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Abstract
Decarbonizing industrial process heating will increasingly
depend on high-temperature heat pumps. In particular,
Brayton cycle heat pumps, which can reach tempera-
tures above 250 ◦C, are viewed as a promising technology.
However, ensuring safe operation and optimal control re-
mains challenging. This study presents an experimentally
validated dynamic model of a Brayton cycle heat pump, a
system with multiple control inputs for regulating its ther-
mal output. Using this model as a training environment,
several control concepts integrating Reinforcement Learn-
ing (RL) and traditional PI controllers were implemented
to achieve desired heat supply at target temperatures. Do-
main randomization was employed to improve the con-
troller robustness against model uncertainties in prepara-
tion for deployment on the physical system. The results
demonstrate that RL controllers can not only achieve the
desired set-point temperature under varying loads while
maintaining required safety margins, but also discovered
a novel, more energy-efficient operational strategy.
Keywords: Brayton cycle heat pump, dynamic simulation,
reinforcement learning, model-based control design

1 Introduction
Heating for industrial processes is predominantly fueled
by fossil fuels, presenting a significant challenge for de-
carbonization efforts (IEA 2024). High-temperature heat
pumps are crucial technologies for electrifying industrial
process heating, and improving their control is essen-
tial for maximizing their operational efficiency and decar-
bonization impact.

1.1 High-temperature heat pumps
Recent advancements have significantly raised achievable
supply temperatures of heat pump systems. The IEA
HPT Annex 58 (Heat Pump Centre 2023) compiled heat
pump demonstrators achieving temperatures of 115 ◦C to
280 ◦C. For the upper end of this range, particularly
for sensible heating, gas compression heat pumps uti-
lizing the Brayton cycle are emerging as a viable tech-
nology, with studies indicating technical feasibility up
to 300 ◦C to 400 ◦C and economic potential in scenarios
reaching 280 ◦C (Zühlsdorf et al. 2019). Oehler, Tran,
and Stathopoulos (2022) note that while Brayton cycle

heat pumps provide significant operational flexibility, their
operation is constrained by compressor surge, thermal
stresses, and natural frequencies, thus requiring a carefully
designed control system.

1.2 Reinforcement learning

Reinforcement Learning (RL) is an area of machine learn-
ing focused on how agents learn to make optimal se-
quences of decisions through interaction with an envi-
ronment. RL has proven useful in many areas, includ-
ing games (Silver et al. 2018), robotic systems (Tang et
al. 2025), and optimal energy dispatching (Di Cao et al.
2020). Model-free RL algorithms are particularly adapt-
able as they learn purely from environment interactions,
but this often requires large amounts of data, highlighting
the need for simulation. Modelica models have emerged
as suitable simulators to train RL algorithms, as demon-
strated by developments such as FMUGym (Wrede et al.
2024) and ModelicaGym (Lukianykhin and Bogodorova
2019), both of which utilize the Functional Mock-Up In-
terface (FMI). Although training in simulated environ-
ments offers a safe and efficient approach, these simula-
tions inherently differ from their real-world counterparts.
This discrepancy can cause policies trained in simulation
to fail or underperform when deployed on the actual phys-
ical system. This challenge is widely recognized as the
reality gap or the Sim2Real problem (Zhao, Queralta, and
Westerlund 2020).

1.3 Other advanced control techniques

Optimica (Åkesson 2008), an extension of the Modelica
language, allows users to formulate optimization prob-
lems alongside dynamic system models, which can then
be processed by tools such as JModelica (Magnusson
and Åkesson 2015) and the Optimica Compiler Toolkit
(Modelon, Inc. 2024). These tools interface with the
framework CasADi (Andersson et al. 2019), which trans-
lates the problem into a non-linear programming prob-
lem. The resulting NLP can then be solved by numeri-
cal solvers like Interior Point Optimizer (IPOPT). The de-
scribed toolchain provides a mechanism for solving op-
timal control problems for systems modeled in Modelica.
This capability is a prerequisite for Model Predictive Con-
trol (MPC).
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1.4 Our contributions

This study utilizes an experimentally validated dynamic
model of a Brayton cycle heat pump as an accurate train-
ing environment for RL. Three control concepts are com-
paratively analyzed, including a traditional approach with
PI controllers, a pure RL controller and a combination of
RL and PI controllers. To improve the potential for real-
world transfer, the RL agents are trained using domain
randomization. The results show that RL agents can learn
the control tasks and discover novel and more energy-
efficient operational strategies. The viability of training
RL agents in a simulation environment is demonstrated by
their control performance and ability to generalize across
a wide range of system parameters.

