
undefined if the time locator has not been tested over
the test scenario, undecided if the test scenario has fin-
ished before a decision could be made (i.e., before the con-
dition has been violated or before the end of the time lo-
cator).

The value of a CRML requirement is computed from
verification models made of four different kinds of model
(Figure 2):

• the behavioral model capturing the behavior of de-
sign solutions;

• the requirement model defining envelopes of accept-
able behaviors;

• the binding model mapping the variables of the two
previous models and processing the required conver-
sions (the functional variables mentioned in the re-
quirements could have different naming convention
and units than the physical quantities computed in
the behavioral model);

• the test model specifying the operating scenarios to
be studied.

Figure 2. Requirement verification workflow.

3 Time Management in CRML
The main temporal constructs in CRML are Clock, Event,
Period and Periods.

The CRML2Modelica library contains the definitions
of basic types in CRML, including events and periods.
These definitions are split into two parts, a record struc-
ture that can then be passed along an argument in subse-
quent equations, and a model containing the equations for
the record.

In Modelica Events are represented by a trigger (a 4-
valued boolean) and a time of occurrence.

A single period, as shown in Listing 2 is defined by
opening and closing events, while a set of periods is de-
fined by clocks or sets of opening and closing events (lead-
ing to possibly overlapping time periods).

For example, a new Period instance is generated and
instantiated as follows:

Listing 2. Period instance creation in Modelica

record CRMLPeriod
Boolean isLeftBoundaryIncluded "If true,

the left boundaries of the time
periods are included";

Boolean isRightBoundaryIncluded "If true,
the right boundaries of the time
periods are included";

public
Types.Event start_event;
Types.Event close_event;
Boolean is_open;

end CRMLPeriod;

model CRMLPeriod_build
CRMLPeriod P;
equation
P.is_open =
if((CRMLtoModelica.Functions.

Event2Boolean (P.start_event) ==
Boolean4.true4) and not (
CRMLtoModelica.Functions.
Event2Boolean (P.close_event)==
Boolean4.true4))

then true else false;

Requirement Verification with CRML and OpenModelica

974 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218971

end CRMLPeriod_build;

4 Traffic Light Use-Case
The purpose of the Traffic Light example is to illustrate
how CRML could be used in the OpenModelica frame-
work from the requirement formalization phase to verifi-
cation by simulation and analysis phases.

This example was chosen to show, on a system known
to all, how some realistic requirements could be handled
in a very practical way with CRML and OpenModelica. It
is deliberately simplified to focus on the software tooling
part.

The mission of the Traffic Light System (TLS) is to
avoid accidents and fluidize traffic by minimizing conges-
tion. The main functions are, respectively: F1) give clear
instructions to each vehicle and F2) prioritize crossing du-
rations based on road traffic. The corresponding require-
ments could therefore check that "at most only one light
should be on" and "the time spent in a light mode must be
between two limits". A possible formalization in CRML
is given in Listing 3.

Listing 3. Requirements on the Traffic Light System

model TrafficLightSpecification is
// Import o f l i b r a r i e s
flatten {ETL, FORM_L}
union {
// L i s t o f e x t e r n a l v a r i a b l e s
Boolean red is external;
Boolean yellow is external;
Boolean green is external;

Boolean operation is external;
Boolean night_mode is external;
Boolean day_mode is not night_mode;

// D e f i n i t i o n o f r equ i r ement s
// req0 : "During ope ra t ion , no more than

one l i g h t shou ld be on (a f l a s h i n g
mode cou ld be s p e c i f i e d l a t e r) "

Boolean{} lights is {red, yellow, green};
Integer n_lights_on is card { filter

lights (element == true) };

Requirement req0 is
(’during’ operation) (’check anytime’ (

n_lights_on <= 1));

// Day_mode
// req1 : " A f t e r green , next s t ep i s y e l l ow

"
Requirement req1 is
((’after’ (green ’becomes true’) ’

before’ (yellow ’becomes true’))
while day_mode)

(’check count’ (red ’becomes true’) ’==’
0);

// req2 : "Step green shou ld s t ay a c t i v e
f o r at l e a s t 30 seconds "

Requirement req2 is

Figure 3. Traffic Light implementation as a circuit.

