An Integrated Optimization and Orchestration Toolchain for
Adaptive Optimal Control in Modelica Simulations

Zizhe Wang!?

'Boysen-TU Dresden-Research Training Group, Dresden, Germany
2Software Technology Group, Technische Universitit Dresden, Germany
zizhe.wang@tu-dresden.de

Abstract

This paper introduces a novel Python-based toolchain,
"OptiOrch", designed to enhance optimal control in
Modelica-based simulations by integrating an optimiza-
tion framework and an orchestration workflow. OptiOrch
leverages the "MOQO4Modelica" optimization framework,
which supports both single- and multi-objective parame-
ter optimization, and incorporates the "ModelicaOrch" or-
chestration workflow to dynamically adapt models based
on real-time input data and goals. The toolchain features a
user-friendly interface, feature model transformation, par-
allel computing, and automated workflow coordination,
making it a powerful and generalized solution for var-
ious applications. Practical examples and a case study
demonstrate how this toolchain can be effectively applied
to Modelica systems for optimal control.

Keywords: Modelica, simulation, optimization, multi-
objective optimization, parallel computing, self-adaptive
systems, optimal control, feature model

1 Introduction

Digital twins are becoming increasingly important in re-
search and development. These virtual replicas of physical
systems allow for real-time monitoring and optimization.
The Modelica language, proposed by Fritzson and En-
gelson 1998, has emerged as the leading equation-based
modeling language for multi-domain, multi-physical sys-
tems. It has been widely used in industry and academia to
build digital twins of complex systems, such as the mod-
eling and simulation of integrated energy systems (Senkel
et al. 2021). Modelica-based software, both open-source
and commercial, offers user-friendly graphical interfaces
and advanced debugging capabilities. Notable examples
include OpenModelica (Fritzson, Aronsson, et al. 2005)
(Fritzson, Pop, et al. 2022) (Modelica Association 2023)
as an open-source option, and commercial environments
like Dymola (Elmqvist 1979) (Briick et al. 2002), Mode-
lon Impact, SimulationX, MWorks (Chen and Wei 2008).
Additionally, various open-source and commercial Mod-
elica libraries are available in the community, with the
Modelica Standard Library (current release v4.0.0 as of
July 2024) serving as the foundational library for all Mod-
elica environments.

Modern multi-domain, multi-physical systems are com-
plex entities comprising diverse components, highlight-
ing the importance of advanced modeling languages like
Modelica in their development and optimization. Single-
objective optimization is often inadequate for these com-
plex products, necessitating multi-objective optimization
(MOO) to address various competing objectives. For in-
stance, in the field of renewable energy, optimizing a wind
farm might involve balancing energy output and the min-
imization of environmental impact (Thirunavukkarasu,
Sawle, and Lala 2023). However, the current Modelica
ecosystem lacks robust support for MOO, particularly in
terms of a generalized open-source framework. This work
addresses this gap by proposing a comprehensive open-
source MOO framework that leverages Modelica and the
Python ecosystem using the OMPython API (Ganeson et
al. 2012). As systems become more complex, model-
ing them also becomes more challenging, especially since
many systems need to self-adapt based on different con-
texts/conditions and performance targets. For example, in
cloud computing systems, hardware components like CPU
cores and frequencies need to be adjusted based on user
demands and specific tasks to achieve the optimal energy-
performance balance. Modelica, as a powerful model-
ing language, is particularly useful for optimizing self-
adaptive systems, especially in achieving optimal control.

2 Background
2.1 Optimization and MOOQO in Modelica

According to Sharma and Kumar 2022, optimization tech-
niques can be categorized into three types: exact (classi-
cal) methods, heuristic and meta-heuristic methods, and
hybrid methods combining elements of both. Exact meth-
ods aim to find optimal solutions within a small, man-
ageable solution space but are often impractical for com-
plex real-world applications. Heuristic and meta-heuristic
methods, while not guaranteeing optimal solutions, are
more feasible and effective for such scenarios. Hybrid
methods leverage the strengths of both exact and heuris-
tic approaches to mitigate their weaknesses. MOO tech-
niques, often classified as stochastic meta-heuristic meth-
ods, are divided into three classes: evolutionary, swarm-
based, and hybrid algorithms.

