
The Functional Mock-up Interface 3.0 -
New Features Enabling New Applications

Andreas Junghanns1 Torsten Blochwitz2 Christian Bertsch3 Torsten Sommer4

Karl Wernersson5 Andreas Pillekeit6 Irina Zacharias6 Matthias Blesken6 Pierre R. Mai7

Klaus Schuch8 Christian Schulze9 Cláudio Gomes10 Masoud Najafi11

1Synopsys, Germany, Andreas.Junghanns@synopys.com
2ESI ITI GmbH, Germany, Torsten.Blochwitz@esi-group.com

3Robert Bosch GmbH, Germany, Christian.Bertsch@de.bosch.com
4Dassault Systemes GmbH, Germany, Torsten.Sommer@3ds.com

5Dassault Systemes AB, Sweden, Karl.Wernersson@3ds.com
6dSPACE GmbH, Germany {APillekeit,IZacharias,MBlesken}@dspace.com

7PMSF IT Consulting, Germany, pmai@pmsf.de
8AVL List GmbH, Austria, Klaus.Schuch@avl.com

9TLK-Thermo GmbH, Germany, c.schulze@tlk-thermo.com
10Aarhus University, Denmark, claudio.gomes@ece.au.dk

11Altair, France, masoud@altair.com

Abstract
The Functional Mock-up Interface (FMI) (Modelica As-
sociation 2021b) is a tool independent standard for the ex-
change of dynamic models and for co-simulation. FMI
2.0, released in 2014, is recognized as the de-facto stan-
dard in industry for exchanging models and tool coupling,
and is currently supported by more than 160 simulation
tools. Version 3.0 of the standard brings many new fea-
tures that allow for advanced co-simulation algorithms
and new use cases such as packaging and simulation of
highly accurate virtual Electronic Control Units (vECUs).
Besides Model-Exchange and Co-Simulation, a third in-
terface type, Scheduled Execution, is defined for purely
discrete, RTOS-like, simulation and supports preemption.
Clocks allow the synchronization of events between Func-
tional Mock-up Units (FMUs) and the importer. There
is better support for data types including binary data and
arrays. Advanced co-simulation approaches are enabled
by intermediate variable access between communication
points and allowing event handling. The composition of
systems from FMUs is simplified by terminals that can
bundle multiple signals. The concept of layered standards
allows the extension of the FMI standard.
Keywords: FMI, FMU, Functional Mock-up Interface

1 Motivation
FMI 1.0 (Blochwitz 2011) and FMI 2.0 (Blochwitz 2012)
were successfully adopted by industry and are currently
supported by more than 160 simulation tools (Modelica
Association 2021c). For many years stability was an im-
portant success factor of FMI, resulting in maintenance
releases of FMI 2.0. However, it became clear that new
use cases require improved capabilities that are addressed

by the new version of the standard (Modelica Association
2021a), summarized next.

Virtual Electronic Control Units (vECUs). The ability
to package control code into Functional Mock-up Units
(FMUs) required some workarounds in FMI 2.0. With
FMI 3.0, virtual electronic control units (vECUs) can be
exported as FMUs in a more natural way using the fol-
lowing new and/or improved features: Terminals (subsec-
tion 3.3), clocks (subsection 3.6), new integer types and
the new binary type (subsection 3.1), array variables and
structural parameters (subsection 3.2), and the new inter-
face type Scheduled Execution (subsection 2.3).

Advanced Co-Simulation. FMI 3.0 introduces, in its
Co-Simulation interface type, the Event Mode (sub-
section 3.4), early return from fmi3DoStep (subsec-
tion 3.4), and the Intermediate Update Mode (subsec-
tion 3.5).

Improved Event Handling across FMUs. The new
version of FMI provides an API to enable more flexi-
ble event handling and communication: the Synchronous
Clocks API (subsection 3.6). For scenarios that are driven
by events (e. g., supervisor control systems, engine control
systems triggered by crankshaft angle sensors), the clocks
API allows FMUs to communicate to the importer detailed
information about the timing and cause of events. More-
over, the exact timing that events should happen is com-
municated unambiguously between FMU and importer,
bypassing floating point representation issues. Most of
these features are optional to not exclude simulation do-
mains where such features are out of scope and tools that
are not able to implement these optional features.

DOI
10.3384/ecp2118117

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

17



AI models. In Machine Learning and Artificial Intelli-
gence (AI) new modeling and model training frameworks
emerge. More and more, the created models shall interact
with established modeling and simulation tools. FMI is
a natural means to encapsulate and exchange AI-models
with them. This can also lead to hybrid models formed
of both physics-based- and AI-models. In order to enable
the efficient training of AI-models encapsulated as FMUs,
adjoint derivatives are needed, see subsection 3.7.

The following section gives an overview of the differ-
ent interface types, and the main use cases they apply to.
Then, section 3 details the new features. Section 4 intro-
duces some examples that use the new features, and sec-
tion 5 discusses the measures taken to improve the quality
of the standard. Finally, section 6 concludes.