2 The CoBra Heat Pump
This study investigates a closed-loop Brayton-cycle heat
pump that uses air as its working fluid. The prototype
under investigation, named “CoBra”, was developed in
Cottbus, Germany, and serves as a research platform for
the design and operation of high-temperature heat pumps.
Yücel et al. (2025) provide details on the system design
and first commissioning tests of the plant.

2.1 System description

Figure 1 shows a flow schematic with the main compo-
nents of the heat pump. The heat pump employs a two-
stage compression system (A), using two radial compres-
sors connected in series driven by an electric motor. After
compression, the working fluid releases heat in the high-
temperature heat exchanger (B). A three-way valve (C)
controls the flow through the recuperator (G), which pre-
heats the flow before compression using the temperature
difference between the states 2 and 5. The turbine (D)
expands the fluid, thereby recovering power via a gener-
ator and cooling the fluid further. A turbine bypass valve
(E) operates in parallel to the turbine, allowing adjustment
of the loop resistance to control the compressor operating
point. After expansion, the cold fluid absorbs heat from
a heat source or provides cooling in the low-temperature
heat exchanger (F). Finally, the fluid passes through the re-
cuperator (G) to be preheated before re-entering the com-
pression system (A).

As investigated by Oehler, Gollasch, et al. (2021), the
heat pump’s fluid inventory (total working fluid mass) can
be adjusted using a pair of valves. An inlet valve (H1)
injects air from a high-pressure buffer tank to the low-
pressure section to increase the fluid inventory, while a re-
lief valve (H2) vents air from the high-pressure section to
the ambient environment to decrease it. This fluid inven-
tory control allows modulation of the heat pump’s thermal
output while maintaining the aerodynamic operating con-
ditions of the turbomachinery. The demonstrated range for
this control spans compressor inlet pressures (p0) from 0.8
to 1.4 bar.
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Figure 1. Flow schematic of the CoBra heat pump. (A) Two-
stage compression system, (B) high-temperature heat exchanger,
(C) three-way valve, (D) turbine, (E) turbine bypass valve, (F)
low-temperature heat exchanger, (G) recuperator, (H1) buffer
tank and air inlet valve, (H2) relief valve, MFM: Coriolis mass
flow meter. Adapted from Tran and Stathopoulos (2025).

2.2 Dynamic model
A dynamic thermo-fluid model of CoBra heat pump was
implemented in Modelica using the Dymola environment,
as presented in previous work (Tran and Stathopoulos
2025), combining and extending models from the Mod-
elica Standard Library (MSL), Buildings library (Wetter
et al. 2014) and ThermoPower library (Casella and Leva
2006) to model the relevant thermodynamic processes and
system dynamics. The model diagram is shown in Fig-
ure 2.

The libraries were selected due to their shared use of
interfaces from the MSL, defined in Modelica.Fluid
and Modelica.Media for fluid flow and proper-
ties, Modelica.Thermal for heat transfer, and
Modelica.Mechanics for rotational mechanics. The
specific contributions of each library to the overall model
are as follows:

ThermoPower: The turbomachinery models (compres-
sor and turbine) were implemented using models adapted
from the ThermoPower library. These models assume
steady-state behaviour without inherent mass or thermal
dynamics, an assumption justified by the fast response
time of the turbomachinery relative to other system com-
ponents. Their behavior is defined by performance maps
that relate pressure ratio, corrected mass flow, corrected
shaft speed, and isentropic efficiency. The turbomachinery
models also feature an Modelica.Mechanics flange,
which enables a connection to the rotational components.

