Rumoca: Towards a Translator from Modelica to Algebraic
Modeling Languages

Micah K. Condie! Abigaile Woodbury'

James M. Goppert!

Joel A.E. Andersson?

ISchool of Aeronautics and Astronautics, Purdue University, United States,
{condiem, awoodbu, jgoppert }@purdue.edu
2Freelance software developer and consultant, United States & Finland, joel@jaeandersson.com

Abstract

We present Rumoca, a translator written in Rust that forms
the basis of a symbolic toolchain, automatically convert-
ing Modelica models into a variety of target algebraic
modeling languages. Rumoca is demonstrated on three
models and translated into two different algebraic repre-
sentations: CasADi and SymPy. Designed for generaliz-
ability, Rumoca has the potential to accommodate increas-
ingly complex Modelica models and additional target lan-
guages.

Keywords: Modelica, symbolic computation, algebraic
modeling, cyber-physical systems, Model Translation,
CasADi, SymPy

1 Introduction

Cyber-physical systems (CPSs) are designed using a va-
riety of modeling languages and tools, each with its own
advantages (Amrani et al. 2021). However, interoperabil-
ity between these tools remains limited. Porting models
across platforms often requires manual conversion or un-
verifiable code generation techniques, such as those based
on large language models (LLMs), which is both time-
consuming and error-prone (Liu et al. 2020). To address
this, we present Rumoca, a translator written in Rust that
converts Modelica models into various algebraic model-
ing backends, enabling symbolic manipulation, automatic
differentiation, and optimization (Jakob Andersson et al.
2019).

The long-term vision for Rumoca is to provide a flexi-
ble, extensible compiler infrastructure for hybrid systems
modeling and analysis. It targets full coverage of a flat-
tened Modelica representation—stripped of class hierar-
chies as defined later in this paper—and currently supports
SymPy and CasADi backends. By exposing a lightweight
abstract syntax tree (AST) and a modular templating en-
gine, Rumoca makes it easy to develop additional code
generation backends.

1.1 Modeling and Compiler Languages

Modelica was selected as the source language due to
its concise semantics for modeling CPSs and its precise
mapping to differential-algebraic equations (DAE) as de-
fined in the language standard (Henriksson et al. 2011).

These characteristics make it more verifiable than general-
purpose languages like Python and C++, while availabil-
ity of graphical editors and a large user community further
support its adoption.

Rumoca is implemented in Rust, which offers signif-
icant benefits for compiler construction. The language
provides strong static typing and memory safety without
garbage collection, helping to eliminate entire classes of
bugs while maintaining runtime performance. Modern
features like pattern matching, algebraic data types, and
expressive traits support the creation of robust and main-
tainable translation infrastructure (Klabnik and Nichols
2019; Matsakis and Klock 2014; Jung et al. 2018).

1.2 Target Languages

In designing Rumoca, CasADi and SymPy were selected
as the primary languages for translated Modelica models.
These languages were chosen because of their strengths in
symbolic and numerical computation and optimization.

CasADi is a symbolic framework for algorithmic
differentiation and numeric optimization, particularly
well-suited for control and estimation in dynamic sys-
tems (Jakob Andersson et al. 2019). It represents ex-
pressions as directed acyclic graphs (DAGs), which al-
lows for efficient symbolic manipulation and code gen-
eration. This structured representation offers significant
advantages for optimization tasks compared to black-box
models, such as those commonly encapsulated in Func-
tional Mock-up Units (FMUs). CasADi is widely used
in optimal control, parameter estimation, and nonlinear
programming, especially in embedded applications where
runtime performance and gradient computation are criti-
cal. By translating Modelica models into CasADi expres-
sions, Rumoca enables users to perform gradient-based
optimization, sensitivity analysis, and simulation leverag-
ing high-performance solvers.

A key advantage of using CasADi is its close inte-
gration with numerical solvers like IPOPT (Biegler et al.
2009) and C code generation. This makes it highly suit-
able for deploying optimized controllers or estimators on
embedded platforms. A disadvantage of CasADi is its
lack of object-oriented features, which makes it difficult to
scale to larger, more sophisticated models. However, since
object-oriented design is a strength of Modelica, CasADi

DOI
10.3384/ecp2181009

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

1009

Rumoca: Towards a Translator from Modelica to Algebraic Modeling Languages

is a strong candidate for serving as the backend of the sym-
bolic toolchain enabled by Rumoca.