2 Interface Types
FMI 3.0 defines three main interface types: Co-Simulation
(CS), Model Exchange (ME), and Scheduled Execution
(SE). An FMU may implement one or more of the three
interface types. It is a ZIP archive containing: an XML
file, describing the model variables and structure; binary
and/or source code implementations of the FMI API of the
supported interface types; miscellaneous resources; and
other related data.

All interface types share common functionality, such as
the way variables and clocks are declared/interacted with,
or common optional features like store/restore the com-
plete FMU state, or definitions of terminals and icons.

Figure 1 ranks the different interface types according to
their simplicity and flexibility trade-offs.

An implementation that interacts with an FMU using
the FMI API is called importer.

Co-Simulation

Model Exchange Scheduled Execution

simplicity

flexibility

Figure 1. Comparison of interface types

2.1 Model Exchange
The Model Exchange interface exposes a simulation
model as a hybrid ordinary differential equation (ODE)
to a solver of an importer. Models are described by differ-
ential, algebraic and discrete equations, interleaved with
time-, state- and step-events. The integration algorithm of
the importer is responsible for advancing time, computing
state variables, handling events, etc. Figure 2 shows the
data flow for Model Exchange.

2.2 Co-Simulation
The Co-Simulation interface is designed both for the cou-
pling of simulation tools, and the coupling of subsystem
models, exported by their simulators together with their
solvers as runnable code. The data exchange between

FMU

Solver

User

time
parameters
inputs
outputs
local variables
event indicators
continuous states 
discrete-time states 
hidden states (buffers)

t
p
u
y
w
z
xc
xd
b

p w

xc ẋc, zt

u y

Figure 2. Schematic view of data flow between user, the solver
of the importer and the FMU for Model Exchange.

FMUs is restricted to discrete communication points. In
the time between two communication points the subsys-
tem inside an FMU is solved independently by internal
means. For FMI for Co-Simulation, the co-simulation al-
gorithm is shielded from how the FMU advances time in-
ternally.

Figure 3 shows the data flow for Co-Simulation.

2.3 Scheduled Execution
The Scheduled Execution interface exposes individual
model partitions (e. g., tasks of a control algorithm), to be
orchestrated by a scheduler provided by the importer. The
scheduler is responsible for advancing the overall simula-
tion time, activating time-based and triggered clocks (for
an explanation of clocks see subsection 3.6) for all ex-
posed model partitions of a set of FMUs, and to activate
the respective model partition. The Scheduled Execution
interface addresses simulation use cases with the follow-
ing properties, that typically hold when the importer has
to communicate with external event sources/sinks that op-
erate on independent individual timing schemes (e. g., real
hardware, controller tasks on simulated or real controller
units):

1. at any time (even for unpredictable events), an event
shall be signaled to an FMU,

2. communication constraints (e. g., execution times,
communication deadlines) that are not apparent at
FMU simulation level but lead to timing require-
ments have to be fulfilled by the simulation algo-
rithm,

3. priority information provided by the FMUs has to be
evaluated and merged to an overall priority for avail-
able model partitions,

4. data shall move between the different FMU model
partitions for the same or next activation time.

To address these properties, the Scheduled Execution
interface provides support for preemptive multitasking:
concurrent computation of model partitions of an FMU

The Functional Mock-up Interface 3.0 - New Features Enabling New Applications

18 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118117



User

FMU

Solver

Co-Simulation Algorithm

t, h

time
step-size
parameters
inputs
outputs
local variables
event indicators
continuous states 
discrete-time states 
hidden states (buffers)

t
h
p
u
y
w
z
xc
xd
b

p w

xc ẋc, zt

u y

Figure 3. Schematic view of data flow between user, the co-
simulation algorithm of the importer and the FMU for Co-
Simulation. Compared to Figure 2, the solver is part of the FMU,
and not part of the importer.

(i. e., a support of multiple rates) on a single computa-
tional resource (e. g., CPU-core). In the rare cases that the
FMU has to be able to restrict the preemption for particu-
lar code sections, lock/unlock callback functions are pro-
vided by the importer. Note that cooperative multitasking
for model partitions of an FMU is currently not covered
by the interface description, and parallel computation of
model partitions is therefore not part of the FMI 3.0 API.
However, an FMU may internally use parallel computa-
tion on multiple cores, but this results in a binding to a
supported operating system.

The FMU must declare the priorities of its model parti-
tions, enabling a global computation order and preemption
policy for model partitions across FMUs.

The Scheduled Execution interface has a different tim-
ing concept compared to FMI for Co-Simulation: a sched-
uler’s activation of a model partition will compute the re-
sults of the model partition defined by an input clock for
the current clock tick time ti (and not for ti + hi, as de-
fined for fmi3DoStep in FMI for Co-Simulation). This
is required to handle activations of triggered input clocks
which may tick at a time instant that is unpredictable
for the simulation algorithm. Typically, hardware I/O or
vECU software events belong to this category.

Figure 4 shows the data flow for Scheduled Execution.