Buildings: The Buildings library was used to model
the plant’s piping, valves and fans. The volume and ther-
mal inertia of the extensive piping network were repre-
sented using MixingVolume with dynamic energy and
mass balances. Frictional losses in each pipe segment
were modeled by two PressureDrop models in series,
one with a quadratic (∆p ∼ ṁ2) and another with a linear
(∆p∼ ṁ) pressure loss correlation. The three-way and tur-
bine bypass valves are represented by the provided valve
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Figure 2. Diagram of the heat pump model in Dymola. Left: Overall heat pump. Top-right: Heat exchanger. Bottom-right:
Compression system.

models with valve characteristics and sizings taken from
manufacturer data. The fans providing air flow to the heat
source and sink were represented by the library’s flow-
controlled mover models.

MSL: Beyond providing the interfaces, the MSL was
employed to model mechanical components and heat ex-
changers. The rotational components, including the mo-
tor, generator, shafts and belt drives, were modeled us-
ing components from Modelica.Mechanics. The
heat exchanger models were adapted from the BasicHX
model and use a spatial discretization approach. In this
method, the fluid flow paths and the solid metal structures
(tubes and shell) are divided into multiple segments. For
the purpose of this study, the baseline BasicHX model
was extended to model several features of the real compo-
nent: the heat capacity of the heat exchanger’s outer shell,
an additional heat port to model heat exchange with the
ambient environment, and a model that calculates thermal
stresses based on the temperature distribution along the
tube and shell length.

2.3 Experimental validation
The methodology for calibrating the model against exper-
imental data was presented in previous work (Tran and
Stathopoulos 2025). Adjusting the compressor perfor-
mance maps was a main focus, employing a transforma-
tion method aimed at minimizing prediction error while
preserving the map’s original shape, ensuring smoothness,
and allowing for plausible extrapolation into unmeasured
regions. Other model parameters, mainly heat transfer,

heat loss and pressure loss coefficients, were tuned using
numerical optimization to minimize deviations between
simulation results and measurements.

For this study, a recalibration of the model was per-
formed. This was necessary because new measurement
data became available, recorded from a test setup that in-
cludes fully recuperated heat pump operation, a condition
not covered in the previous work. An example test run
from the new dataset is shown in Figure 3. In this test,
following an initial ramp-up to nominal motor speed, a
PI controller was applied to maintain the supply tempera-
ture (T102) at 200 ◦C by adjusting compressor speed. Sub-
sequently, the compressor inlet pressure (p0) was varied
stepwise (1.1 bar down to 0.8 bar in hourly intervals) us-
ing fluid inventory control. The test aimed to find the opti-
mal operating point for the target supply temperature, in-
dicated by the highest measured COP. The highest steady-
state COP was measured at a pressure of 0.8 bar, which is
the lower bound of investigated pressures. This suggests
that the optimum might be at even lower pressures.

The predictions from the recalibrated model are com-
pared to the measurement data shown in Figure 3. The
resulting root mean squared errors (RMSE) and mean-
normalized root mean squared errors (NRMSE) for the
primary process variables are presented in Table 1. For
the measured temperatures, pressures, and mass flow rate,
the NRMSE values are in the range of 0.05 % to 1.95 %.

Poster Session 

DOI Proceedings of the 16th International Modelica&FMI Conference  1019 
10.3384/ecp2181017 September 8-10, 2025, Lucerne, Switzerland   



25000

50000

75000

S
h

af
t

sp
ee

d
(r

p
m

)

Compressor 1 speed

0.0

0.2

0.4

M
as

s
fl

ow
ra

te
(k

g/
s)

Cycle mass flow rate

2

4

P
re

ss
u

re
(b

ar
)

p1

p0

1

2

3

P
re

ss
u

re
ra

ti
o

Compression pressure ratio

Expansion pressure ratio

100

200

T
em

p
er

at
u

re
(°

C
)

HX outlet temperature

Compressor outlet temperature

0 5000 10000 15000 20000
Time (s)

1.0

1.5

C
O

P

Coefficient of performance (COP)

Measured Simulated

Figure 3. Comparison of measured (solid) and simulated
(dashed) time series. The plot shows the alignment of experi-
mental data and simulation results over time.

