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Abstract

This article highlights the combination of equation-
based modeling with multibody models. In other
words, it combines the equation-based modeling lan-
guage Modia and the multibody module Modia3D.
The multibody system is defined in an object-oriented
way and parts of it are defined by equations. Alge-
braic loops are treated that appear due to the connec-
tion of multibody and equation-based components. A
new approach to variable structure systems are so-
called predefined acausal components which consist
of pre-compiled causal parts and acausal equations.
To generalize the concepts for variable structure sys-
tems, the multibody module is defined as a prede-
fined acausal component. As a result, the number
of degrees of freedom of the multibody system can
vary during simulation. This is demonstrated with a
non-trivial example of a walking space robot from the
MOSAR space project.

Keywords: Modia, Modia3D, Modelica, Julia, multi-
body, wvariable structure systems, segmented simula-
tion

1 Introduction

This publication is about generating Ordinary Differ-
ential Equations (ODEs) from equation-based mod-
els that are combined with variable structure multi-
body models. It summarizes, combines, and provides
a deep insight into the findings of previous publica-
tions on symbolic transformations in Modia (Otter
and Elmqvist 2017; Elmqvist et al. 2021), and it-
erative solving of multibody systems with Modia3D
(Neumayr and Otter 2019), and variable structure
systems (Neumayr and Otter 2023a; Neumayr and
Otter 2023b). For this purpose, parts of previous
publications are briefly repeated.

Modia is an equation-based modeling and simula-
tion environment. It is inspired by the modeling lan-
guage Modelica and has similar semantics. Modia
is a domain-specific extension of the Julia program-
ming language! (Bezanson et al. 2017). Modia3D is
an open source multibody module with a modular and
customizable component-based design pattern and is
closely integrated with Modia. Furthermore, Modia

I The pseudocode snippets in this publication are Julia-like.
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Figure 1. Predefined acausal component. Communication
between the solver, the sorted and solved equations, and the
functions of the predefined acausal components. The state
vector « and the event indicators z are split into an invari-
ant and a variant part: x = (zi"V,2V?), z = (2I"V, zvar),
The variant parts consist of the states defined and used in
the causal partitions of all predefined acausal components.
The dimensions of the invariant parts are fixed before sim-
ulation begins. The dimensions of the variant parts can
change at events during simulation.

supports a new approach to variable structure sys-
tems with predefined acausal components. Modia3D
is one such component.

All current proposals for variable structure sys-
tems, e.g., (Mehlhase 2014; Mattsson, Otter, and
Elmqvist 2015; Tinnerholm, Pop, and Sj6lund 2022)
require prior knowledge of all models and all modes
in order to switch between these models during simu-
lation. If this information is not available, and when-
ever the equation structure changes, the entire model
is reprocessed and its code is regenerated and recom-
piled (or interpreted), e.g., (Zimmer 2010; Tinner-
holm, Pop, and Sjélund 2022).

Neumayr and Otter (2023a) and Neumayr and Ot-
ter (2023b) introduce a new general concept for deal-
ing with variable structure systems in which variables
can appear and disappear during simulation. The two
previous publications are briefly summarized below.
There is no need to regenerate and recompile code
when the number of equations and states changes at
events. The method can be applied to declarative,
equation-based modeling languages, such as Modia
and Modelica. The transition between the modes,
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called segments, is triggered by specific commands.
Both the number of variables and the number of equa-
tions can vary from segment to segment.

The idea is to introduce predefined acausal com-
ponents. Their equations are split into causal and
acausal partitions. The causal partition is always
evaluated in the same order, regardless of how the
component is connected to components. This par-
tition is sorted, explicitly solved for the unknowns,
and implemented with one or more functions. The
acausal partition is a set of equations that is sorted
and solved. A large part of the variables in the causal
partitions are hidden as local variables in functions
and passed directly to the solver. This leads to the
concept in Figure 1.

Based on this generic concept, this article shows
how it can be applied to a class of multibody models
implemented as a predefined acausal component.