DOI
10.3384/ecp21757

Proceedings of the Asian Modelica Conference 2024 57
December 12-13, 2025, Jeju, Korea

An Integrated Optimization and Orchestration Toolchain for Adaptive Optimal Control in Modelica Simulations

Different Modelica environments provide support for
single-objective optimization tasks. The current state of
MOO in Modelica involves various tools. In the commer-
cial sphere, software like Dymola and Modelon Impact of-
fers MOO support. Dymola includes a comprehensive op-
timization library (Pfeiffer 2012) (current version v2.2.6
as of July 2024) focusing on general optimization algo-
rithms, including the weighted sum method, which con-
verts a MOO problem into a single-objective problem by
assigning weights to each objective. Although Dymola
supports MOO, it may lack the specialized algorithms of
dedicated optimization tools. Therefore, frameworks like
the one by Leimeister 2019 have been designed for Dy-
mola. Modelon Impact provides a cloud-based platform
with robust optimization features, enabling users to effec-
tively handle complex multi-objective problems in various
engineering and industrial applications. OpenModelica, a
prominent open-source Modelica environment, integrates
with external optimization libraries and tools to facili-
tate MOO. However, its specific tool, OMOptim (Thieriot
et al. 2011), primarily designed for single-objective opti-
mization, has been excluded from the OpenModelica soft-
ware and is not currently maintained or further developed.
Consequently, developers often create custom methods to
integrate Python-based libraries tailored to their specific
optimization needs.

There is a critical need for a universal, open-source op-
timization framework capable of addressing both single-
objective and multi-objective optimization tasks. There-
fore, a primary objective of this work is to tackle this chal-
lenge by developing a comprehensive, open-source op-
timization framework that robustly supports both single-
objective and multi-objective optimization scenarios.

2.2 Optimal Control of Self-adaptive Systems

In real-world, many systems are self-adaptive. For exam-
ple, a cellphone reduces hardware functionality to con-
serve power when its battery is low. Similarly, energy sys-
tems adjust operations based on user demand, and traffic
light systems adapt themselves according to traffic flow.
These scenarios require dynamic simulations that can up-
date configurations and parameters based on the real-time
conditions and goals. Currently, Modelica environments
require developers to manually write scripts for continu-
ous optimization and adaptation. Implementing an auto-
mated workflow that optimizes and updates simulations as
needed would be significantly more practical and efficient.
Such an automated workflow is crucial as it would enable
systems to continuously monitor their state and environ-
ment, triggering updates to the simulation model with op-
timized parameters and configurations. This approach en-
sures that the simulation remains accurate and effective,
thereby significantly enhancing the system’s performance
and reliability. Therefore, another primary objective is to
design a robust, automated workflow for generalized or-
chestration, enabling optimal control for self-adaptive sys-
tems in the Modelica ecosystem.

3 The Optimization Framework

Figure 1 illustrates the concept and the structure of the
MOO4Modelica optimization framework. Key compo-
nents of this framework are feature model transformation
and optimization operation.

3.1 Feature Model Transformation

This component can be used to transform the Modelica
models into feature models. This allows the users to an-
alyze and select parameters and variables that need to be
varied and optimized, especially for large-scale models,
this would be beneficial. It also allows developers to lo-
cate corresponding parameters and variables as well as to
identify their relationships in the models quickly.

The method for transforming a Modelica model into
a feature model is inspired by the approach described
by Zhang et al. 2022. By parsing the selected Modelica
model with ANTLR (Parr and Quong 1995), the param-
eters and variables, along with their types and values, as
well as equation sets, can be progressively and recursively
obtained. These will then form a feature model, which is
saved as a JSON file. Still, the users can choose the pa-
rameters and variables they want without transforming a
Modelica model into a feature model. That is the reason
why the two key components are decoupled.

modelica.g4 This is a grammar file of ANTLR for
the Modelica language!. It defines the syntax rules that
ANTLR uses to generate a lexer and parser for Modelica.
Lexer rules specify how to recognize the smallest units
(tokens) e.g. keywords, identifiers, and operators. Parser
rules define how these tokens are combined to form valid
Modelica constructs like expressions, statements, and dec-
larations, specifically in Modelica e.g. classes, compo-
nents (parameters and variables), and equations. With the
help of these rules, the parser generated by ANTLR can
understand and process Modelica code.

parse_model.py This process parses a Modelica
model to extract its components, including parameters and
variables, along with their values. Utilizing the ANTLR-
generated lexer and parser to construct a parse tree and
traverse it to gather the relevant information. Pseudocode
1 illustrates the workflow. By systematically extracting
these components, the framework enables users to effi-
ciently identify and manipulate key model elements.

feature_model.py This process invokes the
parse_model function to parse a Modelica model,
extracting its components and equations and organizing
them into a hierarchical feature model. It includes
functionalities to display the feature model and save it to
a JSON file, which facilitates interoperability with other
tools and platforms, enhancing the flexibility and utility
of the framework. Pseudocode 2 illustrates the workflow.