3 New Features
3.1 Data Types
FMI 1.0 and FMI 2.0 used a minimal number of nu-
meric data types for interface variables: fmi2Boolean,

FMU

User

Scheduler

t

Model PartitionModel Partition
time
parameters
inputs
outputs
local variables
event indicators
states 
hidden states

t
p
u
y
w
z
x
b

...

... t

time
parameters
inputs
outputs
local variables
event indicators
states 
hidden states

t
p
u
y
w
z
x
b

p w

u y

Figure 4. Schematic view of data flow between user, the sched-
uler of the importer and the FMU for Scheduled Execution

fmi2Integer and fmi2Real. When packaging nu-
meric codes representing physical processes, these types
and the fmi2String type, were sufficient.

System simulation has enlarged its focus to include
controller code (vECUs) to achieve high-quality cyber-
physical systems simulations. While packing vECUs as
1.0 or 2.0 FMUs has been practiced since 2010, the restric-
tions in interface data types introduced noticeable over-
head for conversion and copying. Moreover, new auto-
motive applications for system simulation, like Advanced
Driver Assistant Systems and Autonomous Drive system
components exchange more and more non-numeric data,
like object lists, images or even video streams.

Therefore, FMI 3.0 now supports a large set of integer
types (signed and unsigned, from 8 to 64 bit) and both 32-
and 64-bit floating-point variables. Moreover, binary vari-
ables have been introduced to allow the efficient exchange
of non-numeric values. Binary variables can be attributed
in the modelDescription.xml with a mimeType to
allow proper interpretation of their content.

3.2 Array Variables
In former versions of FMI, only scalar variables
were supported; array variables had to be expressed
using naming conventions. FMI 3.0 supports ar-
ray variables natively: Each variable (defined in the
modelDescription.xml) can have a constant num-
ber of dimensions (thus making the variable a multidimen-
sional array variable). The size of a dimension can either
be constant or may reference a structural parameter.

A simple example for using arrays would be a generic
matrix multiplication FMU. Such an FMU would ex-
pose two structural parameters, defining the size of the 1-
dimensional input variable, the size of the 1-dimensional
output variable and the sizes of the 2-dimensional array
(matrix) parameter variable.

A structural parameter can be, like any other parameter,
constant, fixed, or tunable. Changes to structural
parameters are restricted to special simulation modes:

• Configuration Mode allows changes to fixed and

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118117

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

19



tunable structural parameters and can be reached
from the mode Instantiated (before Initialization
Mode).

• Reconfiguration Mode allows changes to tunable
structural parameters. This mode can be reached
from Event Mode in Model Exchange, from Step
Mode in Co-Simulation and from Clock Activation
Mode in Scheduled Execution.

Hence, the sizes of the matrix FMU example do not need
to be “constant” after the FMU got generated but could
be “fixed” after the FMU gets instantiated or even “tuned”
during simulation.

Note that changing the value of a structural parame-
ter might also change the number of continuous states or
event indicators.

While the primary use case for structural parameters
is for arrays with variable dimension sizes, there can be
structural parameters that are not used in dimension ele-
ments, e. g., an fmi3String containing a file name to
read data from.

FMI 3.0 defines serialization orders for accessing array
variables (as well as corresponding derivatives or depen-
dencies).

3.3 Terminals and Icons
Terminals define semantic groups of variables to ease con-
necting compatible signals on system level. This defini-
tion adds an additional layer to the interface description
of the FMUs. It does not change the causality of the vari-
ables (i. e., inputs and outputs), but enables the definition
of physical and bus-like connectors that require special
handling on the system level by the importer (e. g., bus
frames, flow and stream variables). Terminals can contain
terminals to form hierarchies.

The matching rule of a terminal describes the rules for
variable matching in a connection of terminals. There
are three predefined matching rules: plug, bus, and
sequence. The terminal kind can be used to define do-
main specific member variable sequences, member names
and order, or high level restrictions for connections. A
member variable always refers to a variable declaration
in the ModelVariables element. The variable kind
of a terminal member variable defines how the connec-
tion of this variable has to be implemented. There are
three predefined matching rules: signal (i. e., com-
mon signal flow), inflow and outflow (i. e., Kirch-
hoff’s current law). Finally, the concept of stream con-
nectors is utilized (Rüdiger Franke et al. 2009). The
TerminalStreamMemberVariable is used for vari-
ables which fulfill the balance equation for transported
quantities.

To define domain-specific terminals, additional
information, like the specific physical meaning of a
TerminalMemberVariable or sign conventions,
must be standardized. The FMI 3.0 standard itself
does not define such domain specific terminals but
enables other (layered) standards (see section 3.7)

to do so. The XML attributes matchingRule,
terminalKind and variableName, are de-
fined as xs:normalizedString and not as
xs:enumeration which would restrict their ex-
tensibility. The FMI 3.0 specification defines a certain
set of values for these attributes (e. g., "signal" or
"inflow") and a dedicated semantics. Other standards
might introduce other values and other semantics. Im-
porters which do not understand such definitions can
ignore them and use the traditional input/output approach
specified by the causality attribute of FMI variables.
So if a specific vendor definition is not supported, then
the importer can ignore the terminal definition and rely on
the information in the ModelVariables element.