SymPy, in contrast, is a general-purpose computer alge-
bra system written entirely in Python (Meurer et al. 2017).
It supports a broad range of symbolic operations including
simplification, equation solving, symbolic differentiation
and integration, and matrix algebra. SymPy is especially
useful for verifying model structure, performing symbolic
manipulations, and producing readable mathematical ex-
pressions. These capabilities make SymPy an ideal target
when the goal is to inspect or manipulate equations alge-
braically.

Although SymPy lacks the high-performance optimiza-
tion and solver integration features of CasAD], it excels in
educational, research, and verification settings. SymPy’s
strength lies in its ability to express mathematical models
symbolically and perform analytical transformations, in-
cluding the computation of Jacobians, Laplace transforms,
or simplification of symbolic DAE systems. Its integration
with Jupyter and Python’s scientific stack makes it highly
accessible and extendable. As an immediate application
of the SymPy backend, we intend to leverage these com-
putational features to construct reachability proofs.

1.3 Related Work

Numerous tools exist for compiling or translating Model-
ica models, each with distinct design goals. Rumoca dis-
tinguishes itself by acting as a translator—focused on high-
level symbolic representation and model interoperability—
rather than as a compiler generating low-level machine
code.

The most mature open-source option is OpenModel-
ica, which supports the Modelica Standard Library and
offers a graphical user interface via OMEdit ((OSMC)
2025). While well-suited for simulation and code gener-
ation, OpenModelica does not currently support symbolic
backends such as CasADi or SymPy. Since the OpenMod-
elica compiler does support multi-code generation back-
ends, it is possible it could be extended to these languages.
Rumoca, however, offers unique advantages by being im-
plemented in Rust, having algebraic modeling languages
in mind.

Marco is a high-performance Modelica compiler writ-
ten in C++ and based on LLVM (Agosta et al. 2023). It
targets efficient simulation of large-scale models, priori-
tizing speed and robustness. However, Marco is focused
on generating C code and does not offer translation into
symbolic frameworks, limiting its utility for applications
involving algebraic transformation or formal analysis.

In constrast to traditional Modelica compilers that focus
on simulation and code generation, Rumoca is designed as
a translator—targeting symbolic and algebraic frameworks.
Its purpose is not to compete on execution speed or com-
plete language coverage, but to facilitate workflows in-
volving optimization, model verification, and hybrid sys-
tem analysis. We envision a workflow that utilizes Open-
Modelica or Marco, by using these compilers to convert

Modelica models to an intermediate representation that
could be handled by Rumoca. The clear candidate would
be the ongoing effort to define a BaseModelica language
specification, which is a simplified subset of Modelica.

While Rumoca may not be able to handle a com-
plex model directly, the model could first pass through a
compiler such as Marco or OpenModelica, removing its
object-oriented structure, and produce the model in Base-
Modelica. The BaseModelica version could then be pro-
cessed by Rumoca. This proposed workflow is shown in
Figure 1.

Complex
Modelica
Model

Simple
Modelica
Model

FMU/python
based
simulation.

BaseModelica Rumoca CasADi/ —
SymPy

Automatic
differentiation/
optimization

Marco/
OpenModelica

Symbolic
Jacobians

Figure 1. Proposed workflow utilizing compilers for generation
of BaseModelica. Rumoca is a translator that takes simple Mod-
elica models to target algebraic modeling languages. Complex
models could first be passed through a more extensive compiler,
removing the object oriented structure, before being processed
by Rumoca.

Another notable effort is Pymoca, an open-source trans-
lator written in Python and based on ANTLR. It shares
similar goals with Rumoca and provides a Pythonic inter-
face for model transformation (Contributors 2025). Py-
moca benefits from accessibility and ease of use, espe-
cially for Python developers. However, it suffers from
significant performance limitations due to Python’s speed
and the use of un-typed ASTs. The lack of strong typ-
ing and the slow parsing pipeline—where the source is first
converted into a parse tree before AST generation—makes
Pymoca less suitable for handling large-scale models effi-
ciently.