Thttps://github.com/antlr/grammars-v4/tree/master/modelica

58

Proceedings of the Asian Modelica Conference 2024
December 12-13, 2025, Jeju, Korea

DOI
10.3384/ecp21757

https://github.com/antlr/grammars-v4/tree/master/modelica

Session2C

/ MOO4Modelica \

Multi-objective Optimization (MOO) Framework for Modelica

(Feature Model Transformation

modelica.g4 parse_modelica.py feature_model.py

ANTLR4 grammar for Modelica parse a Modelica model create a feature tree

-

feature model of a Modelica file

-
Optimization Operation

configurate setup parameters define and run simulation

config.py parallel_computing.py optimization_libs.py

handle parallel computing select and initialize algorithm

compile and execute model

\ collect and plot results j

Figure 1. Structure of the framework MOO4Modelica.

Pseudocode 1 Modelica Parsing

—_ =
N 2 U R s

: 1. Import Libraries and Setup

Import ant 1r4 library and lexer/parser;

: 2. Define FeatureExtracton Class

Create lists for components and equations;

Define method to handle component clauses
Extract component and add to list;

Define helper method to extract the value
Extract and add values to the list;

Define method to handle equation sections
Extract and add equations to the list;

: 3. Define parse_model function

Read and parse Modelica file into parse tree;
Initialize FeatureExtractor, traverse tree;
Return components and equations;

- 4. Main execution block

Call parse_model and print results;

Pseudocode 2 Feature Model Extraction

1: 1. Import Libraries and Setup
2: 2. Define FeatureModel Class

3.2 Optimization Operation

The second component is used for operating optimiza-
tion tasks. This can be used for both single-objective
and multi-objective optimization. This component uses
OMPython (Ganeson et al. 2012) as the bridge to con-
nect the simulation of Modelica models to Python.
All the global settings have been abstracted into the
config.py. The main workflow of the optimization op-
eration is outlined in the following steps:

 Step 1: Basic settings

— Set model name, path, and simulation time.
— Import external library (if needed).

— Configure plot diagram settings.

Step 2: Selection of parameter(s) to be varied
— Set the range and data type.

 Step 3: Selection of objectives to be optimized

3 Define method to add components/equations — Set precision (decimal places) of the results.
4 Create node for component type and name;
5 Add parameters as children nodes; « Step 4: Optimization options
6: Add equation as a node;
7 Define method to convert to dictionary — Select optimization type and algorithm.
8 Convert tree to dictionary format; o)
9. 3. Main Execution Block — Set population size and number of generations.
10: Call parse_model to get components;))
11: Initialize FeatureModel with model name; * Step 5: Parallel computing options
12: Add components and equations to feature model;))
13: Display and save feature model to JSON; — Enable or disable parallel computing.
— Set the number of CPU cores to be used.
DOI Proceedings of the Asian Modelica Conference 2024 59
10.3384/ecp21757 December 12-13, 2025, Jeju, Korea

An Integrated Optimization and Orchestration Toolchain for Adaptive Optimal Control in Modelica Simulations

optimize main.py This process sets up and exe-
cutes the optimization using configured algorithms and
parameters. It involves defining the optimization problem,
initializing the algorithm, running the optimization, and
subsequently printing and plotting the results. As the main
driver for conducting and analyzing the optimization, it
ensures a streamlined and efficient workflow. Pseudocode
3 illustrates the workflow.