2 Mathematical Descriptions
2.1 DAEs and ODEs

In equation-based modeling languages physical sys-
tems are described mathematically by Differential Al-
gebraic Equations (DAEs) (1)

(1)

where xpag(t) are variables appearing differentiated
in the model, wpag(t) are algebraic variables that are
not differentiated, and w(t) are model inputs. These
vectors depend on time t € R. F' represents the equa-
tions of the system.

On the one hand, DAEs (1) can be solved nu-
merically with DAE solvers such as DASSL (Brenan,
Campbell, and Petzold 1996) or IDA from the Sun-
dials suite (Hindmarsh, Serban, and Collier 2015).
This approach has some limitations. For this reason,
there are solvers for DAEs with a particular struc-
ture (Arnold 2017) that have much better numerical
properties.

On the other hand, a system of DAEs F' (1) can
be transformed into Ordinary Differential Equations
(ODE) in state-space form

F(&pAR, TDAE, WDAE, U,t) =0,

z = f(x,u,t), (2)

and solved with ODE solvers. The non-trivial trans-
formation from an implicit DAE system to an explicit
ODE system can be performed symbolically and au-
tomated by any compiler of equation-based model-
ing languages. If the structure of the physical sys-
tem changes during simulation — known as a variable
structure system — so does its underlying mathemat-
ical description represented by DAEs and its corre-
sponding ODEs. Therefore, it would be required to
execute the computationally expensive transforma-
tion and compilation from DAEs to ODEs again.

2.2 Multibody Equations

The equations of motion of a multibody system with
kinematic loops are described as follows, see e.g.,
(Arnold 2017):

g=v
M(q,t)o+GT (g, )X+ h(q,v,t) =T (3)
0= g(qat)7

where g are the generalized coordinates of the joints
of the spanning tree (such as the angle of a revolute
joint), v are the derivatives of g, T are the generalized
forces in the joints of the spanning tree (such as the
driving torque of a revolute joint), A are the general-
ized forces/torques in the cut-joints, M = M T is the
positive definite mass matrix, g are the kinematic con-
straint equations of the cut-joints on position level,
G = g—g are the partial derivatives of the constraint
equations with respect to ¢ and has full row rank,
and h are applied generalized forces. This DAE with
index 3 gives rise to numerical problems when inte-
grating it directly. Instead, with the method of Gear,
Leimkuhler, and Gupta (1985) and Gear (1988) it can
be transformed to a DAE with index 1 (4), see (Otter
and Elmqvist 2017; Neumayr and Otter 2019) with
much more beneficial numerical properties:

0=q—v+G"(q,t)fint

0=M/(q,t)0+GT (q,t)\int + h(q,v,t) — T
0=g(q,?)

0=G(q,t)v+g"(q.1),

(4)

where:

1. The derivative of the constraint equations 0 =
g(q,t) are added as new equations.

2. New unknowns fi;,; are introduced to stabilize
the DAE.

3. The generalized constraint forces A are replaced

by Ain: the derivatives of its integral.

In the following, the focus is on the special case of
tree-structured multibody systems where (3) and (4)
simplify to the index 1 DAE

q

Y (5)
M (q,t)0+ h(q,v,t) =T.

This equation can be transformed into the ODE

g=v
V= Mﬁl(q,t) (7— - h’(q7vat))
== fmbs(qavaTvt)‘

(6)

Conceptually, it is easy to define this multibody
model as a predefined acausal component: The ODE
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(6) is part of the sorted and solved equations. The
function fps is part of the functions of the prede-
fined acausal component, in Figure 1. However, this
approach has serious drawbacks. Therefore, it is han-
dled differently in Modia/Modia3D. The following is-
sues are discussed in detail in the following sections:

1. Object-oriented definition of multibody system.
A multibody model consists of various compo-
nents, such as bodies, joints, and force elements.
Users expect to drag and combine these elements
individually with equation-based components.
An example is shown in Figure 2 as a Mod-
elica object-diagram. The multibody compo-
nents body, rev, world are combined with com-
ponents from equation-based libraries. The cor-
responding Modia/Modia3D model is in List-
ing 1. In section 3 is explained, how to treat
the multibody components as specially marked
parameters. These are used to inject equations
before symbolic processing begins.

