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Abstract

Occupant monitoring systems have been developed and
used for Autonomous Driving (AD) level 3+. These
occupant monitoring systems have limitations in accuracy
and measurement items. To compensate for this, a Digital
Human Body Model (DHBM) based on the Modelica
language is developed, and its features are introduced.
Inverse Kinematics (IK) and Inverse Dynamics (ID)
DHBMs are interlocked with the occupant monitoring
system to increase measurement accuracy and calculate
various information such as motion sickness and fatigue.
However, simulation of occupant behavior prediction is
impossible. Forward Dynamics (FD) DHBM is a model
that implements the characteristics of the live human
studied through experiments and can predict occupant
behavior. However, parameter verification is necessary to
trust the results of FD DHBM. It is developing real-time
validation and parameter update algorithms for FD
DHBM using occupant monitoring data, which are
expected to be available in various fields such as comfort
and safety.

Keywords: Digital Human Body Model (DHBM),
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1 Introduction

For autonomous driving level 3+, technology
development and practical application of sensors,
Advanced Driver-Assistance Systems (ADAS), and
Active Safety Systems (ASS) are underway. ASS
increases the pre-crash phase before impact and
minimizes crash severity. Due to ASS, occupants have
time to react, and physical characteristics such as sitting
posture and muscle strength can affect their behavior. As
a result, research on occupant behavior in driving and pre-
crash phases has become necessary. Virtual simulation is
needed to research various vehicle and occupant
conditions effectively. However, Human Body Models
such as the Global Human Body Model Consortium
(GHBMC) and Total Human Model for Safety (THUMS)
for virtual simulation are specialized in crash simulation
and injury prediction and validated for PostMortem
Human Subjects (PMHS) -based in-crash (John J.

Combest 2018; Toyota Motor Corporation 2021). In
addition, because it is an FE-based model, the CPU cost is
high and difficult to simulate for the long term, making it
unsuitable for long-term passenger behavior research.
The Occupant Model For Integrated Safety (OMA4IS)
consortium and several studies have conducted occupants’
behavior studies based on volunteer experiments
(Kirschibichler 2014; Huber 2015). OM4IS measured and
analyzed occupant kinematics assuming the operation of
the ASS. With the recent advances in posture detection
technology, in-cabin occupant monitoring systems are
installed in vehicles (e.g., Mobis DSM). In PC/mobile
environments, machine learning-based human body
monitoring systems (e.g., Google MediaPipe, Yolo v4) are
being developed and are expected to be applied to actual
vehicles in the future under Software Defined Vehicle
(SDV) environments. Occupants' actual status and
movement can be monitored and used for safety, comfort,
etc. However, since the measured occupant movement is
displacement-based data, the precision is relatively low,
and it is impossible to predict the occupant behavior; a
method to supplement this is necessary. Methods using
mathematical filters (e.g., Kalman filters) can eliminate
noise, but reflecting human characteristics and predicting
behavior is still challenging. A Digital Human Body
Model (DHBM) based on the Modelica language with low
CPU cost and acausal characteristics was developed to
supplement the occupant monitoring system.

Modelica language can build a multi-body system model
and has acausal characteristics, which will be described
later in Inverse Kinematics (IK), Inverse Dynamics (ID),
and Forward dynamics (FD) models, which can be built
based on a single basic model. It has the advantage of
quickly conducting long-term simulations with low CPU
costs. Moreover, since the Modelica language supports the
Functional Mock-up Unit (FMU), it can conduct various
simulations with other S/Ws that support the Functional
Mock-up Interface (FMI). The control unit of the DHBM
used the blocks module of Modelica (e.g., Continuous,
nonlinear, table), and the human model part used the
mechanic's modules such as multibody, rotational, and
translational modules. It was conducted using Open-
Modelica and ESI's SimulationX.
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2 DHBM for Occupant Monitoring

In an environment where occupants are monitored, a
DHBM for improving accuracy and calculating additional
information has been created for more diverse use.

2.1 Base of DHBM

The basic DHBM consists of the pelvis as the root and is
deployed to the end of each body (Head, Upper-, Lower-
extremity). The body segments are set to rigid-body, and
each segment contains body properties such as center of
mass, mass, and inertia information. The body segments
consist of the head, neck, trunk, upper arm (UA), forearm
(FA), upper leg (UL), lower leg (LL), and foot. Depending
on the occupant monitoring information or needs, the
trunk shall be two (UT, LT) or three (UT, CT, LT). An
articulated joint connects each segment, and each joint
except the elbow (1D) is composed by connecting three
1D revolute joints in series. In the case of the lower
extremity, the joints are fixed as necessary to prevent
movement. Properties of body segments and joint
positions are based on values corresponding to the
GHBMC AM 50 %tile or the subject's body dimensions.
These values are fixed before the analysis begins.