The graphical representation of the FMU icon can be
provided as png file. Additionally a coordinate system, the
FMU icon extent, and the placement of each terminal can
be defined. The graphical representation of each terminal
is also provided as png file. In addition to the png files,
svg files can be provided for high quality rendering.

Both, the terminal definitions and the graphical
representations are defined in the optional XML file
terminalsAndIcons.xml.

3.4 Event handling in Co-Simulation
The Co-Simulation interface of FMI 1.0 and FMI 2.0 is
popular because many different simulation mechanisms
can be abstracted into one function call fmi2DoStep to
let the FMU execute one communication time step. FMI
3.0 extends the Co-Simulation interface with a number
of mechanisms to more flexibly control execution of the
FMU over time.
Event Mode – The importer can interrupt the Step Mode

to transition the FMU into Event Mode. In Event
Mode a different set of equations is active inside the
FMU and discrete variables may change their val-
ues. The importer can solve algebraic loops of the
system the FMU is part of and may step the FMU
through a series of super-dense time instants, each
such step potentially using a different discrete state
of the FMU.

Early Return – In order to allow for larger hi time steps
in fmi3DoStep calls, importer and FMU must be
able to interrupt such long fmi3DoStep before
reaching ti + hi, in case something “special” hap-
pened:

1. The FMU can return from fmi3DoStep
early, announcing an internal event and re-
questing a transition to Event Mode.

2. The importer can request the FMU to return
early from fmi3DoStep during Intermedi-
ate Update Mode (see next Section) to prevent
the FMU from computing beyond an event re-
cently discovered by the importer (e. g., trig-
gered by another FMU).

The FMU indicates via the capability flag
hasEventMode if it supports Event Mode.

The Functional Mock-up Interface 3.0 - New Features Enabling New Applications

20 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118117



The importer informs the FMU via argument
eventModeUsed and earlyReturnAllowed
of function fmi3InstantiateCoSimulation if it
supports event handling.

3.5 Intermediate Update Mode
The order of the error in a co-simulation is dominated by
the order of the errors made due to the approximation of
inputs (Arnold, Clauß, and Schierz 2014). At the same
time, higher order input approximation schemes may lead
to instabilities, depending on the system being simulated.
As such, it is important to provide some degree of control
over the input approximations being performed, and allow
the importer to obtain some of the intermediate outputs of
the FMU. Additionally, the importer may change contin-
uous and discrete input variables between fmi3DoStep
calls in a way that is hard for the FMU to predict. This
causes problems such as excessively small internal solver
stepping (due to the discontinuities introduced at commu-
nication times) and loss of accuracy (Busch 2016).

FMI 3.0 introduces the Intermediate Update Mode
to alleviate these issues, allowing the Importer and
FMU to exchange intermediate values for variables.
The FMU can call back into the importer to enter this
Intermediate Update Mode and ask the importer to update
its continuous input variables and allow it to query
its continuous output variables (e. g., to supply other
FMUs with updates to their inputs). This mechanism
replaces fmi2SetRealInputDerivatives for
input interpolation. This callback mechanism allows
the FMU to maintain its internal solver state while
new continuous inputs are being set. The FMU can
hint to the importer to keep the changes to the contin-
uous input variables within a certain smoothness (see
recommendedIntermediateInputSmoothness)
to optimize convergence.

The Intermediate Update Mode serves a number of
other purposes as well:

1. FMUs can inform the importer about pending events.
2. The importer can ask the FMU to return early from

an fmi3DoStep (see previous Section).
3. In Scheduled Execution, the FMU can inform the im-

porter/scheduler about a clock activation.
The FMU signals via the capability flag

providesIntermediateUpdate if it supports
this feature. The importer provides the pointer to the call-
back function via argument intermediateUpdate
of functions fmi3InstantiateCoSimulation
and fmi3InstantiateScheduledExecution as
non-NULL if it supports this feature.

3.6 Clocks
System simulation requires the coordination of events
across simulation components, in both Model Exchange
and Co-Simulation. If these components are packaged
as 1.0 or 2.0 FMUs, the importer and FMUs need to use
floating point time and epsilon environments with all the

known issues to locate such global events. Rüdiger Franke
et al. (2017) proposed how to introduce clocks in FMI.

In FMI 3.0, clocks are introduced to allow precise coor-
dination of global events, see Cláudio Gomes et al. (2021).
An FMI clock is a special variable that can be active or in-
active. When active, the corresponding model partition
(a set of equations associated to a clock) becomes active
while in Event Mode or Clock Activation Mode.

FMU variables that change only when a specific clock
ticks are called clocked variables and are assigned to this
clock in the modelDescription.xml.

With clocks synchronized across FMUs, algebraic
loops can now be solved properly during such global
events.

