
 

 

Digital Human Body Model for Occupant 

Monitoring System 

Man Yong Han1     Yong Ha Han2     Hyung Yun Choi3 
1, 2 Hyundai Motor Company, Republic of Korea, 

{myhan1037,yongha}@hyundai.com 
3Dept. of Mechanical and System Design Engineering, Hongik Univ. 

Korea, hychoi@hongik.ac.kr 

 

 

 

Abstract 
Occupant monitoring systems have been developed and 

used for Autonomous Driving (AD) level 3+. These 

occupant monitoring systems have limitations in accuracy 

and measurement items. To compensate for this, a Digital 

Human Body Model (DHBM) based on the Modelica 

language is developed, and its features are introduced. 

Inverse Kinematics (IK) and Inverse Dynamics (ID) 

DHBMs are interlocked with the occupant monitoring 

system to increase measurement accuracy and calculate 

various information such as motion sickness and fatigue. 

However, simulation of occupant behavior prediction is 

impossible. Forward Dynamics (FD) DHBM is a model 

that implements the characteristics of the live human 

studied through experiments and can predict occupant 

behavior. However, parameter verification is necessary to 

trust the results of FD DHBM. It is developing real-time 

validation and parameter update algorithms for FD 

DHBM using occupant monitoring data, which are 

expected to be available in various fields such as comfort 

and safety. 

Keywords: Digital Human Body Model (DHBM), 

Occupant Monitoring, Autonomous Driving (AD), Active 
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1 Introduction 

For autonomous driving level 3+, technology 

development and practical application of sensors, 

Advanced Driver-Assistance Systems (ADAS), and 

Active Safety Systems (ASS) are underway. ASS 

increases the pre-crash phase before impact and 

minimizes crash severity. Due to ASS, occupants have 

time to react, and physical characteristics such as sitting 

posture and muscle strength can affect their behavior. As 

a result, research on occupant behavior in driving and pre-

crash phases has become necessary. Virtual simulation is 

needed to research various vehicle and occupant 

conditions effectively. However, Human Body Models 

such as the Global Human Body Model Consortium 

(GHBMC) and Total Human Model for Safety (THUMS) 

for virtual simulation are specialized in crash simulation 

and injury prediction and validated for PostMortem 

Human Subjects (PMHS) -based in-crash (John J. 

Combest 2018; Toyota Motor Corporation 2021). In 

addition, because it is an FE-based model, the CPU cost is 

high and difficult to simulate for the long term, making it 

unsuitable for long-term passenger behavior research. 

The Occupant Model For Integrated Safety (OM4IS) 

consortium and several studies have conducted occupants’ 

behavior studies based on volunteer experiments 

(Kirschibichler 2014; Huber 2015). OM4IS measured and 

analyzed occupant kinematics assuming the operation of 

the ASS. With the recent advances in posture detection 

technology, in-cabin occupant monitoring systems are 

installed in vehicles (e.g., Mobis DSM). In PC/mobile 

environments, machine learning-based human body 

monitoring systems (e.g., Google MediaPipe, Yolo v4) are 

being developed and are expected to be applied to actual 

vehicles in the future under Software Defined Vehicle 

(SDV) environments. Occupants' actual status and 

movement can be monitored and used for safety, comfort, 

etc. However, since the measured occupant movement is 

displacement-based data, the precision is relatively low, 

and it is impossible to predict the occupant behavior; a 

method to supplement this is necessary. Methods using 

mathematical filters (e.g., Kalman filters) can eliminate 

noise, but reflecting human characteristics and predicting 

behavior is still challenging. A Digital Human Body 

Model (DHBM) based on the Modelica language with low 

CPU cost and acausal characteristics was developed to 

supplement the occupant monitoring system. 

Modelica language can build a multi-body system model 

and has acausal characteristics, which will be described 

later in Inverse Kinematics (IK), Inverse Dynamics (ID), 

and Forward dynamics (FD) models, which can be built 

based on a single basic model. It has the advantage of 

quickly conducting long-term simulations with low CPU 

costs. Moreover, since the Modelica language supports the 

Functional Mock-up Unit (FMU), it can conduct various 

simulations with other S/Ws that support the Functional 

Mock-up Interface (FMI). The control unit of the DHBM 

used the blocks module of Modelica (e.g., Continuous, 

nonlinear, table), and the human model part used the 

mechanic's modules such as multibody, rotational, and 

translational modules. It was conducted using Open-

Modelica and ESI's SimulationX. 
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2 DHBM for Occupant Monitoring 

In an environment where occupants are monitored, a 

DHBM for improving accuracy and calculating additional 

information has been created for more diverse use.  