Pseudocode 3 Optimization

1: 1. Import Libraries and Configuration

2: 2. Define OptimizationProblem Class

3 Define superclass initializer

4 Initialize with PARAMETERS need to be varied;
5: Initialize with RESULTS need to be minimized;
6 Initialize with RESULTS need to be maximized,;
7 Set bounds for the parameters;
8 Call superclass initializer
9 Implement evaluate method;

10: Convert parameter values to list of dictionaries;
11: Parallel processing for evaluation with n_ jobs;
12: Negate objectives that need to be maximized;
13: Store results;

14: 3. Initialize Algorithm

15: Initialize algorithm based on configuration;

16: 4. Run Optimization and Handle Clean Up

17 Define problem instance;

18: Cleanup temporary directories;

19: 5. Collect, Print, and Plot Results
20: Iterate through results;

21: Negate back maximized objectives;
22: Print each solution with formatted results;
23: Create scatter plot with results;

parallel_computing.py This process enhances
computational efficiency by facilitating parallel execution
of simulations. It defines functions for running simula-
tions with different parameter sets concurrently using the
joblib? library, significantly speeding up data process-
ing and model evaluations. This is essential for handling
computationally intensive tasks by leveraging parallel pro-
cessing capabilities. Pseudocode 4 shows the workflow.

optimization_libraries.py This module pro-
vides a unified interface for initializing and configuring
various optimization algorithms for the optimization op-
eration. By abstracting the complexity of setting up dif-
ferent optimization libraries and algorithms, it simplifies
the process of switching between them and configuring
their parameters. This module includes the powerful open-
source framework pymoo, introduced by Blank and K.
Deb 2020 which offers state-of-the-art algorithms and fea-
tures for visualization and decision-making. In this script,
users can easily extend its capabilities to meet their spe-
cific needs.

Zhttps://joblib.readthedocs.io

Pseudocode 4 Parallel Computing

1: 1. Import Libraries and Configuration
2: 2. Initialize Variables
3: Initialize temp_dirs for temporary directories;
4: 3. Define optimization_function
5: Create temp_dir for each worker;
6: Attempt for each worker
7: Create OpenModelica session omc;
8: Copy, load and build model in omc;
9: Set parameters and simulate model in omc;
10: Retrieve and return simulation results;
11: Shutdown omc;
12: 4. Define shutdown_omc
13: Quit and close omc;
14: Print success or error message;
15: 5. Define cleanup_temp_dirs

16: Attempt to remove temp_dir;
17: Print success message and break loop if successful;
18: If PermissionError occurs, sleep for backoff;

3.3 Examples

The first example features a simple heating system mod-
eled using Modelica. In this model, increasing the heat-
ing power will raise the room temperature more quickly,
thereby enhancing human comfort compared to slower
heating. However, this approach results in higher energy
consumption. Additionally, setting the target tempera-
ture too high can also decrease human comfort. In this
context, the key parameters to be adjusted are heating
power and target temperature. The objective is to find
the optimal settings that maximize human comfort while
minimizing energy consumption. Table 1 summarizes
this scenario, including the parameters to be adjusted, ob-
jectives, and the goal.

Parameters Objectives

Heating Power Human Comfort

Target Temperature | Energy Consumption
Goal
Maximize Human Comfort

Minimize Energy Consumption

Table 1. Parameters, objectives, and goal-setting of example 1.

A feature tree is not required in this simple heating sys-
tem. The configurations and parameters are directly set in
the config.py. The default configuration has been used
for this example, and the simulation time has been set to
3000 seconds. The ranges for heating power and target
temperature are 1000 - 5000 Watts and 280 - 310 Kelvin,
respectively. The NSGA2 algorithm (Kalyanmoy Deb et
al. 2002) has been chosen for the optimization. The result
shown in Figure 2 displays the corresponding Pareto front
of human comfort versus energy consumption.

60

Proceedings of the Asian Modelica Conference 2024
December 12-13, 2025, Jeju, Korea

DOI
10.3384/ecp21757

https://joblib.readthedocs.io

Session2C

Pareto Front of Energy Consumption vs Comfort

3000 o

2800 .

2600 1

2400 1 \d

Comfort

2200 ®

2000 1 g

1800 1

0.‘2 0‘4 0‘.6 O.‘S 1.‘0 1‘.2 1.‘4 1.‘6
Energy Consumption 1e6

Figure 2. Pareto front of the simple heating system.

Another example involves an electric driving robot
modeled using Modelica. This model focuses on a robot
where the challenge is to find an optimal balance between
travel distance and energy consumption at various driv-
ing speeds. In this scenario, driving speed is the key
parameter to be adjusted. The objective is to fine-tune
the speed to achieve the longest possible travel distance
while minimizing energy consumption. Table 2 summa-
rizes this scenario, including the parameter to be adjusted,
objectives, and the goal.

Parameter Objectives
.. Travel Dist
Driving Speed raver Ui ance.
Energy Consumption

Goal
Maximize Travel Distance

Minimize Energy Consumption

Table 2. Parameters, objectives, and goal-setting of use case 2.