FMI 3.0 distinguishes between time-based clocks and
triggered clocks. The latter are raised when something
unexpected (e. g., a state event) happens and can be con-
nected to other triggered clocks. The importer forwards
that clock activation to the triggered input clocks during
Event Mode or Clock Activation Mode.

Time-based clocks come in a few different flavors (see
standard document for details) and all require the importer
to determine the proper time instant when to activate such
clocks - even if the FMU receiving such a time-base input
clock defines the period or next event time itself. This
is an important distinction to note: the FMU defines the
period or next activation, but the importer has the final say
at which time instant to actually activate the clock. This
is especially important for fixed-step solvers where some
flexibility might be required to transition events to one of
the communication points.

3.7 Adjoint derivatives
FMI 3.0 offers an additional interface function to cal-
culate partial derivatives. While directional derivatives
calculating vsensitivity = J · vseed for the Jacobi matrix J
where already supported in FMI 2.0, now also adjoint
derivative calculation is supported by the new interface
function fmi3GetAdjointDerivative, calculating
vT

sensitivity = vT
seed · J. They are used, e. g., in AI frame-

works, where they are called “vector gradient products”
(VGPs). There adjoint derivatives are used in the back-
propagation process to perform gradient-based optimiza-
tion of parameters using reverse mode automatic differen-
tiation (AD). Typically, reverse mode automatic differenti-
ation is more efficient for this use case than forward mode
AD, as explained in (Baydin et al. 2015).

3.8 Support for Layered Standards
In order to enable the backward-compatible extension of
the FMI standard in minor releases and between minor
releases, the FMI project intends the use of the layered
standard mechanism to introduce new features in a fully
backward-compatible and optional way. A layered stan-
dard defines extensions to the base FMI standard by spec-
ifying either standardized annotations, standardized extra
files in the FMU, and/or support for additional MIME

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118117

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

21



types, e. g., for the interpretation of variables of type
fmi3Binary.

A layered standard can include a single or combined set
of extension mechanisms from this set. The layered stan-
dard is thus considered to be layered on top of the defini-
tions and extensions mechanisms provided by the respec-
tive FMI base standard.

Layered standards can fall into three categories:
1. Layered standards defined by third parties, without

any representations by the FMI project for their suit-
ability or content, or even knowledge by the FMI
project about their existence.

2. Layered standards defined by third parties that are
endorsed by the FMI project and listed on the FMI
project website.

3. Layered standards can be defined/adopted and pub-
lished by the FMI project itself, making them FMI
project layered standards.

Layered standards that have achieved enough adoption
or importance to be included into the base standard set
could be incorporated into a new minor or major release
version of the base standard as an optional or mandatory
appendix, making support for this layered standard op-
tional or required for conformance with the newly pub-
lished minor release version of the base standard.

Examples for layered standards currently developed by
the FMI Project will support XCP (ASAM 2021) and Au-
tomotive Networks. Further layered standards could de-
fine standardized terminals for certain domains.

3.9 Build Configuration for Source Code
FMUs

To better support the exchange of FMUs with source code
implementations, FMI 3.0 introduces build configurations
consisting of an XML document that specifies a set of
source files and abstracted build information, like pre-
processor definitions, include paths or library dependen-
cies that are needed for building the supplied source code.
These can be cross-platform or platform-specific, which
gives the importer the ability to choose the correct build
configuration for a certain platform.

Here is an example for a build configuration:

<BuildConfiguration modelIdentifier="
PlantModel" description="Build
configuration for desktop platforms">

<SourceFileSet language="C99">
<SourceFile name="fmi3Functions.c"/>
<SourceFile name="solver.c"/>

</SourceFileSet>
<SourceFileSet language="C++11">
<SourceFile name="model.c"/>
<SourceFile name="logging/src/logger.c"/>
<PreprocessorDefinition name="FMI_VERSION"

value="3"/>
<PreprocessorDefinition name="LOG_TO_FILE"

optional="true"/>
<PreprocessorDefinition name="LOG_LEVEL"

value="0" optional="true">
<Option value="0" description="Log infos,

warnings and errors"/>

<Option value="1" description="Log
warnings and errors"/>

<Option value="2" description="Log only
errors"/>

</PreprocessorDefinition>
<IncludeDirectory name="logging/include"/>

</SourceFileSet>
<Library name="hdf5" version="&gt

;=1.8,!=1.8.17,&lt;1.10" external="true"
description="HDF5"/>

4 Examples
In this section, we show some examples where the fea-
tures, introduced in the previous section, are used. Some
of these examples are being developed as reference FMUs,
with their source code made available online1.

4.1 Supervisory Control System
We start with an example that highlights the use of new
features of FMI for CS. Consider the example scenario
shown in Figure 5, where the FMUs are connected in a
typical feedback control loop, with a monitoring and adap-
tation loop, and the plant has been decoupled into two
FMUs. Using the new data types, structured information
can be communicated from the controller to the supervi-
sor, and using array variables or terminals, the connec-
tions between the controller and plant can be simplified.
Thanks to the intermediate value update and early return
mechanisms, the rate of sampling of the Controller can
be decoupled from the rate of sampling of the supervisor,
which in turn can be decoupled from the step size used in
the co-simulation.