3 Heat Pump Control
The heat pump’s target supply temperature (T102), the re-
turn temperature from the process (T101) and the heat sink
mass flow rate (ṁSi) are typically defined by process re-
quirements. Consequently, a heat pump’s control system
is designed to track the set-point supply temperature while
maintaining safe operating conditions. The CoBra heat
pump features three main control variables that affect the
supply temperature:

1. The motor speed (nM) is the main manipulated vari-
able for controlling the heat pump’s supply tempera-
ture because it directly governs the compressor pres-
sure ratio, mass flow rate and temperature lift.

2. The three-way valve opening (θ3W ) controls the
amount of heat that is internally recovered by the re-
cuperator. A value of θ3W = 0 represents full recu-
peration, whereas θ3W = 1 corresponds to fully non-
recuperated operation.

3. Manipulation of the fluid inventory, indicated by the
compressor inlet pressure (p0), directly scales with

Table 1. Root mean squared error (RMSE) and mean-
normalized root mean squared error (NRMSE) of the main pro-
cess variables.

Measurement signal RMSE NRMSE

Compressor outlet T1 1.64 K 0.33 %
HTHX outlet T2 3.89 K 1.19 %
Recuperator outlet (HP) T3B 0.72 K 0.25 %
Turbine inlet T3 0.56 K 0.19 %
Turbine outlet T4A 0.70 K 0.29 %
LTHX outlet T5 0.39 K 0.14 %
Recuperator outlet (LP) T6 1.73 K 0.56 %
HTHX inlet (sink) T101 0.15 K 0.05 %
HTHX outlet (sink) T102 4.82 K 1.06 %
LTHX inlet (source) T201 0.31 K 0.11 %
LTHX outlet (source) T202 1.23 K 0.49 %
Compressor inlet p0 1047 Pa 1.07 %
Compressor outlet p1 2337 Pa 0.79 %
Turbine inlet p3 2485 Pa 0.88 %
Mass flow rate ṁ 0.0065 kg/s 1.95 %

the mass flow rate in the heat pump cycle, thereby
providing control over its overall thermal output ca-
pacity.

During operation of the CoBra heat pump, two main
safety constraints require monitoring. Compressor surge
can occur when a compressor operates at low mass flow
rates, potentially causing flow destabilization and detach-
ment, which may lead to structural damage. However, the
radial compressors currently installed in the heat pump
feature broad performance maps, resulting in high inher-
ent flow stability. Therefore, compressor surge is not
considered a limiting operational constraint in this work.
Thermal stresses arise in heat exchangers due to differ-
ences in thermal expansion of the tubes and the shell.
Analyses of the HX model show that transient stresses
are strongly correlated with the rate of heat accumulation,
while steady-state stresses are correlated with the loga-
rithmic mean temperature difference in the HX. Conse-
quently, the rate of heat accumulation Q̇acc is used as a
measurable proxy for these stresses. It is determined from
the energy balance across the heat exchanger (HX) using
measured mass flow rates and inlet/outlet temperatures, as
defined in Equation 1:

Q̇acc = (ṁcp)C · (T1 −T2)− (ṁcp)Si · (T102 −T101) (1)

A cascaded control strategy, shown in Figure 4, is applied
to the supply temperature (T102) while limiting the rate of
heat accumulation (Q̇acc). The outer loop controls T102 and
sets the target accumulation rate (Q̇set

acc) for the inner loop,
which adjusts the motor speed (nM) accordingly. Limiting
the outer loop’s output combined with appropriate tuning
of both controllers ensures that the thermal stress safety
constraint is met.

The following three temperature control concepts are
investigated in this work. Figure 5 shows schematics of
the control concepts.
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Concept 1: PI controllers This control approach uti-
lizes proportional-integral (PI) controllers. Temperature
control is achieved using the cascaded controller (PI_T)
illustrated in Figure 4. In parallel, a separate PI con-
troller (PI_F) adjusts p0 to maintain a cycle-to-sink mass
flow ratio of 1 (ṁC/ṁSi = 1), as this ratio is typically
near-optimal for minimizing heat transfer exergy losses.
Throughout the operation, the three-way valve position is
fixed at full recuperation (θ3W = 0), as heat recuperation
is beneficial when the difference between T2 and T5 is suf-
ficiently large to outweigh the additional pressure losses.