((’after’ (green ’becomes true’) ’for’
30) while day_mode)

(’ensure’ green);

// req3 : " A f t e r green becomes a c t i v e + 30
seconds , next s t ep shou ld turn ye l l ow
w i th i n 0 .2 seconds "

Requirement req3 is
((’after’ (green ’becomes true’ + 30) ’

for’ 0.2) while day_mode)
(’check at end’ yellow);

// Night_mode
// req4 : "During n ight , y e l l ow shou ld on l y

be used"
Requirement req4 is
(’during’ night_mode)
(’check count’ ((red or green) ’becomes

true’) ’==’ 0);
// req5 : "During n ight , y e l l ow shou ld

f l a s h eve ry 2 seconds "
Requirement req5a is
(’during’ night_mode)
(’check count’ (yellow ’becomes true’) ’

<>’ 0);
Requirement req5b is
(’after’ (yellow ’becomes true’) ’within

’ 2) while night_mode)
(’ensure’ yellow);

Requirement req5c is
(’after’ (yellow ’becomes true’) ’for’

2) while night_mode)
(’check at end’ not yellow);

Requirement req5 is req5a and req5b and
req5c;

};

The physical behavior of TLS could be modeled as an
electronic circuit that activates three different lights (Fig-
ure 3). The control part of TLS could be modeled in two
different ways: either as a grafcet or as a finite-state ma-
chine using the synchronous built-in operators of the Mod-
elica language as shown in Figure 4.

4.1 CRML Compilation

The CRML2Modelica compiler is a proof of concept com-
piler written in Java. It is open source and available on

Poster Session

DOI Proceedings of the 16th International Modelica&FMI Conference 975
10.3384/ecp218971 September 8-10, 2025, Lucerne, Switzerland

Figure 4. Traffic Light control implemented as a state machine.

GitHub 1. Currently it supports almost all the Extended
Temporal Library (ETL) library blocks which define all
the operators required for computing Boolean4-status of a
requirement.

The CRML2Modelica compiler goes through the
CRML file once first, to retrieve all signatures of user-
defined operators and category’s definitions and then a
second time translating all the definitions. In addition
to temporal aspects, three CRML features require special
handling: Boolean4, categories and sets.

Boolean4
Boolean4 is defined in Modelica as an enumeration as
shown in Listing 4.

Listing 4. Boolean4 translation in Modelica

type Boolean4 = enumeration(undefined,
undecided, false4, true4);

Categories
Categories are applied directly to the operator definitions,
and the corresponding operators are replaced. For exam-
ple, the operator set to false in Listing 5 is trans-
lated to Modelica as shown in Listing 6 and the operator
id is replaced by cte_false as specified by the cate-
gory varying1.

Listing 5. Category in CRML

Operator [Boolean] ’id’ Boolean b = b;
Operator [Boolean] ’cte_false’ Boolean

b = false;
Category varying1 = { (’id’, ’cte_false’)

};
Operator [Boolean] ’set to false’ Boolean

b = apply varying1 on (’id’ b);
...

Boolean b_varying1_on_id_true is ’set to
false’ b_true; // va lue shou ld be f a l s e

1https://github.com/OpenModelica/CRML

Listing 6. Category translation to Modelica

model ’set to false’
output CRMLtoModelica.Types.Boolean4 out;
input CRMLtoModelica.Types.Boolean4 b;
’cte_false’ ’cte_false0’(b=b);
equation
out =’cte_false0’.out;

end ’set to false’;

Sets

Sets are handled as fixed size arrays in the current imple-
mentation, for sets with a known number of elements, the
array size is set accordingly, for sets with an unknown size,
the array size is set to a predefined buffer size. Periods are
a special case of this and are currently mapped to a record
with an array with a static size, but if a larger number of
events is expected, the buffer size can be increased with a
flag to the compiler.