1.4 Overview

The remainder of the paper is structured as follows. Sec-
tion 2 explains the details of Rumoca, including modifi-
cations to the Parol parser, structure of the AST, and use
of Jinja2 templates for the generator code. Section 3 de-
scribes some changes that were made to the CasADi li-
brary to more easily accommodate the Modelica struc-
ture. Section 4 demonstrates Rumoca on three example
systems, converting them from Modelica to Sympy and
CasADi. Section 5 provides a summary and direction for
future work on the Rumoca translator.

1010

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp2181009

Poster Session

2 Rumoca Details

The compiler pipeline can be understood in terms of four
components. First, the automatically generated parse tree
is overwritten to a customized IR format. Second, this
AST is flattened, removing class hierarchies. Third, the
flattened IR is lowered into a DAE representation, consis-
tent with the semantics defined by the Modelica specifica-
tion. Finally, the DAE system is rendered into the target
language using a template engine.

2.1 Parser

For parsing, Rumoca is using the Parol parser (Singer
2025). Parol is a Rust based parser generator, similar to
ANTLR. Given an EBNF grammar file, Parol can auto-
matically generate a parser. While we evaluated other
parser generators such as ANTLR and LALRPOP, we
found that Parol was best suited for the project. ANTLR
handles EBNF grammar well, but does not have a native
Rust implementation, and lacks the capability to signif-
icantly modify the automatically generated parser code.
ANTLR does however support (LR*) grammar with arbi-
trary look-ahead which simplifies grammar handling.

The LALRPOP parser generator, which handles LR(1)
grammar, we found to be limiting, and the compilation
times for the compiler slowed our development cycle.
LALRPOP did provide an easy mechanism for modify-
ing the generated parser tree at runtime so that a second
pass over the parser tree was not generated to obtain an
abstract syntax tree.

Finally, Parol was selected as it had the advantage of
supporting EBNF grammar and allowing for customiza-
tion of the parse tree at parse time. When customization
of the parse tree is necessary to obtain a desirable abstract
syntax tree to be used as an internal representation, it is
useful to selectively re-implement the parse tree gener-
ation for specific language elements. The automatically
generated parsing functions may then be leveraged when
customization is not necessary. Parol has a fast compile
time, similar to ANTLR, and is a LL(k) parser. LL(k)
means that the EBNF grammar is analyze for the largest
look-ahead necessary. We were able to implement the
Modelica language specification with a look-ahead of 3
tokens (k = 3). In order to simplify the implementation of
the Modelica language parser, we requested several fea-
tures to be added to Parol, and they were quickly imple-
mented.

2.2 Language Coverage

While the Parol parser automatically generates a parse
tree for the entire Modelica language grammar, the steps
converting it to the intermediate representations require
significant customization. For this reason, Rumoca only
supports a portion of the Modelica language. Indepen-
dentyly, there is an ongoing effort to define a BaseMod-
elica language specification, which is a simplified subset
of Modelica. It is our goal to have Rumoca work for the

entirety of the BaseModelica features. Table 1 shows a
preliminary draft of the features that may be included in
BaseModelica, and which are currently supported by Ru-
moca. The features listed were taken from the BaseMod-
elica meeting notes (Modelica Association 2023). We en-
vision that compilers such as OMC or Marco will compile
to BaseModelica, so that by chaining the tools any Mod-
elica model could be handled by Rumoca.

Table 1. Rumoca support for selected Modelica features

Modelica Feature Supported
Scalar types (e.g., Real, Integer) Yes
Record and enum types No
Arrays (decl. & indexing) Partial
Component decl. Yes
Equations and algorithms Yes
Source location metadata No
Documentation strings Yes
Vendor-specific annotations No
All variabilities (no param eval) Yes
Params treated as const Yes
Preserve values of inlined constants Yes
Relaxed record field access No
Relaxed array subscripting Partial
Naming of intermediate vars No
Alias expressions (ref & sign) No
Used function declarations Yes

In addition to the features listed, we have added sup-
port for simple class structures. This is because we intend
to use Rumoca for hierarchical reachability proofs which
require nested components.