2. Algebraic loops between multibody and equation-
based models.
Algebraic loops can occur between multibody
systems (5) and equation-based components. For
example, if 7= 7(q,v,v,t) due to the connec-
tion structure. Figure 2 is an example that con-
tains an algebraic loop due to the connection of
the rotational components motorInertia, gear
to the flange of the revolute joint rev. Modi-
a/Modia3D treat such algebraic loops efficiently,
see section 4. For example, code-size grows lin-
early with the number of iteration variables.

3. Variable structure multibody systems.
In Modia3D the structure of the multibody sys-
tem and its degrees of freedom can vary during
simulation. A non-trivial example explains how
to generalize the newly introduced concepts, in
section 5.

3 Object-Oriented Definitions of
Multibody Systems

A Modia/Modia3D model? of a one-arm robot with
a drive train is sketched in Listing 1 to briefly recap
the object-oriented definitions of multibody systems.
Parts are already published in Elmqvist et al. (2021).
A corresponding Modelica object-diagram is shown in
Figure 2.

Listing 1. Modia/Modia3D model of a one-arm robot
with motor, ideal gear and cascaded P-PI controller that
drives the flange of a revolute joint.

Servo = Model3D(

2Modia3D.jl, v0.12.2, test/Robot/ServoWithRampAndRev-
olute.jl

world = Object3D(feature=Scene()),

body = Object3D(feature=Solid(...)),

rev = RevoluteWithFlange (
objl=:world, obj2=:body, axis=3,

phi=Var (init=0.0), w=Var(init=0.0)),

ramp = Ramp,

ppi = Controller,

wSensor = UnitlessSpeedSensor,

motorInertia = Inertia,

gear = IdealGear,

connect = :[
(ramp.y, ppi.refGain)
(gear.flangeB, rev.flange)
D!

servo = Q@instantiateModel (Servo)

simulate! (servo, stopTime=...)

A Modia model is defined with the predefined dic-
tionary Model. All parts of the model are declared
with name/value pairs. Parameters are defined with
the predefined dictionary Par®. A Modia3D model
is defined with the predefined dictionary Model3D.
It may contain Modia components, see Listing 1.
The instances world, body, rev of multibody compo-
nents are individually defined and combined with in-
stances ramp, ppi, wSensor, motorInertia, gear of
equation-based Modia components.

Multibody components, such as Object3D, Revo-
luteWithFlange, are defined as very simple Modia
components, see Listing 2 and Listing 3. They con-
tain enough information to transform an instance of
such a component into acausal and causal partitions
before symbolic processing begins. This is a generic
Modia approach for predefined acausal components
and not specific to multibody systems.

Listing 2. Definitions of multibody components as special
parameters.

Object3D(;
_constructor =

kwargs...) = Par(; kwargs...,
:(Modia3D.0bject3D))

Solid (; kwargs...
_constructor =

) = Par(; kwargs...,
: (Modia3D.Solid))

The components in Listing 2 are defined as Julia
functions with keyword arguments. All provided key-
word arguments are collected by variable kwargs. ...
The function body consists of one constructor Par.
It creates a dictionary that defines a parameter con-
sisting of the specified keyword arguments kwargs. . .,
and the additional keyword argument _constructor
= <name>. Before a model is symbolically processed,
all parameter definitions that contain a _construc-
tor keyword are replaced by a reference to a Julia
object. It is generated with _constructor and all key-
word arguments of the parameter. For example, in a

3For more details, see e.g., Elmqvist et al. (2021, section 2)
and the Modia tutorial https://modiasim.github.io/Modia.
jl/stable/tutorial/Tutorial.html.
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Figure 2. A single revolute joint of a manipulator rotates around the z-axis and is driven by a servo motor via an ideal
gear. The revolute angle is controlled by a cascaded P-PI controller, that tracks the reference ramp.

first step Object3D(feature = Solid()) is replaced by
Modia3D.0bject3D(feature = Modia3D.Solid()). In a
second step, this constructor is executed and returns
a reference to a Julia object that is associated with
key body. This can be regarded as a generalization of
the concept of External Objects in Modelica.