In our Julia-based OpenModelica framework (Tinner-
holm, Pop, and Sjölund 2022) we support automatic re-
compilation during simulation and one can increase/shrink
the size of an array or change any other aspect of the
model. An example of a when equation triggering such
a change is given in Listing 7. Using this functionality
in the future, we can make the translated Modelica code
more flexible and more efficient as resizing can be tailored
to the needs of each variable.

Listing 7. Dynamic Array Resize

when requestedSize > N then
// Recompi la t ion on parameter change
recompilation(N /∗ what to change ∗/,

requestedSize + 100 /∗ va lue ∗/);
end when;

4.2 Requirement Verification
A requirement model is verified for a behavior model and
a scenario. In this paper we focus on Modelica, but as a
requirement model can be exported as an FMU, it could be
verified against any other FMU representing a behavioral
model.

In order to identify the inputs from the behavioural
model, CRML uses external variables, that are vari-
ables that do not need to be instantiated within the model.
A list of external variables can be exported during com-
pilation into a file. This list can then be fed into a semi-
automated bindings algorithm for mapping requirements
to the behavioural model.

A verification scenario that instantiates the requirement
and behavioural models and connects them together can
then be simulated and the results analysed.

The code generated for requirements is composed to-
gether with the unmodified Modelica model and the exter-
nal variables in the CRML are bound to the Modelica vari-
ables. Usually this results in a balanced Modelica model
but is certain cases, usually with badly specified CRML it
might be possible to build invalid models.

Requirement Verification with CRML and OpenModelica

976 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218971

Figure 5. CRML file display in OMEdit and its Modelica trans-
lation.

Figure 6. Simulation of the generated Modelica file correspond-
ing to the original CRML file.

5 CRML Support in M&S tools
We have started integrating the CRML tools into Open-
Modelica. The CRML files can be loaded in the Open-
Modelica Connection Editor (OMEdit) and the text dis-
played with syntax highlighting, see Figure 5, top part.
It is also possible to load entire directories containing
CRML files.

The CRML files can be translated to Modelica from
OMEdit via menu actions (via right click) and the trans-
lated .mo files are automatically loaded into OMEdit, see
Figure 5, bottom part.

As expected, the generated Modelica files can also be
simulated, as in Figure 6.

To tell OMEdit where it can find the tools and required
Modelica libraries for the CRML translation a settings di-
alog is used, see Figure 7. If additional Modelica libraries
are needed, one can specify them here.

The CRML compiler also specifies a test suite with
about 150 test cases based on the ETL and FORML library
blocks as well as more complex use-cases. This test suite
can be run command line or from OMEdit and generates a
test report that allows to evaluate coverage progress. Cur-
rently around 30% of the tests are successful as the test
suite also includes features that are not yet supported in
the compiler.

Using CRML files as text is only the first integration
step in OpenModelica. Work is ongoing to support a

Figure 7. CRML tools settings in OMEdit.

Figure 8. A graphical representation for CRML for the given
example.

graphical representation language for CRML similar to
UML as proposed by (Mazurié 2023), see Figure 8.

6 Conclusion and Future Work
CRML tooling is progressing to enable the formalization
of realistic dynamic requirements of complex systems. In-
tegration into OpenModelica enables a first step towards
an easy access for the Modelica/FMI community to check
requirements with simulation means. In order to be ap-
plicable to industrial-level use cases, future work plans to
improve the toolset in several areas:

• Improvement of the user interface to visualise re-
quirements simulation results as dashboards and
structured html pages.