23

Jinja2, a widely used text templating engine for Python, is
employed to construct the generator code. With millions
of downloads per month and integration into major frame-
works such as Flask and Ansible, Jinja2 benefits from a
large and active user base (Index 2024; Projects 2024; Red
Hat 2024). In Rumoca, each Jinja template defines how
the symbolic expressions described in the AST are ren-
dered into source code. Due to the common DAE struc-
ture of the AST, templates can be created and modified
for specific target languages with relative ease. This gives
Rumoca the advantage of being extendable to a variety of
backends with minimal effort and expertise. This allows
for end-users to create custom backends. Examples and
documentation for writing custom templates are available
online.!

An example of how a template defines the handling of
model parameters is shown below. Listing 1 presents a
portion of the template for rendering the CasADi repre-

Generator Code

"https://github.com/CogniPilot/rumoca/blob/
main/tests/templates

DOI
10.3384/ecp2181009

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

1011

https://github.com/CogniPilot/rumoca/blob/main/tests/templates
https://github.com/CogniPilot/rumoca/blob/main/tests/templates

Rumoca: Towards a Translator from Modelica to Algebraic Modeling Languages

sentation, while Listing 2 displays the corresponding ren-
dered code.

Listing 1. Jinja2 template for parameter handling

{%$- elif var == "p’ %}
Declare {{ var }}
% for ¢ in dae[var] -%}
{{ c.name }} = dae.add(’'{{ c.name }}’,
"parameter’, ’‘tunable’, dict (start
= {{ render_expression(c.start) 1}})
)

% endfor -%}

Listing 2. Rendered code for parameter declarations

Declare p

e = dae.add(’'e’, ’"parameter’, ’tunable’,
dict (start = 0.8))
hO = dae.add(’h0’, ’'parameter’, ’'tunable’,

dict (start =

3 CasADi Additions

In this work we leverage and extend CasADi’s DaeBuilder
class (Joel Andersson 2024), which can be used for both
import of Modelica in both symbolic form and in the
form of exported FMUs adhering to FMI 2.0 and 3.0. In
the recent CasADi 3.7 release, the DaeBuilder class was
refactored to use a representation of model variables that
closely resembles the representation of model variables in
the FMI standard. The same release also saw a new refac-
tored high-level interface for symbolically defining model
equations, now including model equations with event dy-
namics, compatible with the recently added support for
analytic derivative calculations for dynamic systems with
events (Joel Andersson and Goppert 2025). Another im-
portant update is an extension of CasADi’s support for
FMI export, which can now be used for systems with
events. We refer to the updated CasADi user guide for
details on this support.

1.0))

4 Examples

This section demonstrates the use of Rumoca on three
representative examples: a simple bouncing ball, a mass-
spring-damper system, and a more complex quadrotor
model. For each case, Rumoca takes the corresponding
Modelica model and translates it into either a SymPy or
CasADi representation, depending on the selected back-
end template. These examples illustrate the class of sys-
tems that Rumoca currently supports, ranging from basic
hybrid dynamics to nonlinear multibody systems.

In addition to translation, further analyses are per-
formed to highlight some of the benefits of the target
symbolic languages. Specifically, an optimal disturbance
attack is computed for the mass-spring-damper model,
leveraging CasADi’s directed acyclic graph (DAG) struc-
ture and automatic differentiation. For the quadrotor, the
Jacobian matrix is extracted using SymPy’s symbolic dif-
ferentiation capabilities, which enable exact analytical ex-
pressions for sensitivity analysis and control design.

Rumoca is accessed through a command-line interface.
Listing 3 shows the help menu output. As shown, Ru-
moca requires two inputs: a Modelica model and a code
generation template specifying the target language. Each
example uses a distinct Modelica file and a corresponding
template—either for SymPy or CasADi—to produce the
desired output.

Listing 3. Rumoca Help Menu

Rumoca Modelica Translator

Usage: rumoca [OPTIONS] —--template-file <
TEMPLATE_FILE> —--model-file <MODEL_FILE
>

Options:

-t, ——template-file <TEMPLATE_FILE> The
template

-m, —--model-file <MODEL_FILE> The
model file to compile

-v, ——-verbose
Verbose output

-h, —-help
Print help

-V, —-version

Print version

4.1 Bouncing Ball

As a first example, consider the classic bouncing ball
model. Listing 4 shows this in Modelica.