Concept 2: RL policy controller In this approach, a
policy (usually a feed-forward neural network) trained
through RL adjusts nM , θ3W and p0 depending on the ob-
served heat pump state and set-point value provided to the
policy. Prior to deployment, the RL policy is trained to
perform control actions that maximize an accumulated re-
ward signal which incorporates the control task including
the safety constraints.

Concept 3: PI and RL This approach combines tradi-
tional control and RL by using the cascaded controller for
temperature control and a RL policy that learns to opti-
mize the other control actions.

4 Reinforcement Learning
The objective of RL is for the agent to learn a policy π that
maximizes the cumulative sum of rewards expected over
time.

As described by Sutton and Barto (2018) and Achiam
(2018), the standard RL setup involves an agent and an
environment that interact over a series of time steps. At
each step t, the agent receives an observation ot from the
environment. Based on this observation, which may be
a subset of the full state st , the agent selects an action at
according to its current policy π .

at = π(ot) (2)

In response to the action, the environment transitions to
a new state st+1 and provides the agent with a numerical
reward rt . This reward indicates the immediate value as-
sociated with taking action at in state st , as defined by a
reward function R:

rt = R(st ,at) (3)

PI_T
outer

PI_T
inner

CoBra
Heat
Pump

Figure 4. Cascaded controller for temperature control with lim-
its for heat accumulation.

CoBra
Heat Pump

PI_T

PI_F

(a) Concept 1: PI controllers

CoBra
Heat Pump

RL Policy
Network observations

(b) Concept 2: RL policy controller

CoBra
Heat Pump

PI_T

RL Policy
Network observations

(c) Concept 3: PI and RL

Figure 5. Control concepts for controlling the supply tempera-
ture (T102) using the motor speed (nM), three-way valve opening
(θ3W ) and compressor inlet pressure (p0).

4.1 Training setup

The RL training methodology in this work, depicted in
Figure 6, employs established tools and standards for in-
terfacing the heat pump model and the RL algorithm. The
model is exported as a Co-Simulation Functional Mock-up
Unit (FMU). A custom, Gymnasium-compliant (Towers et
al. 2024) Environment interfaces with the FMU, pro-
viding motor speed, three-way valve opening, and com-
pressor inlet pressure as control inputs.

The Environment uses the FMPy library to interface
with the FMU. Following the modular design proposed by
Tassa et al. (2018), problem-specific logic is delegated to
a Task module, which calculates the reward based on the
state and objective and adjusts simulation parameters and
boundary conditions. This abstraction allows tasks to be
interchanged - for instance, to switch between randomized
and deterministic scenarios. Each episode begins from a
"cold start" state, meaning all initial pressures and temper-
atures within the heat pump are set to ambient conditions.

Training is performed on episodes with a fixed length of
700 steps using a step size of 30 s, resulting in 21000 s of
simulated time per episode. This work utilizes the Stable-
Baselines3 library (Raffin et al. 2021) which provides im-
plementations of RL algorithms and offers parallelization
and monitoring tools.

Poster Session 
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4.2 Action and observation spaces
The action and observation spaces used for training are
summarized in Table 2. As introduced in section 3, the
action space consists of θ3W and p0 for both control con-
cepts, with nM additionally included for concept 2. Instead
of outputting absolute values, the controller determines
the desired change for each control input (delta action).
The environment then adds this delta to the current value.
This approach inherently constrains the slew rates of the
actuators, while the simulation model enforces separate
limits on the final values to keep them within their allow-
able operational range. For this study, the lower bound for
compressor inlet pressure (p0) was lowered from 0.8 bar to

0.55 bar. This adjustment was made because experimen-
tal results suggest the optimal p0 value might be below
the original 0.8 bar limit. The observation space includes
the actual actuator signals, the rate of heat accumulation,
pressure ratio, and various temperature and flow signals
from the plant. All signals from the observation space are
measured in the physical plant.