Listing 3. Definition of multibody components as Modia
Models.

Flange = Model (phi=Var(potential=true),
tau=Var (flow=true))
RevoluteWithFlange (; objl, obj2, axis=3,

phi=Var (init=0.0), w=Var(init=0.0))
Model (;
_constructor = Par(value =

:(Modia3D.Joints.Revolute),

_jointType = :RevoluteWithFlange),
obj1 = Par(value = obj1),
obj2 = Par(value = obj2),
axis = Par(value = axis),
flange = Flange,
phi = phi,
W = w,
equations = :[
phi = flange.phi
W = der(phi)])

The multibody component RevoluteWithFlange in
Listing 3 is defined as a Modia Model. It con-
sists of parameters obj1l, obj2, axis, local variables
phi,w (that are initialized with zero), an instance
flange of a rotational flange, and two equations phi
= flange.phi and w = der(phi). These equations are
the acausal part of a revolute joint. The causal part
is defined with parameter _constructor together with
all parameters (defined with keyword Par).

During instantiation of a Modia model (before its
equations are symbolically processed), all parameter
definitions are evaluated. For example, if a parameter
p is defined with an equation p = 2*Lx + 3, assuming
that Lx = 4 is defined as a parameter, then this ex-

pression is replaced by p = 11.

Listing 4.
Flange.

Constructor generated for RevoluteWith-

ref = Modia3D.Joints.Revolute(obj1,
axis=3)

obj2,

During the parameter evaluation, a special action
is taken for parameters with name _constructor: A
constructor call is assembled from the constructor
name and any defined parameters. For example, the
RevoluteWithFlange definition of Listing 3 results in
the constructor call of Listing 4. This constructor is
called on the fly resulting in an instance of Julia struct
Revolute. The call returns a reference ref to the cre-
ated instance. A statement like rev = RevoluteWith-
Flange() in Listing 1 is a key/value pair with the key
rev and the value is an instance of a Model dictionary.
This value is replaced by an instance of a parameter
dictionary, resulting in rev = Par(value = ref). So,
the generated instance of the revolute joint is stored
as a parameter. The evaluated parameters are dis-
played with e.g., simulate! (logEvaluatedParameters
= true).

The keys of other instances are referenced in
the argument list, e.g., RevoluteWithFlange(objl =
:world). During parameter evaluation, symbols like
:world are searched for on the left side of the equal
signs. They are then replaced by the correspond-
ing value of this keyword. For example, :world is
replaced by the Julia reference created by the con-
structor call Modia3D.0bject3D(feature = Modia3D.-
Scene()). Once all parameters are evaluated, all key-
word arguments of multibody components contain a
reference to the instantiated Julia objects.

A multibody model inside a Modia model is defined
with dictionary Model3D, see Listing 1. This dictio-
nary is a Model dictionary with two additional param-
eters _buildFunction and _initSegmentFunction, see
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Listing 5. Before symbolic processing begins, a model
is recursively inspected. For each subdictionary con-
taining the parameter _buildFunction, the function
defined with functionName is called with the subdic-
tionary as an argument. The items returned by this
function call, are added to the subdictionary.

Listing 5. Definition of Model3D model.

# predefined acausal component
Model3D = Model (
# called once before symb. processing
_buildFunction = Par(functionName
= :(buildModel3D!)),
# called before each new sim. segment
_initSegmentFunction = Par(functionName
= :(initSegmentModel3D!))

Furthermore, the entire model hierarchy is flat-
tened. Alias variables are eliminated. The set of all
equations is generated, as sketched in Listing 6 for
the model of Listing 1.