The default configuration was used for this example,
and the simulation time was set to 3000 seconds. The
range for driving speed is 3 - 15 m/s (10.8 - 54 km/h).
The NSGA?2 algorithm has been chosen for the optimiza-
tion. Since the diagrams of the Pareto front are similar, the
result for the second use case is not shown here.

The results can inform decision-making processes for
various applications. For instance, the first example helps
decision-makers efficiently develop a strategy for heating
aroom. The second example involves multiple scenarios:
(1) Optimizing an electric robot or electric vehicle for the
target range and performance etc. (Dharumaseelan et al.
2021); (2) Optimizing electric car-sharing systems by an-
alyzing vehicle states to select the most suitable car for a
client, balancing environmental and economic considera-
tions (Hamroun, Labadi, and Lazri 2020).

4 The Orchestration Workflow

Figure 3 shows the four components of the "Modeli-
caOrch" orchestration workflow.

(ModelicaOrch)

Orchestration Workflow for Modelica

wrapper.py configurator.py

adapt the system automatically
N J

Figure 3. Structure of the workflow ModelicaOrch.

config. json The configuration file. It also dynami-
cally adapts the MOO4Modelica configuration file.

orchestrator.py It initializes components, reads
data, runs the optimization, and manages the entire sim-
ulation and evaluation loop. It acts as the central orches-
tration unit, ensuring that each component functions cor-
rectly and in sync with the others.

wrapper.py It manages the optimization process us-
ing MOO4Modelica, handles optimization results, and
provides parameter sets for simulation. It effectively
bridges the optimization and optimal control processes,
ensuring that the best possible configurations are tested.

configurator.py The configurator updates the
configuration based on the current status. It also prepares
and sets parameters for the simulation.

Figure 4 shows how the orchestration workflow oper-
ates. After reading input data it enters the adaptive con-
trol loop that iterates over defined time units. In each it-
eration, the orchestrator calls the configurator
to update optimization configurations and the wrapper
to assign and retrieve optimized parameter sets found by
MOO4Modelica. The configurator simulates and
evaluates these sets to check if the goal is satisfied. If
satisfied, the result is added to the final report; if not, the
system tries the next parameter set until all options are
exhausted. This process repeats until all time units are it-
erated, culminating in a comprehensive final report of the
optimization results. This report can be used to refine the
system and guide future adjustments. The adaptive nature
of this workflow allows for continuous improvement and
ensures that the system can respond effectively to chang-
ing conditions and requirements. By automating the op-
timization and adaptation process, the workflow signifi-
cantly reduces the need for manual intervention, allow-
ing for more efficient and reliable system management.
This capability is particularly beneficial in complex sys-
tems where numerous parameters and configurations need
to be considered.

DOI
10.3384/ecp21757

Proceedings of the Asian Modelica Conference 2024 61
December 12-13, 2025, Jeju, Korea

An Integrated Optimization and Orchestration Toolchain for Adaptive Optimal Control in Modelica Simulations

Read Input Data

‘ Adaptive Control Loop: Iteration Over Time Units

- Y

‘ Orchestrator: Call Configurator and Wrapper

!

Configurator: Update Configuration for Optimization

!

‘ MOO4Modelica: Find the Best Parameter Sets

)

‘ Wrapper: Retrieve Optimized Parameter Sets

!

‘ Wrapper: Assign Optimized Parameter Set to the Model

!

Configurator: Simulate and Evaluate Parameter Sets

Goal Satisfied?

Try Next Optimized Parameter Set

Any Parameter Sets Left?

No

A
Goal Satisfied with Current Optimized Parameter Set

Goal Not Satisfied After trying All Parameter Sets

Add to Final Report

All Time Units Iterated?

Yes

Final Report

Figure 4. Flowchart of the orchestration workflow: The adaptive control loop iteratively optimizes parameters, updates configura-
tions, evaluates models, and checks goal satisfaction over defined time units, systematically documenting results into a final report.