Table 2. Action and observation spaces.

Action space

Change of motor speed ∆nM
Change of three-way valve opening ∆θ3W
Change of compressor inlet pressure ∆p0

Observation space

Temperature control error ∆T
Rate of heat accumulation Q̇acc
Motor speed nM
Three-way valve opening θ3W
Compressor inlet pressure p0
Cycle mass flow rate ṁC
Sink mass flow rate ṁSi
Sink inlet temperature T101
Sink outlet temperature T102
Compressor outlet temperature T1
HTHX outlet temperature T2
Compressor pressure ratio ΠC
Coefficient of performance COP

4.3 Reward function

A major challenge in RL is the reward function design:
maximizing the reward must yield the desired control
behavior, yet the function should also guide the agent’s
learning. The reward function in Equation 4 used in this
work is a sum of four reward components. Each compo-
nent is defined as a penalty term (a negative reward) repre-
senting a training goal, and the agent maximizes the total
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reward by learning to minimize these penalties.

R = rT + rP + rHX + rA (4)

rT = bT ·
(
|∆T |0.2 +0.02 · |∆T |

)
(5)

rP = bP ·Wnet (6)

rHX =

{
bHX ·

(
|Q̇acc|− Q̇lim

acc
)2 if |Q̇acc|> Q̇lim

acc

0 otherwise
(7)

rA = ba ∑
i
|ai| (8)

For the temperature tracking goal rT , the penalty is cal-
culated based on the control error ∆T . It includes terms
proportional to |∆T |0.2 and |∆T |. This structure leads to
the behaviour shown in Figure 7. The linear term (|∆T |)
provides a consistent gradient signal while the power term
(|∆T |0.2) creates a steep reward gradient near the setpoint.
This discourages the agent from trading off precise tem-
perature tracking for the conflicting goal of energy mini-
mization.

The rP component directly penalizes net power con-
sumption Wnet, thereby incentivizing energy-efficient op-
eration.

rHX penalizes the rate of heat accumulation (Q̇acc) if it
exceeds a soft limit, Q̇lim

acc. The penalty increases quadrati-
cally with the level of exceedance. This design makes mi-
nor and brief overshoots more acceptable than large and
sustained violations.

rA penalizes the magnitude of the control actions taken,
discouraging excessive actuation and promoting smoother
control.

The overall behavior is shaped by the weighting coef-
ficients (bT , bP, bHX, ba) within the reward components.
These coefficients are carefully selected to prioritize cer-
tain objectives. For example, maintaining the target tem-
perature (rT ) and ensuring heat exchanger safety (rHX)
were weighted more heavily than optimizing for energy
efficiency (rP) or minimizing control action (rA). In this
work, good learning results were found for coefficient val-
ues of bT = −1, bP = −1× 10−5, bHX = −1× 10−7 and
ba =−0.1.

4.4 Domain randomization
Domain randomization is a method proposed by Tobin et
al. (2017), addressing the Sim2Real challenge when de-
ploying the agent on the real system. The idea of domain
randomization is to expose the RL algorithm to variance
(e.g. system dynamics, set-points, boundary conditions)
during training in order to train a model that generalizes
and works across all variants. In this work, randomization
is implemented in two ways:

Parameter variation: At the beginning of each train-
ing episode, the model parameters (including heat trans-
fer characteristics, turbomachinery map scalers, and ac-
tuator rise times) are sampled from uniform distributions
to introduce variability. The bounds for this sampling are
set symmetrically around each parameter’s nominal value,

defining a range that is likely to contain the true physical
value. The width of this range is selected according to
the estimated uncertainty for each parameter. For exam-
ple, well-calibrated parameters like turbomachinery map
scalers are varied over a narrow range (±2 %), while more
uncertain parameters such as heat transfer scalers and ac-
tuator delays are given a wider range (up to ±40 %).