• Integration with the ReqIF standard (OMG 2025a)
to provide a native gateway to the requirements man-
agement and traceability tools. This is in particular

Poster Session

DOI Proceedings of the 16th International Modelica&FMI Conference 977
10.3384/ecp218971 September 8-10, 2025, Lucerne, Switzerland

needed to handle the metadata associated with the
lifecycle of each requirement, coordinate the teams
issuing requirements and deduce which set of re-
quirements is valid and must be verified at a given
point in time during the project.

• Alignment with the emerging SysML v2 standard
(OMG 2025b) to structure and better visualise a large
volume of requirements.

Other work is also planned, notably on the use of struc-
tural analysis techniques to statically verify consistency
between CRML requirements and the introduction of the
concept of Assume/Guarantee contract to facilitate the
generation of test scenarios from CRML constraints.

7 Acknowledgements
The CRML initiative has initially been supported by
the ITEA3 EMBrACE project, as well as National Re-
search, Development and Innovation Fund of Hungary,
financed under the [2019-2.1.1-EUREKA-2019-00001]
funding scheme. It is continued and improved within the
Open Source Modelica Consortium partly through EDF
funding.

References
Alur, Rajeev (1999). “Timed automata”. In: International Con-

ference on Computer Aided Verification. Springer, pp. 8–22.
Baier, Christel and Joost-Pieter Katoen (2008). Principles of

model checking. MIT press.
Bouskela, Daniel, Lena Buffoni, et al. (2023). “The Common

Requirement Modeling Language”. In: Proceedings of the
Modelica Conference 2023.

Bouskela, Daniel and Audrey Jardin (2018). “ETL: A New
temporal language for the verification of cyber-physical sys-
tems”. In: Proceedings of the Annual IEEE International
Systems Conference 2018. DOI: 10 . 1109 / SYSCON . 2018 .
8369502.

Bretz, Lukas, Lydia Kaiser, and Roman Dumitrescu (2019). “An
analysis of barriers for the introduction of Systems Engi-
neering”. In: Proceedings of the 29th CIRP Design. Elsevier,
pp. 783–789.

Buffoni, Lena et al. (2023). Tutorial: CRML A Language for
Verifying Realistic Dynamic Requirements. Tech. rep. MOD-
PROD. URL: https://github.com/OpenModelica/CRML/tree/
main/resources/crml_tutorial.

CRML v1.2 (2023). Specification v1.2 of the Common Re-
quirement Modeling Language. Tech. rep. ITEA EMBrACE
Project. URL: https : / / github. com / OpenModelica / CRML /
blob/main/language_specification/CRML%20specification_
v1.2.pdf.

Henzinger, Thomas A (2000). “The theory of hybrid automata”.
In: Verification of digital and hybrid systems. Springer,
pp. 265–292.

INCOSE Fellows (2019). Briefing to INCOSE Board of Direc-
tors. Tech. rep. INCOSE.

Kiniry, Joseph et al. (2022). High Assurance Rigorous Digital
Engineering for Nuclear Safety (HARDENS) Final Report.
Tech. rep. Galois.

Mazurié, Baptiste (2023). “Start of a new design method for a
competitive Small Modular Reactor (SMR) adaptable to fu-
ture uses”. MA thesis. KTH, School of Engineering Sciences
(SCI).

OMG (2017). Unified Modeling Language (UML) version 2.5.1.
URL: https://www.omg.org/spec/UML/2.5.1/PDF (visited on
2025-07-29).

OMG (2025a). Requirements Interchange Format (ReqIF). URL:
https://www.omg.org/reqif/ (visited on 2025-07-31).

OMG (2025b). Systems Modeling Language (SysML) version 2.
URL: https : / / github. com/Systems- Modeling /SysML- v2-
Release / blob / master / doc / 2a - OMG _Systems _Modeling _
Language.pdf (visited on 2025-07-29).

SEBoK v2.11 (2024). Guide to the Systems Engineering Body
of Knowledge. https://sebokwiki.org/wiki/.