Listing 4. Bouncing Ball model in Modelica

model BouncingBall "The ’classic’
ball model"
parameter Real e=0.8 "Coefficient of
restitution";
parameter Real h0=1.0 "Initial height";

bouncing

Real h = 5.0 "Height";
Real v "Velocity";
Real z;
equation
z = 2xh + v;
der (h) = v;
der (v) = -9.81;
when h<0 then

reinit (v,
end when;
end BouncingBall;

—expre(v));

The bouncing ball model above is processed by Ru-
moca using the CasADi template, which generates a cor-
responding Python script. Listing 4.1 shows the command
used to run this transformation via the command-line in-
terface.

rumoca BouncingBall.mo -t casadi.jinja >
bouncing_ball_ca.py

This generated script, here called "bounc-
ing_ball_ca.py", contains a class with several methods. A
portion of this code is shown in Listing 5.

Listing 5. A portion of the casadi code generated by rumoca
(bouncing_ball_ca.py)

1012

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp2181009

Poster Session

def cO0():
return (h < 0.0)
#
Define reset functions: fr
def cO0_fr():
return dae.reinit ("v", —-((e x pre_v)))
dae.when(cO0(), [cO_fr()])
#
Declare x_dot
der_h = dae.der (h)
der_v = dae.der (v)
#

The example in Listing 6 demonstrates how to simulate
the bouncing ball using the generated CasADi class, the
result of which, is Figure 2 .

Listing 6. Simulation of the bouncing ball model using CasADi
backend

import bouncing_ball_ca
import matplotlib.pyplot as plt

model = bouncing_ball_ca.Model ("
bouncing_ball")

tgrid, res = model.simulate (t0=0,
=0.01)

tf=8, dt

plt.plot (tgrid, res[’'xf’].T, label=model.
dae.x())

plt.grid()

plt.legend()

plt.show ()

\/ VA VNNETH

7.51

5.0

2.51

0.0 1

State

—2.51

—5.01

—7.51

—10.01

0 2 4 6 8
Time (s)

Figure 2. Height (m) and velocity (m/s) of a bouncing ball as a
function of time. The simulation was done using the automati-
cally generated CasADi script.

Consider now the example of using Rumoca on the
bouncing ball model with the SymPy template. Here,
the generated code is a script "bouncing_ball_sympy.py."
As with the CasADi generated script, this code contains
a class with several methods. A portion of this code is
shown in Listing 7.

Listing 7. A portion of the SymPy code generated by rumoca
("bouncing_ball_sympy.py")

Define Reset Functions: fr

def __fr cO0(x):

pre_h, pre_v = self.x
h, v = self.x
-((e * pre_v))
return [
h,
v]
self.fr_c0 = sympy.lambdify([self.x,
1, __fr cO(self.x))

v =

self.p

#

Define Condition Update Function: fc

self.fc = sympy.Tuple (%[
(h < 0.0)1)
self.f_c = sympy.lambdify (

args=[self.time, self.x],
expr=self.fc,

modules=["numpy’])

Listing 8 demonstrates running the bouncing ball sim-
ulation with the SymPy script, adjusting the initial height
and velocity as well as the coefficient of restitution param-
eter. The corresponding plot can be seen in Figure 3.

Listing 8. Simulation of the bouncing ball model using SymPy
backend

import bouncing _ball_sympy
import matplotlib.pyplot as plt

model = bouncing_ball_sympy.Model ()
model.solve ()
model.x0["h’”] = 10
model.x0["v"] 5
model.pO[’e’] = 0.7

res = model.simulate (t0=0,

tf=8, dt=0.01)
plt.plot(res[’'t’],
x0.keys ())
plt.legend()
plt.grid()

res[’'x’]1.T, label=model.

10

0: / /\/ WD

State

—-101

—15+

0 2 4 6 8
Time (s)

Figure 3. Height (m) and velocity (m/s) of a bouncing ball as a
function of time. The simulation was done using the automati-
cally generated SymPy script.

4.2 Mass-Spring-Damper

As an example of leveraging CasADi optimization, con-
sider the simple mass spring damper system in Modelica

DOI
10.3384/ecp2181009

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

1013

Rumoca: Towards a Translator from Modelica to Algebraic Modeling Languages

with a disturbance force shown in Listing 9.