Set-point variation: Within each episode, the temper-
ature set-point T102,set is varied. It follows diverse signal
types including steps, ramps, constant values, harmonics,
and random walks within the heat pump’s temperature op-
erating range.

4.5 Training with Soft Actor-Critic
Training was conducted using Soft Actor-Critic (SAC) de-
veloped by Haarnoja et al. (2018). SAC is an off-policy
actor-critic algorithm in which a policy network, the ac-
tor, is optimized using feedback from a value function net-
work, the critic. It is based on the maximum entropy RL
framework, where the policy is trained to maximize and
balance entropy (exploration) and expected returns (ex-
ploitation) by automatically adjusting the entropy coeffi-
cient. This algorithm was selected due to its sample effi-
ciency and demonstrated suitability for continuous control
tasks.

Hyperparameters for training were determined by hy-
perparameter optimization using RL Baselines3 Zoo (Raf-
fin 2020). In addition to the tuning results, a linear learn-
ing rate schedule was added, starting higher for rapid ini-
tial progress and decreasing over time to allow for finer
policy adjustments. The hyperparameters used to produce
the presented results are summarized in Table 3.

Table 3. Hyperparameters used for training.

Parameter Value

Learning rate 5×10−5 to 5×10−6

Parallel environments 8
Training frequency 1 per step
Gradient steps 8
Batch size 512
Replay buffer size 1×106

Discount rate 0.99
Entropy coefficient Auto
Actor network 2 layers, each 128 neurons
Critic network 2 layers, each 256 neurons

To accelerate training, the training process was paral-
lelized across 8 environments using the SubProcEnv
implementation of Stable-Baselines3. To assess the effect
of random initialization, all training was conducted inde-
pendently on multiple agents, each for 4 million environ-
ment steps. A single training run required approximately
36 hours on a scientific computing workstation, and agents
were saved periodically using the library’s callback mech-
anism.
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Figure 8. Average episode reward during training. Solid line:
Average reward across all agents. Shaded area: Standard devia-
tion of reward.

5 Results
This section evaluates the proposed control concepts,
beginning with an analysis of the RL agents’ training
progress. All three concepts are then evaluated on a nomi-
nal baseline model, where the RL+PI agent demonstrates a
novel and efficient control strategy developed during train-
ing. Finally, the RL agents’ robustness and generaliza-
tion capabilities are tested against a range of randomized
model variations.

5.1 Training progress
Figure 8 shows the training performance, plotting the
mean episode reward (solid line) and standard deviation
(shaded area) across all runs.

The learning curves reveal different training dynamics.
Concept 2 shows a standard learning progression, with re-
wards rising steeply as the agent learns the control tasks
from scratch. In contrast, concept 3 begins with a high
initial reward that improves only marginally. This is be-
cause its embedded PI controller already handles the pri-
mary temperature control objective. The RL agent’s role
is thus limited to optimizing secondary, lower-weighted
reward terms for efficiency and control actions.

The fluctuations observed in both curves likely stem
from the inherent stochasticity of the training process, am-
plified by domain randomization.

5.2 Control performance on baseline model
To directly compare the control performance of the three
concepts, the best-performing agent for each was evalu-
ated in a deterministic, non-randomized environment. The
agents were tasked with tracking a temperature set-point
trajectory not seen during training, as shown in Figure 9a.
This trajectory includes a step increase to 120 ◦C, a linear
ramp to 170 ◦C, a hold at that temperature, and a final step
decrease to 100 ◦C.

Figure 9 shows the control and process variables for all
control concepts. While concepts 1 and 3 rely on em-
bedded PI controllers for temperature tracking and heat
accumulation, concept 2’s RL policy learned to perform

50

100

150

T
1
02

(°
C

)

Setpoint temperature

−20

0

20

Q̇
a
cc

(k
W

)

Q̇lim
acc

0 5000 10000 15000 20000
Time (s)

1

2

C
O

P

Concept 1: PI Concept 2: RL Concept 3: RL+PI

(a) Process variables

100

200

N
M

(r
ad

/s
)

0.75

1.00

1.25

p 0
(b

ar
)

0 5000 10000 15000 20000
Time (s)

0.0

0.5

1.0

θ 3
W

Concept 1: PI Concept 2: RL Concept 3: RL+PI

(b) Control variables

Figure 9. Comparison of the three control concepts for tem-
perature tracking with a varying set-point signal on the baseline
model, showing (a) process variables and (b) control variables.

these tasks, showing relatively accurate temperature con-
trol. Regarding the thermal stress constraint, concept
3 strictly maintains the soft limit for heat accumulation
(Q̇lim

acc), whereas concept 2 exceeds this limit by a slight
but acceptable margin.