2.2 Seat-Human Interaction & Seat Belt

In situations where lateral acceleration occurs, such as
evasive lane change, seat cushions, and bags affect human
body behavior. Conversely, in emergency braking
situations, the effect of the seat back is eliminated, and the
seat cushion and seat belt affect occupant movement. A
seat-human interaction module and a seat belt module
were developed to describe this.

For seat back-human interaction, contact force was
calculated using an elastic-gap block. For seat cushion-
human interaction, contact force was calculated using a
foam characteristic table and kinematics between the
cushion and lower body and applied to the lower body.
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Figure 1. Seat belt model in Open-Modelica (left),
and in SimulationX (right)

The seat belt was composed of three parts and four contact
points, and the belt loosening amount was measured with
a dummy spring, as shown in Figure 1. Based on this, the
belt tension force was calculated, and the belt tension
force was applied to the trunk. In the lateral direction of
the belt, lateral friction force was applied to the DHBM
using a sliding part. In SimulationX, seat belts were

implemented using a belt, belt preset, and pulley block, as
shown in Figure 1.

2.3 Inverse Kinematics (IK) of DHBM

The occupant monitoring information used in this study is
the 3D position of the main landmarks and joints of the
human body and includes a certain level of error. If IK
analysis is performed using each position as an input, the
length of each segment is continuously changed due to
errors included in the input. This conflicts with the
segment length of the dummy set in a rigid body, making
normal IK simulation impossible. To solve this problem,
a spring-damper connects each input point and the
corresponding point of the human model to function as a
buffer. The angle of each joint can be calculated through
the IK DHBM, and acceleration that is difficult to
calculate mathematically other than displacement and
angle, it is possible to calculate angular velocity. However,
the active torque of each joint cannot be calculated
through the IK DHBM.

':“ylpa_"‘g Inverse Kinematics DHBM }If Inverse Dynamics DHBM
onitarin ]

f—————> Input a

Joint Position ! .
+ Disp. Joint Angle

———— Inputb

O

L+ Input ¢

;
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
I

Body Kinetics
+ Joint Torque

Joint ¢

—————— e

Figure 2. Conceptual Diagram of IK, ID DHBM

2.4 Inverse Dynamics (ID) of DHBM

To obtain the DHBM's kinetic information, an ID DHBM
was constructed using the IK model's joint angle as the
input. Each joint's kinetic information (joint torque) can
be calculated using the acausal characteristics to satisfy
the input kinematic (joint angle). This is the same as the
occupant monitoring results. All kinematic and kinetic
information can be obtained.

3 DHBM for Simulation

IK, ID DHBM can describe and analyze the behavior of
passengers based on the measured (or under measurement)
monitoring information, but it is impossible to predict the
behavior of occupants. The FD DHBM, including the
characteristics of a living human, can predict the
occupant's behavior according to the vehicle's movement.
Live humans exhibit different behaviors from the
Anthropomorphic Test Device (ATD) or PMHS under the
same external force conditions (Beeman 2012). This is
due to the characteristics of live humans, and its typical
characteristics include muscle contraction (co-contraction)
and awareness (Kirschibichler 2014). Various
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characteristics of the human body needed for calculating
occupant behavior and their application are as follows:

3.1 Active Joint Torque

The live human generates muscle force through the
contraction and relaxation of various muscles, which is
applied as a torque to rotate the body segment. Among the
methods of modeling muscle contraction in the human
body, calculating muscle contraction and muscle force
according to the activation level by modeling all muscles
is also used. This requires an excessive amount of
computation. To speed up computation, the concept of
active joint torque (equivalent torque applied to each joint)
was introduced without calculating the contraction force
of each muscle. The active joint torque actuator was
configured based on the PID closed-loop control, and the
change in the joint angle (or body segment angle)
compared to the reference was set as an error. And the
torque to be applied to each joint was set as an output.
Choi (2016) verified an active elbow model reflecting
active joint torque and co-contraction.

3.2 Co-contraction

Beeman (2012) conducted low-speed sled tests on ATD,
PMHS, and human volunteers. The volunteer showed
behavior between the PMHS and the ATD and differences
in behavior according to the co-contraction level. It
showed more similar behavior to ATD in the braced
condition (high level of co-contraction) than in the relaxed
condition (low level of co-contraction). As the co-
contraction level increases, the human joint stiffs and
behaves like a rigid body. It is applied to a human model
by damping torque, and an example is shown in Figure 3.
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Figure 3. An overview of co-contraction (left), an example of
co-contraction torque applied to the model (right)
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Figure 4. Validation result of low-speed sled test

A low-speed sled test confirmed DHBMs that reflect co-
contraction (Beeman 2012). Compared to the results of
the same validation of the GHBMC FE active model

(Devane 2019), both relaxed and braced conditions
showed high similarity except for the shoulder at the
braced condition, as shown in Figure 4.