The intermediate value update enables setting inputs
and accessing outputs between the communication points.
It can be used to implement advanced co-simulation algo-
rithms to increase stability and reduce the coupling errors
between the two plant FMUs. Some examples are given
below:

1. The plant inputs can be extrapolated ensuring conti-
nuity of signals (Busch 2016).

2. If a conserved quantity such as energy is transported
between the plant FMUs, then the additional in-
formation enables a reduction of the coupling er-
rors. One available algorithm is the nearly energy-
preserving coupling element (Benedikt et al. 2013;
Sadjina et al. 2017).

3. Transmission Line Modelling (TLM) systems con-
tain TLM connections which can be interpreted as
physically-motivated delayed connections. So intro-
ducing a delay between the FMUs, trajectories in-
stead of scalars can be exchanged between the plant
FMUs to improve stability and performance (Fritz-
son, Ståhl, and Nakhimovski 2007; Ochel et al.
2019).

For more advanced co-simulations algorithms, we refer
the reader to Cláudio Gomes et al. (2018, Section 4).

1https://github.com/modelica/Reference-FMUs

The Functional Mock-up Interface 3.0 - New Features Enabling New Applications

22 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118117



Controller FMU PlantA FMU

Supervisor FMU

Structured data

Array and 
Terminal connection

Intermediate value update 
controls sampling rate

Can trigger early return 
and event handling

PlantB FMU

Intermediate value update
can improve accuracy

Figure 5. Example supervisory control system and how the new
features of FMI CS can improve its simulation.

Finally, the Supervisor FMU may reconfigure the Con-
troller FMU when a certain condition is met. When this
happens, the Supervisor FMU may signal that stepping
phase needs to be halted, and event handing is needed.

4.2 Clocked System
When it is important to make explicit the sampling rate
of different subsystems, the Synchronous Clocks API can
be used. To illustrate this, consider Figure 6, that shows
a variant of the scenario of Figure 5, except the controller
FMU has been partitioned across different FMUs. The
figure sketches the CtrlFMU equations, but note that the
importer has no access to these (it can only query the FMU
for the values of the output variables). The CtrlFMU, ev-
ery 1/r seconds (with r denoting both a clock r and its
frequency), gets a sample from the Plant (produced by
the Sensor), and calculates its next state, based on the
previous state pre(u_r), the sampled value x_r, and
some configuration parameter a that is calculated by the
Supervisor. The latter, depending on the Plant dy-
namics, the sampling rate of which we ignore, may decide
to reconfigure the Controller. By introducing a trig-
gered input clock s and a time-based input clock r, it is
made clear who is responsible for the unambiguous acti-
vation of the clocks: the Supervisor controls s, and
the importer controls when to activate r (even though, de-
pending on the clock attributes, the CtrlFMUmay recom-
mend a sample rate that the importer will then obey). Fur-
thermore, no approximate floating point comparisons are
needed to know which equations have to be active when
entering Event Mode.

We refer the reader to (Cláudio Gomes et al. 2021)
and the FMI standard, for more details about Synchronous
Clocks.

4.3 Terminals
This section illustrates an exemplary terminal definition of
an electrical pin in the FMU XML file.
<Terminal name="Pin1" matchingRule="plug">
<TerminalMemberVariable
variableKind="inflow"
memberName="i"
variableName="Current" />

<TerminalMemberVariable
variableKind="signal"

CtrlFMU

Sensor Plant

Actuation

u_r

a := Config(a_s)
a_r := sample a at rate r
u_r := NextState(pre(u_r), x_r, a_r)

x_r

x_r := sample x at rate r

u
u := Actuation(u_r)

x der(x) = f(x,u)

Supervisor

a_s := f(x) when g(x) = 0

a_s clock s

clock r

Figure 6. Example clocked control system.

memberName="v"
variableName="Voltage" />

</Terminal>

"Voltage" and "Current" reference to the follow-
ing FMU-variables:

<Float64
name="Current"
valueReference="2"
description="Current output"
variability="continuous"
causality="output" />

<Float64
name="Voltage"
valueReference="1"
description="Voltage input"
variability="continuous"
causality="input"
start="0" />

The variableKind attribute indicates to the im-
porter that Kirchhoff’s current law should be applied to
the variable Current, while Voltage should be treated
as common signal.

A Modelica tool, for example, can
use this XML description to generate a
connector which automatically matches to
Modelica.Electrical.Analog.Interfaces.Pin
of the Modelica Standard Library since the same names
for the member variables are used and "i" is marked
as flow variable. Similar mechanisms are possible with
VHDL-AMS or other tools which support a terminal or
bus concept which goes beyond single signals.