Tinnerholm, John, Adrian Pop, and Martin Sjölund (2022).
“A Modular, Extensible, and Modelica-Standard-Compliant
OpenModelica Compiler Framework in Julia Supporting
Structural Variability”. In: Electronics 11.11, 1772. DOI: 10.
3390/electronics11111772.

Appendix: CRML Cheat Sheet
Key Concepts

Requirements

A requirement is a Boolean4 combining up to 4
items:

R = (Where) (When) (What) [How well]

Multiple requirements can be combined according to
the algebra defined on the Boolean4 type.

b true false undecided undefined
not b false true undecided undefined

b1 and b2 true false undecided undefined
true true false undecided true
false false false false false

undecided undecided false undecided undecided
undefined true false undecided undefined

Syntax

Notation

[expr] optional expression
{ expr } expression repeated
expr_1 | ... | expr_n n expressions
’char’ . character
"string" . string

Expressions

[[type] ident is] [value |
external] [; | ,] expression
// This is single-line comment
/* This is a multi-line */ . . comment

Requirement Verification with CRML and OpenModelica

978 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218971

https://doi.org/10.1109/SYSCON.2018.8369502
https://doi.org/10.1109/SYSCON.2018.8369502
https://github.com/OpenModelica/CRML/tree/main/resources/crml_tutorial
https://github.com/OpenModelica/CRML/tree/main/resources/crml_tutorial
https://github.com/OpenModelica/CRML/blob/main/language_specification/CRML%20specification_v1.2.pdf
https://github.com/OpenModelica/CRML/blob/main/language_specification/CRML%20specification_v1.2.pdf
https://github.com/OpenModelica/CRML/blob/main/language_specification/CRML%20specification_v1.2.pdf
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/reqif/
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/2a-OMG_Systems_Modeling_Language.pdf
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/2a-OMG_Systems_Modeling_Language.pdf
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/2a-OMG_Systems_Modeling_Language.pdf
https://doi.org/10.3390/electronics11111772
https://doi.org/10.3390/electronics11111772

Keywords

Types: Boolean, Category, class, Clock, Event, Inte-
ger, library, model, Operator, package, Period, Peri-
ods, Probability, Real, String, Template, type
Special values: false, true, undecided, undefined,
time
Special characters: (,),[,], {, }, „ ;, ., ", ’, E, e, //, /*,
*/, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Operators: =, +, -, *, /, <, <=, >, >=, ==, <>, ˆ,
acos, alias, and, asin, associate, at, card, constant,
cos, duration, element, else, end, estimator, exp, ex-
tends, external, filter, flatten, forbid, if, integrate, is,
log, log10, mod, new, not, on, or, parameter, par-
tial, proj, redeclare, sin, start, then, tick, time from,
union, variance, while, with

Architecture

Real Operators

Real x is decimal_value constructor
Real x is new Real n . . . constructor from
Integer n
x1 + | - x2 binary addition | subtraction
+ | -x1 unary addition | subtraction
x1 * x2 . multiplication
x1 / x2 . division
x1ˆx2 . exponentiation

if b then x1 else x2 if-clause
x1 at c . value at Clock c
duration b on P duration during which
Boolean b is true over a Period P
e2 - e1 . . . elapsed duration between two Event
time frome e1 . . . elapsed time from an Event

Integer Operators

Integer n is integer_value constructor
Integer n is new Integer x constructor
from Real x
n1 + | - n2 binary addition | subtraction
+ | - n1 unary addition | subtraction
n1 * n2 . multiplication
n1 / n2 . division
n1ˆn2 . exponentiation

if b then n1 else n2 if-clause
n1 at c value of Integer n1 at Clock c
card c number of ticks of Clock c
card S number of elements of set S

String Operators

String s is string_value . . . constructor
String s is new String x . . . constructor
from Real | Integer | Boolean x
s1 + s2 . concatenation