3.3 Awareness

OMA4IS measures the behavior of passengers according to
their awareness of evasive single-lane change and
emergency braking situations assuming an autonomous
driving situation. In the unaware condition (low level of
awareness), in which passengers do not know the situation,
they showed large behavior with a neural delay time
longer than the informed condition (high level of
awareness) in which all situations are known. The higher
the awareness level, the shorter the neural delay time, so
the torque is rapidly actuated, and the amount of excursion
decreases. In the DHBM, awareness was reflected by not
applying the active joint torque calculated during the
neural delay time to the torque actuator (Han 2019).

3.4 Response Strategy

Vehicle occupants have two strategies: driver behavior
and passenger behavior. In the case of the driver, to
perform driving, the driver moves with a strategy of fixing
the head position as much as possible and adjusting the
gaze in the direction of progress. On the other hand, the
passenger has a strategy of resisting the body more
passively without considering the head position (Zikovitz
1999). For passengers, the same strategy as the driver can
be taken, which can be viewed as a characteristic
according to inter- and intra-subject variations. To reflect
this, DHBM's PID control error used both the weighted
joint and segment angles (Son 2023).

3.5 Forward Dynamics (FD) DHBM

The validation of critical parameters is necessary for the
DHBM to describe occupants' behavior. The main
parameters are PID gains, co-contraction, awareness level,
and strategy ratio. The optimization technique can find
parameters that show the same behavior as the subject test
data. Using the OMA4IS evasive lane change results,
optimization targeting each subject's behavior and overall
average behavior was conducted and reviewed (Han 2019).
By applying floor input (or pelvis input) to the validated
model and simulating it, the behavior of the human body
according to a given vehicle movement can be predicted.
Through this, it is possible to predict the occupants'
behavior and use the result to optimize vehicle control.
However, in the case of live humans, since inter- and intra-
subject variations exist, the accuracy of the simulation
may decrease as it deviates from the validation condition.

4 Use Case

IK DHBM can improve the accuracy of body kinematic
information in occupant monitoring systems and calculate
more information. For example, head translational acc.,
rotational vel. can be calculated, and motion sickness can
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be calculated using models such as Motion Sickness
Incidence (MSI).

ID DHBM is used to calculate kinetic information using
occupant kinematic information. Active joint torques, the
simulation results of ID DHBM, can be viewed as the
energy needed to maintain posture. The regression
equation obtained through the volunteer experiment can
be converted into the Metabolic Equivalent of Task (MET)

and kCal units, and the muscle fatigue of passengers

caused by maintaining posture while driving can be
checked.

FD DHBM uses vehicle movement to predict occupant
kinematics and kinetics. Since occupant monitoring
information is not needed, it is possible to simulate
occupant behavior according to vehicle kinematics
quickly. For example, it is possible to decide which ASS
strategy is more dangerous to passengers under various
conditions.

5 Conclusion

This paper introduces the types and characteristics of
passenger monitoring systems and available Modelica
language-based DHBMs. In addition, it presents the main
characteristics of the human body found through ATD,
PHMS, and live-human subject experiments and how to
implement them in FD DHBM. The main characteristics
of DHBM are as follows.

1. The main characteristics of the human body include
active joint torque, co-contraction, awareness, and
response strategy. These characteristics must be
reflected in the human model to express the human
body's behavior well in DHBM.

2. DHBMs using the Modelica language have a lower
CPU time than FE models, can be simulated for a
long time, and can be linked to the occupant
monitoring system. It also supports FMU with FMI,
enabling co-simulation with various programs.

3. The IK and ID HBMs enhance the accuracy of
occupant monitoring information and calculate the
kinematics and kinetics of occupants to enable
quantitative evaluation, such as motion sickness and
muscle fatigue. However, they have a disadvantage
in using already measured (or being measured)
information, and it is impossible to simulate
behavior prediction.

4. FD HBM has the advantage of implementing co-
contraction, awareness, and individual size, which
are characteristics of the human body, so that
occupant kinematics and kinetics can be calculated
and predictive simulations can be performed.
However, the validation of the model parameter is
required, and the reliability of the FD HBM is

guaranteed only for the conditions under which the
model parameter validation is performed.

The currently developed DHBM based on the Modelica
language has the advantage of quantitatively analyzing
and utilizing occupant behavior and is being reviewed for
use in more diverse fields. To improve the limitations of
the FD model, an algorithm for periodic validation and
parameter updates is being developed using the IK model
or occupant monitoring information. It is expected that
this will increase the accuracy of predicting passenger
behavior.
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