Listing 6. Flattened model equations with equations in-
jected by buildModel3D!.

# Equation from RewoluteWithFlange
rev.w = der(rev.phi)

# Equations injected with buildModel3D!

mbsl = Modia3D.openModel3D!(model, _x,
time)
mbs2 = Modia3D.setStatesRevolute!(mbsi,

rev.phi, rev.w)

mbs3 = Modia3D.setAccelerationsRevolute! (
mbs2, der(rev.w))

genForces =

success =
Modia3D.setHiddenStatesDerivatives!(
model, mbs3, ...)

Function openModel3D! creates an instance of the
multibody system. It contains, e.g., the generated
instance of the revolute joint. The instantiated top
level model is passed as an argument. So, the func-
tion openModel3D! has access to the complete model
definition. Function setStatesRevolute! stores the
current values of the angles and angular velocities of
all revolute joints of the multibody model. These
variables are states in the Modia equations, due to
their definition in Listing 3. Function setAccelera-
tionsRevolute! stores the angular accelerations of all
revolute joints in the multibody model. Further func-
tion calls basically construct (5) in residue form. So,
feen = M (q,t)0+ h(q,v,t) — 7. The set of flattened
equations is processed symbolically, i.e., equations are
differentiated, sorted and simplified. The result is
stored as a Julia function. It is compiled into binary
code that is called by the simulate! function.

4 Symbolic Transformations

In Modia, models are symbolically transformed to
ODE:s (2) in state-space form

ii?:f(ill,p,t), (7)

where x(t) is the state vector, p is a hierarchical dic-
tionary of parameters, and t is the time. The al-
gorithms and the symbolic transformations are de-
scribed in Otter and Elmqvist (2017) and Elmqvist
et al. (2021). After the symbolic processing a Julia
function called getDerivatives is generated and com-
piled to calculate the derivatives .

Physical models often lead to linear equation sys-
tems. Modia generates very compact code to solve
them numerically during execution of the model.

Assume, a nonlinear equation system

Lo = x(t0)7

0::9(“%107 (8)

with unknown local variables w and known variables
u are identified by structural analysis. With the tear-
ing algorithm of Otter and Elmqvist (2017) this equa-
tion system can be transformed to

(9)
(10)

w1 = g1 (weq7 u)
0 :geq(wlaweqau)-

where the unknowns and equations are split into an
explicitly evaluable part wy and weq is solved implic-
itly.

If g is linear in the unknowns w, it is possible to
rearrange (conceptually) equation (10) into a linear
equation system

0=A(wi,u)weq — b(wi,u).

(11)

In (11), A,b are functions of the explicitly solved vari-
ables wy and the known variables uw. The equation
has to be solved for variables weq. In the worst case,
A would have n? elements (n = dim(weq)). There-
fore, the size of the rearranged code would be O(n?).
So, the code size would increase quadratically with
the number of iteration variables n.

Listing 7. Conceptual implementation of linear equation
iteration.

# Initialize memory m (m.w_eq = 0, ...)
while true

W_eq = m.w_eq

w_1 = g_1(w_eq, u)

m.r = g_eq(w_1, w_eq, u)

if 1Eqlteration(m); break; end
end

Instead, the concept is to generate the code in List-
ing 7 and 1Eqlteration in Listing 8. Together they
construct and solve the linear equation system (11).
Residues r are computed and stored in the memory
m. The linear equation system is solved to compute
Weq and wi from this solution. The code size of this
approach is O(n).
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Listing 8. Linear equation iteration 1EqIteration.