2.1 Base of DHBM 

The basic DHBM consists of the pelvis as the root and is 

deployed to the end of each body (Head, Upper-, Lower-

extremity). The body segments are set to rigid-body, and 

each segment contains body properties such as center of 

mass, mass, and inertia information. The body segments 

consist of the head, neck, trunk, upper arm (UA), forearm 

(FA), upper leg (UL), lower leg (LL), and foot. Depending 

on the occupant monitoring information or needs, the 

trunk shall be two (UT, LT) or three (UT, CT, LT). An 

articulated joint connects each segment, and each joint 

except the elbow (1D) is composed by connecting three 

1D revolute joints in series. In the case of the lower 

extremity, the joints are fixed as necessary to prevent 

movement. Properties of body segments and joint 

positions are based on values corresponding to the 

GHBMC AM 50th %tile or the subject's body dimensions. 

These values are fixed before the analysis begins. 

2.2 Seat-Human Interaction & Seat Belt 

In situations where lateral acceleration occurs, such as 

evasive lane change, seat cushions, and bags affect human 

body behavior. Conversely, in emergency braking 

situations, the effect of the seat back is eliminated, and the 

seat cushion and seat belt affect occupant movement. A 

seat-human interaction module and a seat belt module 

were developed to describe this.  

For seat back-human interaction, contact force was 

calculated using an elastic-gap block. For seat cushion-

human interaction, contact force was calculated using a 

foam characteristic table and kinematics between the 

cushion and lower body and applied to the lower body.  

 

Figure 1. Seat belt model in Open-Modelica (left), 

 and in SimulationX (right) 

The seat belt was composed of three parts and four contact 

points, and the belt loosening amount was measured with 

a dummy spring, as shown in Figure 1. Based on this, the 

belt tension force was calculated, and the belt tension 

force was applied to the trunk. In the lateral direction of 

the belt, lateral friction force was applied to the DHBM 

using a sliding part. In SimulationX, seat belts were 

implemented using a belt, belt preset, and pulley block, as 

shown in Figure 1. 

2.3 Inverse Kinematics (IK) of DHBM 

The occupant monitoring information used in this study is 

the 3D position of the main landmarks and joints of the 

human body and includes a certain level of error. If IK 

analysis is performed using each position as an input, the 

length of each segment is continuously changed due to 

errors included in the input. This conflicts with the 

segment length of the dummy set in a rigid body, making 

normal IK simulation impossible. To solve this problem, 

a spring-damper connects each input point and the 

corresponding point of the human model to function as a 

buffer. The angle of each joint can be calculated through 

the IK DHBM, and acceleration that is difficult to 

calculate mathematically other than displacement and 

angle, it is possible to calculate angular velocity. However, 

the active torque of each joint cannot be calculated 

through the IK DHBM. 

 

Figure 2. Conceptual Diagram of IK, ID DHBM 

2.4 Inverse Dynamics (ID) of DHBM 

To obtain the DHBM's kinetic information, an ID DHBM 

was constructed using the IK model's joint angle as the 

input. Each joint's kinetic information (joint torque) can 

be calculated using the acausal characteristics to satisfy 

the input kinematic (joint angle). This is the same as the 

occupant monitoring results. All kinematic and kinetic 

information can be obtained. 

3 DHBM for Simulation 

IK, ID DHBM can describe and analyze the behavior of 

passengers based on the measured (or under measurement) 

monitoring information, but it is impossible to predict the 

behavior of occupants. The FD DHBM, including the 

characteristics of a living human, can predict the 

occupant's behavior according to the vehicle's movement. 

Live humans exhibit different behaviors from the 

Anthropomorphic Test Device (ATD) or PMHS under the 

same external force conditions (Beeman 2012). This is 

due to the characteristics of live humans, and its typical 

characteristics include muscle contraction (co-contraction) 

and awareness (Kirschibichler 2014). Various 
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characteristics of the human body needed for calculating 

occupant behavior and their application are as follows:  

3.1 Active Joint Torque 

The live human generates muscle force through the 

contraction and relaxation of various muscles, which is 

applied as a torque to rotate the body segment. Among the 

methods of modeling muscle contraction in the human 

body, calculating muscle contraction and muscle force 

according to the activation level by modeling all muscles 

is also used. This requires an excessive amount of 

computation. To speed up computation, the concept of 

active joint torque (equivalent torque applied to each joint) 

was introduced without calculating the contraction force 

of each muscle. The active joint torque actuator was 

configured based on the PID closed-loop control, and the 

change in the joint angle (or body segment angle) 

compared to the reference was set as an error. And the 

torque to be applied to each joint was set as an output. 

Choi (2016) verified an active elbow model reflecting 

active joint torque and co-contraction.  

3.2 Co-contraction 

Beeman (2012) conducted low-speed sled tests on ATD, 

PMHS, and human volunteers. The volunteer showed 

behavior between the PMHS and the ATD and differences 

in behavior according to the co-contraction level. It 

showed more similar behavior to ATD in the braced 

condition (high level of co-contraction) than in the relaxed 

condition (low level of co-contraction). As the co-

contraction level increases, the human joint stiffs and 

behaves like a rigid body. It is applied to a human model 

by damping torque, and an example is shown in Figure 3.  