Boolean Operators

Boolean b is true | false |
undecided | undefined constructor
Boolean b is new Boolean c constructor
from Clock c
b1 and b2 . conjunction
b1 or b2 . disjunction
not b . negation
b1 * b2 . filter
b1 + b2 . accumulation
integrate b1 on P integration over a Period
b1 == b2 . equality
if b then b1 else b2 if-clause
b1 at c . value at Clock c
x1 > x2 strictly greater than for Real | Integer xi
x1 < x2 . . . strictly less than for Real | Integer xi
n1 >= | <= n2 comparison of Integer ni
n1 <> n2 different from for Integer ni
x1 == x2 equality for Integer | Type xi
e1 < | <= e2 (strictly) before for Event ei
e1 > | >= e2 (strictly) after for Event ei

Event Operators

Event e is new Event b . constructor from
first occurence of Boolean b
e1 proj c projection on ticks of Clock c
e1 proj(d) c . . projection for duration Real d
e1 + d . delay of Real d
tick c current tick of Clock c
p start opening event of Period p
p end closing event of Period p

Clock Operators

Clock c is new Clock b . constructor from
Boolean b
c1 proj c2 projection on ticks of Clock c2
c1 proj(d) c2 . projection for duration Real d
c1 + d . delay of Real d
c1 filter cond tick filter

Poster Session

DOI Proceedings of the 16th International Modelica&FMI Conference 979
10.3384/ecp218971 September 8-10, 2025, Lucerne, Switzerland

c1 and c2 . conjunction
c1 or c2 . disjunction

Period and Periods Operators

Period P is [|] e1, e2 [|] constructor
from Event
Periods P is {P1, P2, ..., Pn} . con-
structor from a set of Period
Periods P is [|] c1, c2 [|] con-
structor from Clock
P2 while P1 . filter

Probability Operators

Probability px is new Probability
b constructor from Boolean b
Probability px is new Probability
b at c constructor at ticks of Clock c
estimator px . estimator
estimator variance px . variance estimator

Sets Operators

[T{} S is]{u1,...,un} . . non-empty typed
set
[T{} S is]{} empty typed set of type T
T{} S is {expr} special set with elements of
different types (=class, model, library, or package)
S1 union S2 union of sets
flatten S1 flattening of a set
filter(S1 cond (element)) filter

Customisation

Type Constructors

type T2 is (T1 x is value(a1,...,
an)){Type D1, ...Dn; D1 a1 [is
value];...} . custom type
partial type T is value partial type
T1 alias s renaming type T1 with String s
T1 forbid f1,...,fn forbidding operators fi

Operator Constructors

Operator [T] ’w1’ T1 u1 ... ’wn’
Tn un = expr . . custom operator ’w1w2wn’ on
inputs ui of type Ti
Template w1 u1 ... wn un =
expr custom operator ’w1w2wn’ on Boolean

Libraries

ETL Operators for Evaluating Booleans

c ’inside’ p .
b ’becomes true’ .
b ’becomes false’ .
b ’becomes true inside’ p
b ’becomes false inside’ p
’count’ c ’inside’ p
’decide’ b ’over’ p . decision event, could
be violation of Boolean b or end of Period p
’evaluate’ b ’over’ p accumulated value
over a Period p
’check’ b ’over’ P accumulated value over
a set of Periods

FORML Operators for Expressing Periods

’from’ c

’after’ c

’before’ c . .

’until’ c
’during’ b .
’when’ c .

FORML Operators for Expressing Conditions

’check at end’

’check anytime’

P ’ensure’ b
P ’check count’ c ’<=’ n

Requirement Verification with CRML and OpenModelica

980 Proceedings of the 16th International Modelica&FMI Conference DOI
 September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218971

	Introduction
	CRML in a Nutshell
	Requirement Expression
	Requirement Verification

	Time Management in CRML
	Traffic Light Use-Case
	CRML Compilation
	Requirement Verification

	CRML Support in M&S tools
	Conclusion and Future Work
	Acknowledgements