62 Proceedings of the Asian Modelica Conference 2024 DOI
December 12-13, 2025, Jeju, Korea 10.3384/ecp21757

Session2C

5 Case Study

In the future, autonomous driving vehicles need dis-
tributed edge computing systems for low latency as well
as high security and privacy, such as computing and data
sharing locally. Based on this background, the case study
built a simple edge computing system powered by Pho-
tovoltaic. Key parameters in this model are active CPU
cores and frequency; different combinations of these pa-
rameters will result in various combinations of perfor-
mance (computing power) and remaining energy, which
are the key variables. In real applications, traffic flow
varies at different times. For example, during the morn-
ing rush hour, available energy is still low, but user de-
mand (the required computing power) is high. From 10
AM to 4 PM, user demand is low, and available energy is
medium. During the afternoon rush hour, user demand is
high, and the available energy is also high. Therefore, the
system needs to adapt to different available energy levels
and user demands to meet the user demand while keeping
the remaining energy > O for each defined time unit.

Input
* Energy Available (hourly)
* User Demand (hourly)
Goals

* Meet User Demand: The system aims to provide the
necessary performance to meet user demand. User
demand is considered satisfied when the system’s
performance (computing power the system provides)
> user demand.

¢ Maximize Energy Efficiency: The system seeks to
optimize energy consumption to prolong operation
and maintain efficiency, ensuring that the remaining
energy > 0 at the end of the simulation.

Listing 1 shows the configuration for this case study.
The defined time unit is the hour, and the adaptive con-
trol loop runs for each hour in the simulation. For conve-
nience, the time range has been selected between § AM
and 12 AM, despite the input data having a time range of
24 hours. The model will be simulated for one hour (3600
seconds). Both objectives are set to be maximized, and
the bounds and data types for parameters to be tuned are
set to 1 - 4 (integer) and 1.0 - 3.0 (float), respectively. The
goal expressions are set such that performance needs to
be greater than or equal to user demand, and the energy
should not run out (remaining energy should not be neg-
ative). N_JOBS has been assigned as "-1", which means
that parallel computing is enables for the optimization, us-
ing all CPU cores. The CONFIG_PATH is the configura-
tion file of the MOO4Modelica optimization framework.
For each time unit, the orchestration configuration file will
also update MOO4Modelica’s configuration file to run op-
timization.

Listing 1. The configuration file for the case study.

"DATA_FILE_PATH": "data.txt",
"CONFIG_PATH": "config.json",
"MODEL_FILE": "ITSystem.mo",
"SIMULATION_TIME": 3600,
"TIME_CONFIG": {
"START_TIME": 8,
"END_TIME": 12,
"TIME_UNIT": "hour"
b
"OBJECTIVES": [
{"name": "remainingEnergy",
"maximize": true},
{"name": "performance",
"maximize": true}
1,
"TUNABLE_PARAMETERS": {
"PARAMETERS" : [
"activeCores",
"cpuFrequency"],
"PARAM_BOUNDS": {
"activeCores": {
"bounds": [1, 47,
"type" : llint n } ,
"cpuFrequency": {
"bounds": [1.0, 3.
"type": "float"}

0],

}
by
"INPUT_PARAMETERS": {
"available_energy":
availableEnergy",
"user_demand": "userDemand"

n

b
"CRITERIA": {
"GOAL_EXPRESSION": [
"evaluation_results|[’
performance’] >=
simulation_inputs|[’
user_demand’] ",
"evaluation_results|[’
remainingEnergy’] >= 0"
]
b
"OPTIMIZATION_CONFIG": {
"USE_SINGLE_OBJECTIVE":
"ALGORITHM_NAME":
"POP_SIZE": 10,
"N_GEN": 10

false,
"nsgaZ",

y
"LIBRARY_CONFIG": {
"LOAD_LIBRARIES":
"LIBRARIES": [
{"name n . nn ,

false,

”path" : n "}

]
}y

"N_JoBS": -1

Figure 5 demonstrated the visualized result of the case
study. At 8 AM, neither goal is satisfied. At9 AM, the first
goal is not satisfied. From 10 AM to 12 PM, both goals are
satisfied. Based on these results, it is clear that for 8 AM
and 9 AM, we need more power and updated hardware to
meet the system requirements. For the remaining periods,
we have already found the best configurations, which we
can now implement into the real hardware.