function 1lEqIteration(m)
n = length(m.w_eq)
if m.mode == QUIT
return true
elseif m.mode == COMPUTE_B
# compute b with w_eq = 0
#r = A¥0 - b => b = -r
m.b -copy(m.r)
m.j =1
m.w_eq =
m.mode = COMPUTE_A
else # m.mode COMPUTE_A
# compute column j of A with w_eq =

e_Jj

e_1

# r = Axe_j - b => A[:,75]
m.A[:,j] = m.r + m.b
if m.j !'=n
m.j += 1 # g+1
m.w_eq = e_j # j+1-th unit wvector
else
# solve linear equation system
# A*xw_eq =D
m.w_eq = m.A \ m.b
m.mode = QUIT
end
end
m.r = zeros(n)

return false
end

The function 1EqIteration in Listing 8 is called in
a while loop from Listing 7. It iteratively computes
vector b, matrix A, and finally weq, depending on
the actual mode (COMPUTE_B, COMPUTE_A, QUIT). All
vectors b,r,weq, matrix A, column counter j, and
the actual mode are stored in a memory m, and are
updated when needed. To compute vector b, the first
mode is COMPUTE_B. The residues r are computed with
Weq = 0. This allows to set b= —r. To compute
matrix A, the next mode is COMPUTE_A. To iteratively
calculate the columns of A, the residues are computed
with weq = €; that is the j-th unit vector from j =
1,...,n. When the n-th column of A is computed, so
A is known, the linear equation system is solved for
Weq. One final iteration of the while loop is needed
to evaluate ws.

Moreover, symbolic processing analyses if A is a
function of the parameters p, so it does not change af-
ter initialization. In this case, the LU-decomposition
of A is computed once at initialization and stored in
the memory m. During simulation, only a (cheap)
backwards solution is applied to compute the solu-
tion. If the size of the residual equation is one, a sim-
ple division is done, instead of using a linear equation
solver. These special cases are not shown in Listing 8
to keep the description simple.

Modia uses the linear equation solver of the Ju-
lia package RecursiveFactorization.jl* with the left-
looking LU-algorithm of (Toledo 1997) for dimen-

4https://github.com/YingboMa/RecursiveFactorization.jl

sions up to n =500 by default. Benchmarks show a
large speed-up compared to the linear standard solver
based on OpenBLAS® which is otherwise used.

The ODE and DAE solvers of Julia package Dif-
ferentialEquations.jl® (Rackauckas and Nie 2017) are
used for the generated getDerivatives function. The
getDerivatives function is called (automatically) as
required by the interface of the selected solver.

One powerful technique for DAE solvers increases
the simulation speed enormously. It is applicable
when the size n of a linear system of equations ex-
ceeds a certain limit (n > 50), and the unknowns weq
are a subset of the derivatives of the DAE states. The
relevant DAE state derivatives are used as solutions
Weq Of the linear system of equations. The residuals
r are used for the DAE solver. For each model evalu-
ation, the residuals of the linear equation system are
calculated only once instead of solving a linear equa-
tion system. At events (including initialization), the
linear equation system is constructed and solved, and
providing consistent initial conditions for the DAE
solver.

To demonstrate the outlined approach, the model
in Listing 1 resp. Figure 2 is symbolically processed
resulting in the getDerivatives function of Listing 9.
In the first statements of this function, all used pa-
rameters are inquired. The states _x provided by the
solver are assigned to the corresponding model vari-
ables. Afterwards, all explicitly solved equations are
present. To solve the algebraic loop present in the
sorted equations, a new memory m is allocated and
its stored data is initialized with zero values before
entering the while loop. The while loop computes the
residues iteratively, to solve the multibody equations
(6), the equations of components motorInertia, and
gear with 1EqIteration in Listing 8 for the iteration
variable weq.

Listing 9. Generated function for model in Listing 1.