Listing 9. Mass-spring-damper system

model msd "Mass spring
parameter Real k=1.0

damper"
"Coefficient of

spring";

parameter Real c=1.0 "Coefficient of
damper";

parameter Real m=1.0 "mass";

Real x = 0.0 "Position";

Real v "Velocity";

input Real u "Disturbance";
equation

der (x) = v;

der (v) —(k/m) *x -
end msd;

(c/m)*v = (1/m)xu;

Once the model is processed by Rumoca using the
CasADi template, the system can be optimized using fa-
miliar CasADi features. Consider the problem of optimiz-
ing a bounded disturbance for the MSD system such that it
causes the mass to deviate as far as possible from equilib-
rium. This problem is solved using CasADi optimization
tools, and the result is shown in Figure 4. This was done
with the system only ever written in Modelica.

Mass-Spring-Damper Response

—— Position
1.0 Velocity
— Input
o 0.5
©
2
c 0.0
()]
©
= 051
_10,
0 2 4 6 8 10

Time [s]

Figure 4. The optimized bounded control input to maximize
disturbance from equilibrium. This was found using CasADi
tools, having only written the system in Modelica.

4.3 Quadrotor

Rumoca is also capable of handling more complex mod-
els, including some with a hierarchical structure. The
quadrotor model shown in Listing 10, extends a rigid
body model and makes use of a separate motor model.
Automatic generation of the corresponding CasADi and
SymPy code are shown and demonstrate handling control
inputs and using Sympy to linearize the model.

Listing 10. Quadrotor model definition in Modelica

model Quadrotor
extends RigidBody6DOF;

Motor m_1, m_2, m_3, m_4;

input Real a "aileron";

input Real e "elevator";

input Real r "rudder";

input Real t "throttle";
equation

// body forces

F_x = —(m*xg)*sin(theta);
F_y = (m*g)*sin(phi)*cos (theta);
F_z = (mxg)*cos(phi)xcos(theta) -

(m_1.thrust + m_2.thrust + m_3.
thrust + m_4.thrust);

// body moments

M x = 1l*x(-m_1l.thrust + m_2.thrust - m_3
.thrust + m_4.thrust);
My = lx(-m_1l.thrust + m_2.thrust + m_3

.thrust - m_4.thrust);
M z = m_1.moment + m_2.moment - m_3.
moment - m_4.moment;

// motor equations
m_1l.omega_ref = txmix_t -
mix_e + rxmix_r;

axmix_a + ex

m_2.omega_ref = txmix_t + axmix_a - ex
mix_e + rxmix_r;

m_3.omega_ref = txmix_t - a*mix_a - ex
mix_e — rxmix_r;

m_4.omega_ref = txmix_t + axmix_a + ex
mix_e — rxmix_r;

end Quadrotor;

4.3.1 CasADi Quadrotor Simulation

Upon running Rumoca for the quadrotor model using the
CasADi template, the "quadrotor_casadi.py" python script
is generated. Listing 11 demonstrates how the control in-
put can be adjusted and the quadrotor simulated. In this
case, the throttle is set to a constant value. The resulting
position of the quadrotor upon running the CasADi simu-
lation is shown in Figure 5.

Listing 11. CasADi simulation setup for the quadrotor model

model = quadrotor_casadi.Model ("quad")
states = model.dae.x ()

params = model.dae.p ()

x0 = model.dae.start (states)

param_vals = model.dae.start (params)

Set control input: aileron, elevator,
rudder, throttle
inputs = np.array ([0, 0, 0, 0.5])

Set initial height of quadrotor to 10 m.

x0[states.index ("h’)] = 10

tgrid, res = model.simulate (t0=0,
=0.01, f_u=inputs, x0=x0)

tf=10, dt

4.3.2 SymPy Quadrotor Linearization

parameter Real 1 =1.0; Rumoca’s SymPy output enables the generation of sym-
parameter Real mix_a = 1;
parameter Real mix e = 1; bolic expressions for the Modelica model. Eq, displays
parameter Real mix_r = 10; a portion of the 16x16 linearized state matrix for the
parameter Real mix_t = 32.0; quadrotor automatically generated by Sympy from the
1014 Proceedings of the 16" International Modelica&FMI Conference DOI
September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp2181009

Poster Session

Quad Rotor Body Position

Position [m]
=
N o
(6,] o

U
=)
"

N
(6]
s

o
=)
"

0 2 4 6 8 10
Time [s]

Figure 5. Quadrotor position from CasADi simulation.