Even though the FMU can be imported into acausal
tools/languages such as Modelica, the FMU itself is
causal. An acausal model can be used to generate sev-
eral FMUs with different computational causality. The
computational causality of the FMU is defined by the
causality attributes in the XML file. In the example above
"current" is always an output of this specific FMU.
Cases where the importer prefers a different computa-
tional causality than provided by the FMU have to be han-
dled by the importer.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118117

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

23



4.4 Virtual Electronic Control Unit
The following example illustrates how FMI 3.0 features
can be used for packaging vECUs inside FMUs. It is a re-
duced version of the example used in the layered standard
proposal for automotive network communication.

This layered standard proposal uses clocks, binary vari-
ables, naming conventions for variable names and termi-
nals to use FMI 3.0 mechanisms as transport layer for
automotive network communication between simulation
components. Clocks describe the timing of their respec-
tive network frames, to exactly communicate the sending
of each frame. Terminals are used to describe the com-
position of these network frames from PDUs and signals,
hierarchically, allowing simplified handling of entire sig-
nal groups in system composition tools. Binary signals are
used to represent frames in their raw network specific en-
coding, serializing internal PDUs and signals. For consis-
tent encoding and decoding of these binary signals, stan-
dardized network description files are included inside the
FMU in the /extra directory. Referencing existing stan-
dard description files allows reusing existing tools for both
exporting and importing such FMUs, while ensuring the
same semantics are used for both sender and receiver of
signals encoded according to these standards.

The example shows how to describe a CAN message
that updates 2 signals, each represented as a Float32
variable. Naming conventions, described in the layered
standard, can be used to match the signals, the corre-
sponding binary variable representing the raw frame data
and the clock variable determining the timing of the CAN
message (here POWERTRAIN::tcuSensors_FRAME
and their corresponding triggered Clock variable
POWERTRAIN::tcuSensors_CLOCK). The triggered
clock variable controls the time at which a message is set,
and should be connected to another clock at the source of
the message.

<fmiModelDescription fmiVersion="3.0-alpha.6"
modelName="Network4FMI"
instantiationToken="Network4FMI">
<ModelVariables>
<Float32 name="POWERTRAIN::tcuSensors::

tcuSensors::vCar"
valueReference="1001" causality="input"
variability="discrete" start="0" clocks="

1004"/>
<Float32 name="POWERTRAIN::tcuSensors::

tcuSensors::oilTemp"
valueReference="1002" causality="input"
variability="discrete" start="20" clocks=

"1004"/>
<Binary name="POWERTRAIN::tcuSensors_FRAME

"
valueReference="1003" causality="input"
variability="discrete" clocks="1004"/>

<Clock name="POWERTRAIN::tcuSensors_CLOCK"
valueReference="1004" causality="input"
variability="clock" interval="triggered"/

>
...
</ModelVariables>

</fmiModelDescription>

<fmiTerminalsAndIcons fmiVersion="3.0-alpha6"
>

<Terminals>
<Terminal terminalKind="bus" name="

POWERTRAIN" matchingRule="bus"
description="Powertrain CAN bus defined

with dbc file">
<Terminal terminalKind="frame" name="

tcuSensors" matchingRule="bus">
<TerminalMemberVariable variableKind="

signal"
variableName="POWERTRAIN::

tcuSensors_FRAME" />
<TerminalMemberVariable variableKind="

signal"
variableName="POWERTRAIN::

tcuSensors_CLOCK" />
<Terminal terminalKind="pdu" name="

tcuSensors" matchingRule="bus">
<TerminalMemberVariable variableKind="

signal"
variableName="POWERTRAIN::tcuSensors

::tcuSensors::vCar"
memberName="vCar" />

<TerminalMemberVariable variableKind="
signal"

variableName="POWERTRAIN::tcuSensors
::tcuSensors::oilTemp"

memberName="oilTemp" />
</Terminal>

</Terminal>
</Terminal>
...

</Terminals>
<Annotations>
<Annotation type="ECU" />

</Annotations>
</fmiTerminalsAndIcons>

4.5 Scheduled Execution
In order to illustrate the preemption support, we consider
the example of a single FMU, illustrated in Figure 7,
where an FMU declares three input clocks and one out-
put clock. Each input clock, when activated, instructs the
importer, that acts as a task scheduler, to execute the cor-
responding model partition as soon as possible.

A model partition, or just partition, represents code that
should be scheduled (e.g on a real-time simulator or offline
simulator running real-time scenarios) as soon as an input
clock ticks. Partitions contain arbitrary code that reads the
inputs of the FMU, writes to the FMU’s local variables
(which can be shared among tasks) and outputs, and can
trigger other clocks or update their interval. The inputs to
each partition are set by the importer immediately before
executing that partition. In Figure 7, uc

m’s partition reads
and writes the shared variable xm, and either updates the
interval of vc

m or ticks yc
m.

In Figure 7, input clock uc
m ticks every 10 ms and wc

m
ticks every 50 ms, therefore, every 5th tick, both clocks
will tick simultaneously. When that happens, the sched-
uler needs to know whose task has the highest priority. As
a result, the FMU needs to declare a priority level for each
input clock. In Figure 7, uc

m’s task (the one executing Par-
tition 1) should be executed before wc

m’s (Partition 3).