# _x states wector from solwer
function getDerivatives(_x, model, time)
< get parameters: startTime, duration,

kRefGain, gearRatio, ...>

# states

rev.phi = _x[1]
_x[2]
ppi.PI.x = _x[3]

rev.w =

# explicitly solved equations
# f1 from eq (6)

der(rev.phi) = rev.w
ppi.refGain.u =
ramp (time, startTime, duration)

ppi.refGain.y =
kRefGain * ppi.refGain.u
motorInertia.phi = gearRatio * rev.phi

Shttps://www.openblas.net/
Shttps://github.com /SciML/Differential Equations.jl
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wSensor.flange.phi = motorInertia.phi
ppi.P.u =

ppi.refGain.y - wSensor.flange.phi
ppi.P.y = kP * ppi.P.u
der (motorInertia.phi) =

gearRatio * der(rev.phi)
der (wSensor.flange.phi) =

der (motorInertia.phi)
wSensor.w = der(wSensor.flange.phi)
ppi.PI.u = ppi.P.y - wSensor.w
der (ppi.PI.x) = ppi.PI.u / Tpi
motorInertia.flangeA.tau =

kpi * (ppi.PI.x + ppi.PI.u)
motorInertia.w =

der (motorInertia.phi)

# open 3D model
mbsl = openModel3D!(model, _x, time)

# set states in revolute joints
mbs2 = setStatesRevolute! (mbsi,
rev.phi, rev.w)

begin

new memory m: m.A=zeros (1,1),
m.b=zeros (1), m.w_eq=zeros (1),
m.r=zeros (1), m.j=0

m.mode = COMPUTE_B

= initlEqIlteration(model)

B %% own

while true

# explicitly solved equations
der(rev.w) = m.w_eq/[1]
der (der (rev.phi)) = der(rev.w)
der (der (motorInertia.phi)) =

gearRatio * der(der(rev.phi))
der (motorInertia.w) =

der (der (motorInertia.phi))
motorInertia.a =

der (motorInertia.w)
gear.flangeA.tau =

-Jmotor * motorInertia.a +

motorInertia.flangelA.tau

gear.flangeB.tau =

-gearRatio * gear.flangeA.tau

# set acceleration in joints
mbs3 = setAccelerationsRevolute!(
mbs2, der(rev.w))

# f2 from eq (6): compute generalized

# forces in joints from position,
# wvelocity, acceleration, collisions

genForces = computeGeneralizedF (mbs3)

# compute residue wvector
if m.mode !'= QUIT
m.r[1] =
genForces [1] + gear.flangeB.tau
end
if 1EqIteration(m); break; end
end

# report derivatives to solwer
model.der_x[1] = der(rev.phi)
model.der_x[2] = der(rev.w)

model.der_x[3] = der(ppi.PI.x)
return nothing
end

5 Variable Structure Systems:
Relocatable Space Robot

Modia3D is designed as a predefined acausal compo-
nent of Modia. It offers invariant and variant joints.
The latter ones can be changed during simulation
of variable structure systems. Currently, the cate-
gory of variant joints consists of a joint type that
rigidly fixes two Object3Ds and a joint type that
allows a free motion between two Object3Ds. The
second joint type can be replaced exclusively by an-
other joint from this category with action commands
e.g., actionAttach, actionReleaseAndAttach, action-
Release, actionDelete.

In this article, a sophisticated application with a
new action command ActionFlipChain is discussed.
This new action command allows flipping a kinematic
chain with segmented simulation. It is demonstrates
with a relocatable space robot (Deremetz et al. 2020).
The symmetric, 7 DoF robotic manipulator belongs to
the MOSAR project (Modular and Re-Configurable
Spacecraft, see (Letier et al. 2019)). The robotic ma-
nipulator consists of one arm with 7 joints, and two
end effectors. One end effector is colorized blue while
the other is colorized green, see Figure 3. It enables
the detection, manipulation and positioning of space-
craft modules. The robot relocates itself on the in-
terfaces of the spacecraft or on the modules. The
visualization data and trajectory for each joint of the
robot are taken from Reiner (2022). The drive of
each joint has gear dynamics that is modeled by a
spring/damper pair with Modia. The 3D mechanics
is modeled with Modia3D.

The described behavior above is simulated with the
upcoming model. A robot places two modules and
walks on a platform, such as a spacecraft. The robot
uses the end effectors of its arm in Figure 3. The
model shows the robot’s ability of gripping the mod-
ules with either one of its end effectors and to al-
ternate between attaching of its end effectors to the
platform. This allows the robot to walk. In doing
so, the kinematic chain of the robot’s joints across
its span of arm must be reversed. This means that
the parent-child relationship between the Object3Ds
is flipped. Special treatments of the joints are re-
quired to appropriately implement this.