Modelica model, illustrating the power of using SymPy
as a back-end.

—JE0+0yJ;0-20
1P+ 2N RSP
S r—

JxdxzQ—JIxzlyQ+JxzJzQ
IR 2P IR 0

JedyzP—IER—JxzdyP+Ixzd PHIyJ.R—JZR
A

—JelxQ+Ixzly @Iz)0
(D
Linearizing the system in SymPy, the root locus and
Bode plots can be quickly computed in Python. These are
shown in Figure 6 and 7 respectively for the transfer func-
tion relating the motor throttle command to the altitude of
the quadrotor.

3
JRO-IxJyQ+I%0 JEP—JJxzR—JxJy PHIE P+IszyR—JxzJ.R
A A

Root locus plot for sys[13]

Root Locus
0.77 0.64 0.50 0.34 0.170.p0
0.87 116
{12
0.94
18
0.98
>
©
£ g . . P .
Bl 724 20 16 12 8 4 4 8
E
0.98
18
0.94
{12
0.87 {16
0.77 0.64 0.50 0.34 0.170.p0

Real

Figure 6. Root locus plot for linearized quadrotor.

S Summary and Future Work

This paper introduces Rumoca, a Rust-based translator
that automates the conversion of Modelica models into a
variety of target algebraic modeling languages. Demon-
strated through the translation of three models into two al-
gebraic representations—CasADi and SymPy—Rumoca
showcases its ability to bridge Modelica and common

Bode Plot

251

—254

Magnitude [dB]

—50 4

-180

—225

Phase [deg]

-270

100 10! 10?
Frequency [rad/s]

Figure 7. Bode plot for linearized quadrotor.

computational tools. While still in active development, fu-
ture enhancements to Rumoca aim to expand its capabil-
ities to handle a broader range of Modelica features. Ad-
ditionally, future work may include the creation of Jinja
templates to integrate with other back-ends, such as JAX
for machine learning applications, Pycollimator for an in-
tuitive graphical user interface, and Gazebo for simula-
tions.

Acknowledgements

This material is based on research sponsored by DARPA
under agreement number FA8750-24-2-0500. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon.

We would like to thank Jorg Singer for his assistance
extending the Parol parser generator to support our work.

References

(OSMC), Open Source Modelica Consortium (2025). Open-
Modelica - Open Source Modelica Environment. https ://
www.openmodelica.org. Accessed: 2025-04-30.

Agosta, Giovanni et al. (2023). “MARCO: An Experimental
High-Performance Compiler for Large-Scale Modelica Mod-
els”. In: Proceedings of the 15th International Modelica Con-
ference. Modelica Association, pp. 1-10. DOIL: 10.3384/
ecp20413. URL: https://ecp.ep.liu.se/index.php/modelica/
article/view/909.

Amrani, Moussa et al. (2021). “Multi-paradigm modelling for
cyber—physical systems: A descriptive framework”. In: Soft-
ware and Systems Modeling 20.3, pp. 611-639. DoO1: 10.1007/
$10270-021-00876-z.

Andersson, Jakob et al. (2019). “CasADi: A software framework
for nonlinear optimization and optimal control”. In: Mathe-
matical Programming Computation 11.1, pp. 1-36. DOIL: 10.
1007/s12532-018-0141-4.

Andersson, Joel (2024-03). “Import and Export of Functional
Mockup Units in CasADi”. In: pp. 321-326. DO1: 10.3384/
ecp204321.

DOI
10.3384/ecp2181009

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

1015

https://www.openmodelica.org
https://www.openmodelica.org
https://doi.org/10.3384/ecp20413
https://doi.org/10.3384/ecp20413
https://ecp.ep.liu.se/index.php/modelica/article/view/909
https://ecp.ep.liu.se/index.php/modelica/article/view/909
https://doi.org/10.1007/s10270-021-00876-z
https://doi.org/10.1007/s10270-021-00876-z
https://doi.org/10.1007/s12532-018-0141-4
https://doi.org/10.1007/s12532-018-0141-4
https://doi.org/10.3384/ecp204321
https://doi.org/10.3384/ecp204321

Rumoca: Towards a Translator from Modelica to Algebraic Modeling Languages

Andersson, Joel and James Goppert (2025-01). “Event Support
for Simulation and Sensitivity Analysis in CasADi for use
with Modelica and FMI”. In: pp. 99-108. DO1: 10.3384/
ecp20799.