DOI
10.3384/ecp21757

Proceedings of the Asian Modelica Conference 2024 63
December 12-13, 2025, Jeju, Korea

An Integrated Optimization and Orchestration Toolchain for Adaptive Optimal Control in Modelica Simulations

@ @ 2
=1 N = ° b
o= 8 e Uac @ @
SE g » = geE m o3 5 e
=) ~ < EERZ - 5]
& T Efs !
1) &3)
[
| ¢! m
1l
"
g 3 °
= [©] [=] =1
>] o 2
: G 7 8 -
H
g e
[
(=]
=
Q
(7]
> =
Q
g 2
3 w© c
o @ 2
o 0 £
w N c @
) T] o
° o o] £ o o 0 o5
c > = | It hL = =]+
© 8 IS <] @ H 7] = £
0 ® o b n
g s 5
5 a 0
o = o
2 g
© &
o
E
£
]
E &
2
@ I
S o g = = S
* | &
w
@
2 z o o
: g . g ® 2
-~ b= !
3 = P o o B g 3 g g g ° $ 2
Figure 5. Visualized result of the case study
64 Proceedings of the Asian Modelica Conference 2024 DOI

December 12-13, 2025, Jeju, Korea 10.3384/ecp21757

Session2C

6 Conclusion and Future Work

OptiOrch®* is a toolchain integrating the MOO4Modelica
optimization framework and the ModelicaOrch orchestra-
tion workflow. MOO4Modelica facilitates both single-
and multi-objective optimization in Modelica-based sim-
ulations, featuring user-friendly setup configurations and
practical feature model transformations. It leverages par-
allel computing to enhance performance. ModelicaOrch
orchestrates the entire workflow, coordinating the opti-
mization process and updating configurations dynami-
cally. Together, they enable efficient and optimal con-
trol in complex Modelica simulations. Additionally, this
toolchain is designed to be flexible and extensible, allow-
ing users to adapt it to a wide range of optimization and
orchestration scenarios.

Despite its robust capabilities, optimizing and orches-
trating large-scale models can be both resource-intensive
and time-consuming. To address this challenge, it would
be interesting to investigate strategies such as using surro-
gate models for Modelica-based simulation and optimiza-
tion (Costa Paulo et al. 2023) or implementing adaptive
instance reduction (automatic search space reduction) to
reduce the computation complexity. How these two con-
cepts work in the Modelica ecosystem presents interest-
ing research topics. In real-life applications such as edge
computing systems, tasks can vary significantly, requir-
ing the system to dynamically allocate resources (CPU,
memory, etc.) based on their current demands and priori-
ties. A future goal of this work is to integrate the toolchain
with real-time hardware configurators. To achieve this, an
architecture will be developed that combines simulation-
based optimal control with real-time hardware configu-
rators. By incorporating software like MQuAT (Multi-
Quality Auto-Tuning by Contract Negotiation) by Gotz
2013 and BRISE (Benchmark Reduction via Adaptive In-
stance Selection) by Pukhkaiev 2023 into the architecture
shown in Figure 6, we can effectively fine-tune and config-
ure real hardware systems to maximize performance and
energy efficiency.

e Y
“Autotuner” Architecture

a
Real-time
Hardware Configurator

Simulation-based
Optimal Control

Modelica Simulation ”

The “OptiOrch” Toolchain

MQUAT

BRISE

g J . J
A& J

Figure 6. The "autotuner” architecture will define the interface
between simulation-based optimal control and real-time hard-
ware configurator.

3Repository: https://git-st.inf.tu-dresden.de/wang/OptiOrch
4Documentation: https://wangzizhe.github.io/OptiOrch

Acknowledgements

The author would like to thank the Boysen—-TU Dres-
den—Research Training Group for the financial and gen-
eral support that has made this contribution possible. The
Research Training Group is co-financed by the Friedrich
and Elisabeth Boysen Foundation and the TU Dresden.

References

Blank, J. and K. Deb (2020). “pymoo: Multi-Objective Opti-
mization in Python”. In: IEEE Access 8, pp. 89497-89509.
Briick, Dag et al. (2002). “Dymola for multi-engineering model-
ing and simulation”. In: Proceedings of modelica. Vol. 2002.

Citeseer.

Chen, Xia and Zhongchao Wei (2008). “A new modeling and
simulation platform-MWorks for electrical machine based on
Modelica”. In: 2008 International Conference on Electrical
Machines and Systems. IEEE, pp. 4065-4067.

Costa Paulo, Breno da et al. (2023). “Surrogate model of a
HVAC system for PV self-consumption maximisation”. In:
Energy Conversion and Management: X 19, p. 100396.

Deb, Kalyanmoy et al. (2002). “A fast and elitist multiobjective
genetic algorithm: NSGA-II”. In: IEEE transactions on evo-
lutionary computation 6.2, pp. 182—197.