Notably, concept 3 achieves the highest efficiency,
maintaining a higher COP for nearly the entire duration
of the maneuver. This performance is the result of a novel
policy discovered by the RL agent. Similar to the baseline
in concept 1, this policy keeps the three-way valve open-
ing (θ3W) fixed at 0 (fully recuperated operation). How-
ever, it manipulates the compressor inlet pressure (p0),
minimizing it during steady-state operation and increasing
it during transients. This pressure manipulation strategy is
noteworthy for two reasons:

1. Steady-state operation: The decision to lower p0 is
initially counterintuitive. A lower inlet pressure is
creates imbalanced mass flow ratios in the heat ex-
changer, which increases entropy generation of heat
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transfer. However, the observed improvement in
COP indicates that the efficiency gains from reduced
overall pressure losses successfully outweigh the in-
creased exergy losses from heat transfer.

2. Transient operation: The strategy of increasing p0
when ∆T is high (e.g. after a set-point change) is
a particularly surprising discovery. Further analysis
reveals that this action allows the system to converge
to the new temperature set-point faster without ex-
ceeding the soft limit on heat accumulation.

Although further performance gains are anticipated
with longer training and hyperparameter optimization,
these findings confirm that RL can be successfully inte-
grated with traditional PI controllers to discover novel and
more efficient control policies.

5.3 Control performance on model variations
To assess the robustness of the learned policies against
uncertainties of the system properties and dynamics, the
best-performing agent from each RL control concept was
evaluated on 50 model variations. These variations were
sampled from the parameter range used for domain ran-
domization.

The results from all 100 evaluation runs (50 for each
RL concept) are illustrated in Figure 10. The figure shows
that both RL concepts maintain temperature tracking and
thermal stress limitation across the entire set of variations.
Furthermore, the general control strategies employed by
the agents remain consistent with those observed under
nominal conditions, as described in subsection 5.2. This
suggests that the RL agents are capable of generalizing to
varied system properties and can maintain control perfor-
mance in the presence of model uncertainty.

6 Conclusion
This study investigated RL for controlling a high-
temperature Brayton cycle heat pump, using an exper-
imentally validated model. Different control concepts
were compared: traditional PI controllers (Concept 1),
a pure RL policy (Concept 2), and a hybrid PI+RL ap-
proach (Concept 3). Training was performed with the Soft
Actor-Critic algorithm, and domain randomization was
employed to improve controller robustness against param-
eter uncertainties.

The results indicate that while the pure RL agent
learned the fundamental control tasks, the hybrid PI+RL
approach (Concept 3) achieved higher operational effi-
ciency. This improved performance was attributed to the
discovery of a novel strategy for manipulating the com-
pressor inlet pressure (p0). The learned policy minimizes
p0 during steady-state operation to maximize efficiency,
while temporarily increasing it during transients. This
transient pressure increase, applied when the set-point
temperature was changed, was a particularly noteworthy
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Figure 10. Comparison of the RL control concepts for tem-
perature tracking with a varying set-point signal on randomized
model variations, showing (a) process variables and (b) control
variables.

finding. It enables the system to converge to new set-
points faster without exceeding thermal stress constraints.
The controllers also demonstrated robust operation across
a range of model parameters.

While the simulation results are positive, they do not
serve as a guarantee of successful real-world deployment.
The transfer and validation of the controller on the physi-
cal system are therefore planned for future work.

In summary, the findings suggest that RL, particularly
when paired with traditional PI(D) controllers, is a viable
method for controlling Brayton heat pumps and has the
potential to increase their efficiency.
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