The platform program for the robot and six mod-
ules is sketched in Listing 10. Hereby, segments 9-12
correspond to Figure 3a — Figure 3d. At initializa-
tion, the robot and the six modules are not rigidly
attachted to the platform. In segment 2, the blue end
effector is rigidly attached to the platform. In seg-
ments 3-8, the six modules are rigidly attached to the
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(a) Segment 9. (b) Segment 10.

(c) Segment 11. Robot walks. (d) Segment 12.

Figure 3. Walking robot on a platform. One end effector of the arm is fastened to the platform while the other one is
able to place one of the two modules or it can walk on the platform.

platform. In segment 9 and 10, the green end effec- ActionReleaseAndAttach (actions,
tor is moving and replacing a module. In segment 11, "boxX1Y1Z2.Xpos", "greenEnd")
the robot is walking. This means that the attachment EventAfterPeriod(actions, 17.0)
to the platform alternates between the blue and the

# segment 10
green end effector. The blue one is released and the g

# release bozx off green end effector,

green one is attached. The kinematic chain spanned # attach box to other boz
between the end effectors is reversed. In segment 12, ActionReleaseAndAttach(actions,
the blue end effector is gripping a module. "boxX1Y1Z2.Zpos", "boxX5Y1Z1l.Zpos")

The relocatable space robot places two modules EventAfterPeriod(actions, 6.0)

and walks on the platform. This scenario lasts 86s

X . X X o # segment 11
and the simulation is performed in 2.2s. This is much

# attach green end effector to platform

faster than real-time, since collision handling with # flip kinematic chain between blue and
point contacts is neglected. Moreover, it is impos- # green end effector
sible to represent collisions between two parallel sur- ActionFlipChain(actions, "greenEnd",

"platform.X2Y2", "blueEnd")

faces with a collision algorithm that computes point ) )
EventAfterPeriod (actions, 14.0)

contact like the Minkowski Portal Refinement (MPR)

algorithm (Snethen 2008; Neumayr and Otter 2017). # segment 12
# attach box to blue end effector
Listing 10. Platform program for relocatable robot. ActionReleaseAndAttach (actions,

"boxX1Y2Z2.Xpos", "blueEnd")

function platformProgram(actions)
EventAfterPeriod (actions, 23.0)

# segment 1 (from initialization)
# segment 2

# attach blue end effector to platform # segment 13

ActionAttach (actions, # release bozx off blue end effector,
"blueEnd", "platform.X2Y2") # attach box to other boz

EventAfterPeriod(actions, 1e-10) ActionReleaseAndAttach (actions,

# segment 3 - 8 "boxX1Y2Z2.Zpos", "boxX5Y2Z1.Zpos")

# attach 6 modules to platform
ActionAttach (actions,
"boxX1Y1Z1.Zneg", "platform.X1Y1")

end

This application demonstrates that by introducing

EventAfterPeriod (actions, 7.0) L K o
new features and combining them with existing ones,

# segment 9 the new approach for variable structure systems is
# attach boz to green end effector relatively easy to extend.
24 Proceedings of the Asian Modelica Conference 2024 DOI
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6 Conclusion

In this article, equation-based modeling and multi-
body modeling are combined using the example of a
one-armed robot. It shows how to integrate multi-
body equations, equation-based Modia components
and a combination of both. Therefore, Modia3D’s
multibody components are defined as Modia param-
eters. In addition, Modia3D components are defined
as Modia models with an equation section. All of this
is processed to generate code that is solved iteratively.
The iterative solution method is discussed in detail.
The multibody tree is also set up during initialization,
and it is processed to calculate the generalized forces
needed to solve the generated code. When dealing
with variable structure systems, parts of the multi-
body tree are rebuilt when a new segmented is ini-
tialized.
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