Dharumaseelan, Elavarasan et al. (2021). “Model Based Anal-
ysis and Multi-objective Optimization of an Electric Pickup
truck for Range, Acceleration, Drivability, Handling and Ride
Comfort Performances”. In: 2021 IEEE Transportation Elec-
trification Conference (ITEC-India). IEEE, pp. 1-6.

Elmgqvist, Hilding (1979). “DYMOLA-a structured model lan-
guage for large continuous systems”. In.

Fritzson, Peter, Peter Aronsson, et al. (2005). “The OpenModel-
ica modeling, simulation, and development environment”. In:
46th Conference on Simulation and Modelling of the Scandi-
navian Simulation Society (SIMS2005), Trondheim, Norway,
October 13-14, 2005.

Fritzson, Peter and Vadim Engelson (1998). “Modelica—A uni-
fied object-oriented language for system modeling and sim-
ulation”. In: ECOOP’98—Object-Oriented Programming:
12th European Conference Brussels, Belgium, July 20-24,
1998 Proceedings 12. Springer, pp. 67-90.

Fritzson, Peter, Adrian Pop, et al. (2022). “The OpenModelica
integrated environment for modeling, simulation, and model-
based development”. In: Mic.

Ganeson, Anand Kalaiarasi et al. (2012). “An OpenModelica
python interface and its use in PySimulator”. In.

Gotz, Sebastian (2013). “Multi-Quality Auto-Tuning by Con-
tract Negotiation”. In.

Hamroun, A, K Labadi, and M Lazri (2020). “Modelling and
performance analysis of electric car-sharing systems using
Petri nets”. In: E3S Web of Conferences. Vol. 170. EDP Sci-
ences, p. 03001.

Leimeister, Mareike (2019). “Python-Modelica framework for
automated simulation and optimization”. In.

Modelica Association (2023-03). Modelica — A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.6. Tech. rep. Linkoping: Modelica Associa-
tion. URL: https://specification.modelica.org/maint/3.6/MLS.
pdf.

Parr, Terence J. and Russell W. Quong (1995). “ANTLR: A
predicated-LL (k) parser generator”. In: Software: Practice
and Experience 25.7, pp. 789-810.

DOI
10.3384/ecp21757

Proceedings of the Asian Modelica Conference 2024 65
December 12-13, 2025, Jeju, Korea

https://git-st.inf.tu-dresden.de/wang/OptiOrch
https://wangzizhe.github.io/OptiOrch
https://specification.modelica.org/maint/3.6/MLS.pdf
https://specification.modelica.org/maint/3.6/MLS.pdf

An Integrated Optimization and Orchestration Toolchain for Adaptive Optimal Control in Modelica Simulations

Pfeiffer, Andreas (2012). “Optimization library for interactive
multi-criteria optimization tasks”. In.

Pukhkaiev, Dmytro (2023). “A Software Product Line for Pa-
rameter Tuning”. In.

Senkel, Anne et al. (2021). “Status of the transient library: Tran-
sient simulation of complex integrated energy systems”. In:
Modelica Conferences, pp. 187-196.

Sharma, Shubhkirti and Vijay Kumar (2022). “A comprehen-
sive review on multi-objective optimization techniques: Past,
present and future”. In: Archives of Computational Methods
in Engineering 29.7, pp. 5605-5633.

Thieriot, Hubert et al. (2011). “Towards design optimiza-
tion with OpenModelica emphasizing parameter optimization
with genetic algorithms”. In: Proceedings of the 8th Interna-
tional Modelica Conference. Vol. 63, pp. 756-762.

Thirunavukkarasu, M, Yashwant Sawle, and Himadri Lala
(2023). “A comprehensive review on optimization of hybrid
renewable energy systems using various optimization tech-
niques”. In: Renewable and Sustainable Energy Reviews 176,
p. 113192.

Zhang, Congcong et al. (2022). “A Multi-objective Optimization
Algorithm and Process for Modelica Model”. In: 2022 4th
International Conference on Artificial Intelligence and Ad-
vanced Manufacturing (AIAM). IEEE, pp. 9-13.

66 Proceedings of the Asian Modelica Conference 2024
December 12-13, 2025, Jeju, Korea

DOI
10.3384/ecp21757

	Introduction
	Background
	Optimization and MOO in Modelica
	Optimal Control of Self-adaptive Systems

	The Optimization Framework
	Feature Model Transformation
	Optimization Operation
	Examples

	The Orchestration Workflow
	Case Study
	Conclusion and Future Work