Biegler, Lorenz T. et al. (2009). Large-Scale Nonlinear Opti-
mization. Vol. 83. Lecture Notes in Computational Science
and Engineering. Springer. ISBN: 978-3-540-88321-3. DOI:
10.1007/978-3-540-88322-0. URL: https://doi.org/10.1007/
978-3-540-88322-0.

Contributors, Pymoca (2025). Pymoca: Modelica Compiler in
Python. https :// github. com / pymoca/ pymoca. Accessed:
2025-04-30.

Henriksson, Carl Johan et al. (2011). “Modelica: A unified
object-oriented language for modeling and simulation of
complex systems”. In: Simulation Modelling Practice and
Theory 19.3, pp. 697-718. DOI: 10.1016/j.simpat.2010.10.
005.

Index, Python Package (2024). Jinja2: PyPI Package Statistics.
https://pypistats.org/packages/jinja2.

Jung, Ralf et al. (2018). “RustBelt: Securing the Foundations
of the Rust Programming Language”. In: Proceedings of the
ACM on Programming Languages 2.POPL, p. 66. DOI: 10.
1145/3158154.

Klabnik, Steve and Carol Nichols (2019). The Rust Program-
ming Language. No Starch Press. URL: https://doc.rust-
lang.org/book/.

Liu, Bo et al. (2020). “A survey of model-driven techniques and
tools for cyber-physical systems”. In: Frontiers of Informa-
tion Technology & Electronic Engineering 21.11, pp. 1567—
1590. por: 10.1631/FITEE.2000108.

Matsakis, Nicholas D. and Felix S. Klock (2014). “The Rust
Language”. In: ACM SIGAda Ada Letters 34.3, pp. 103—-104.
DOI: 10.1145/2660193.2660199.

Meurer, Aaron et al. (2017). “SymPy: symbolic computing in
Python”. In: PeerJ Computer Science 3, e103.

Modelica Association (2023). Base Modelica Requirements —
MCP-0031. Accessed: 2025-07-24. URL: https : // github .
com / modelica / ModelicaSpecification / blob / MCP / 0031 /
RationaleMCP/0031/Base-Modelica-requirements.md.

Projects, Pallets (2024). Flask Documentation. https ://flask .
palletsprojects.com/.

Red Hat, Inc. (2024). Ansible Documentation. https ://docs .
ansible.com/.

Singer, Jorg (2025). Introduction to the Parol Parser Genera-
tor. https://jsinger67.github.io/Introduction.html. Accessed:
2025-05-02.

1016 Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp2181009

https://doi.org/10.3384/ecp20799
https://doi.org/10.3384/ecp20799
https://doi.org/10.1007/978-3-540-88322-0
https://doi.org/10.1007/978-3-540-88322-0
https://doi.org/10.1007/978-3-540-88322-0
https://github.com/pymoca/pymoca
https://doi.org/10.1016/j.simpat.2010.10.005
https://doi.org/10.1016/j.simpat.2010.10.005
https://pypistats.org/packages/jinja2
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doi.org/10.1631/FITEE.2000108
https://doi.org/10.1145/2660193.2660199
https://github.com/modelica/ModelicaSpecification/blob/MCP/0031/RationaleMCP/0031/Base-Modelica-requirements.md
https://github.com/modelica/ModelicaSpecification/blob/MCP/0031/RationaleMCP/0031/Base-Modelica-requirements.md
https://github.com/modelica/ModelicaSpecification/blob/MCP/0031/RationaleMCP/0031/Base-Modelica-requirements.md
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://jsinger67.github.io/Introduction.html

	Introduction
	Modeling and Compiler Languages
	Target Languages
	Related Work
	Overview

	Rumoca Details
	Parser
	Language Coverage
	Generator Code

	CasADi Additions
	Examples
	Bouncing Ball
	Mass-Spring-Damper
	Quadrotor
	CasADi Quadrotor Simulation
	SymPy Quadrotor Linearization

	Summary and Future Work