 

Figure 3. An overview of co-contraction (left), an example of 

co-contraction torque applied to the model (right) 

 

Figure 4. Validation result of low-speed sled test 

A low-speed sled test confirmed DHBMs that reflect co-

contraction (Beeman 2012). Compared to the results of 

the same validation of the GHBMC FE active model 

(Devane 2019), both relaxed and braced conditions 

showed high similarity except for the shoulder at the 

braced condition, as shown in Figure 4. 

3.3 Awareness 

OM4IS measures the behavior of passengers according to 

their awareness of evasive single-lane change and 

emergency braking situations assuming an autonomous 

driving situation. In the unaware condition (low level of 

awareness), in which passengers do not know the situation, 

they showed large behavior with a neural delay time 

longer than the informed condition (high level of 

awareness) in which all situations are known. The higher 

the awareness level, the shorter the neural delay time, so 

the torque is rapidly actuated, and the amount of excursion 

decreases. In the DHBM, awareness was reflected by not 

applying the active joint torque calculated during the 

neural delay time to the torque actuator (Han 2019). 

3.4 Response Strategy 

Vehicle occupants have two strategies: driver behavior 

and passenger behavior. In the case of the driver, to 

perform driving, the driver moves with a strategy of fixing 

the head position as much as possible and adjusting the 

gaze in the direction of progress. On the other hand, the 

passenger has a strategy of resisting the body more 

passively without considering the head position (Zikovitz 

1999). For passengers, the same strategy as the driver can 

be taken, which can be viewed as a characteristic 

according to inter- and intra-subject variations. To reflect 

this, DHBM's PID control error used both the weighted 

joint and segment angles (Son 2023).  

3.5 Forward Dynamics (FD) DHBM 

The validation of critical parameters is necessary for the 

DHBM to describe occupants' behavior. The main 

parameters are PID gains, co-contraction, awareness level, 

and strategy ratio. The optimization technique can find 

parameters that show the same behavior as the subject test 

data. Using the OM4IS evasive lane change results, 

optimization targeting each subject's behavior and overall 

average behavior was conducted and reviewed (Han 2019). 

By applying floor input (or pelvis input) to the validated 

model and simulating it, the behavior of the human body 

according to a given vehicle movement can be predicted. 

Through this, it is possible to predict the occupants' 

behavior and use the result to optimize vehicle control. 

However, in the case of live humans, since inter- and intra-

subject variations exist, the accuracy of the simulation 

may decrease as it deviates from the validation condition. 

4 Use Case 

IK DHBM can improve the accuracy of body kinematic 

information in occupant monitoring systems and calculate 

more information. For example, head translational acc., 

rotational vel. can be calculated, and motion sickness can 
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be calculated using models such as Motion Sickness 

Incidence (MSI). 

ID DHBM is used to calculate kinetic information using 

occupant kinematic information. Active joint torques, the 

simulation results of ID DHBM, can be viewed as the 

energy needed to maintain posture. The regression 

equation obtained through the volunteer experiment can 

be converted into the Metabolic Equivalent of Task (MET) 

and kCal units, and the muscle fatigue of passengers 

caused by maintaining posture while driving can be 

checked. 

FD DHBM uses vehicle movement to predict occupant 

kinematics and kinetics. Since occupant monitoring 

information is not needed, it is possible to simulate 

occupant behavior according to vehicle kinematics 

quickly. For example, it is possible to decide which ASS 

strategy is more dangerous to passengers under various 

conditions. 

5 Conclusion 

This paper introduces the types and characteristics of 

passenger monitoring systems and available Modelica 

language-based DHBMs. In addition, it presents the main 

characteristics of the human body found through ATD, 

PHMS, and live-human subject experiments and how to 

implement them in FD DHBM. The main characteristics 

of DHBM are as follows. 

1. The main characteristics of the human body include 

active joint torque, co-contraction, awareness, and 

response strategy. These characteristics must be 

reflected in the human model to express the human 

body's behavior well in DHBM. 

2. DHBMs using the Modelica language have a lower 

CPU time than FE models, can be simulated for a 

long time, and can be linked to the occupant 

monitoring system. It also supports FMU with FMI, 

enabling co-simulation with various programs. 

3. The IK and ID HBMs enhance the accuracy of 

occupant monitoring information and calculate the 

kinematics and kinetics of occupants to enable 

quantitative evaluation, such as motion sickness and 

muscle fatigue. However, they have a disadvantage 

in using already measured (or being measured) 

information, and it is impossible to simulate 

behavior prediction. 

4. FD HBM has the advantage of implementing co-

contraction, awareness, and individual size, which 

are characteristics of the human body, so that 

occupant kinematics and kinetics can be calculated 

and predictive simulations can be performed. 
However, the validation of the model parameter is 

required, and the reliability of the FD HBM is 

guaranteed only for the conditions under which the 

model parameter validation is performed. 

The currently developed DHBM based on the Modelica 

language has the advantage of quantitatively analyzing 

and utilizing occupant behavior and is being reviewed for 

use in more diverse fields. To improve the limitations of 

the FD model, an algorithm for periodic validation and 

parameter updates is being developed using the IK model 

or occupant monitoring information. It is expected that 

this will increase the accuracy of predicting passenger 

behavior. 
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