The Functional Mock-up Interface 3.0 - New Features Enabling New Applications

24 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118117



m

when : 
   

Clock attributes: 
 - Period 10ms,  Priority 1 
  - Countdown,   Priority 2 

 - Period 50ms, Priority 3 
  - Triggered,      Priority --

Local vars: 

when : 
   
   
  if (...) then 
    setInterval( ) 
  else 
    tick( )

Partition 1

when : 
  

Partition 2

Partition 3

Figure 7. Example FMU implementing the SE interface.

Because tasks can be preempted, in rare cases, the FMU
has to be able to restrict the preemtion for particular sec-
tions, such as updating a shared variable. As such, the
FMU must inform the importer of when it should not be
interrupted, to avoid race conditions. Since partitions can
trigger and update the interval of other clocks, the FMU
may use the Intermediate Update Mode, in the middle of
the calculation of a partition, to inform the importer that
a clock is about to tick or has a new interval, so that the
importer can schedule the corresponding tasks.

Figure 8 illustrates a possible execution trace of the
tasks corresponding to the partitions declared in Figure 7.
At the initial wall-clock time, both Task 1 and 3 are sched-
uled to execute. Since Task 1 has higher priority, it runs
first, and Task 3 is delayed. While executing Task 1, the
FMU informs the importer that vc

m’s task (Task 2) should
be scheduled to run at wall-clock time t2. At wall-clock
time t2, Task 1 is still executing, so Task 2 is delayed until
wall clock time t3. At wall-clock time t3, Task 2 starts ex-
ecuting, but note that the activation time of Task 2 is still
its scheduled time t2. This is where the wall-clock time
t3 differs from the simulated time t2. At t4, Task 2 is pre-
empted, because of Task 1. Finally, after being delayed
substantially, Task 3 gets to execute, with its simulated
time t0.

We refer the reader to (Cláudio Gomes et al. 2021) and
the FMI standard, for more details about the Scheduled
Execution API.

5 Quality Improvement Measures and
Prototypical Implementations

The development of new features followed the FMI de-
velopment process (Modelica Association 2015) with the
creation of FMI Change Proposals (FCP) providing the
use cases, suggested changes and partial prototypes.

During the development of the FMI 3.0 standard, the
text was completely restructured and several concepts
were unified between the different interface types in a
common concepts section. The state machines were uni-

Wall-clock time (ms)

activate( , )

Ta
sk

 2

setInterval( , )

schedule Task 2 delay

delayed

suspend

activate( , )
activate( , ) activate( , )

Ta
sk

 3
Ta

sk
 1

Legend:
 - Wall-clock time
 - Simulated time

Figure 8. Example execution trace of Figure 7. Task N corre-
sponds to execution of partition N, as detailed in Figure 7.

fied between the different interface types.

In order to streamline the standard text, implementation
specific hints will be singled out in an FMI implementers
guide.

Reference FMUs (Reference FMUs 2021) were created
to showcase and test certain features of FMI. These FMUs
and code snippets extracted from them, are continuously
compiled and example XML files automatically validated
against the schema files in a continuous integration envi-
ronment to ensure correctness of the examples included
into the standard document.

Several tools were used to validate prototypes of FMI
3.0 features: Altair Activate, Dymola, fmpy (fmpy 2021),
Model.CONNECT™, Silver, SimulationX, among others.

6 Summary and Outlook

The success of the Modelica Association’s FMI standard
1.0 and 2.0 has created the desire to improve simulation ef-
ficiency and accuracy, as well as to enable new use cases.
FMI 3.0 introduces a number of new features and im-
provements to address many of the needs found in cur-
rent industrial and research applications. More impor-
tantly, opening up to layered standards will help to address
many of the future needs not yet envisioned and to address
industry specific requirements best addressed by special-
purpose extensions without weighting down the core FMI
standard document.

The developers of the current version of FMI are well
aware of the current challenges of the simulation commu-
nity. In particular, simulation efficiency will be the focus
of future FMI development.

Another important drive for future FMI versions is har-
monization with other complementary Modelica Associ-
ation standards, such as SSP, DCP and eFMI. Finding
structural ways to make these standards more compatible
and therefore easier to implement, will increase each stan-
dard’s added value.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118117

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

25



Acknowledgements
The authors wish to thank all the contributors to the FMI
specification. Contributions of ESI ITI GmbH were car-
ried out within the project FMI4BIM, funded by the Ger-
man Federal Ministry for Economic Affairs and Energy.

References
Arnold, Martin, Christoph Clauß, and Tom Schierz (2014).

“Error Analysis and Error Estimates for Co-Simulation in
FMI for Model Exchange and Co-Simulation v2.0”. In:
Progress in Differential-Algebraic Equations. Berlin, Heidel-
berg: Springer Berlin Heidelberg, pp. 107–125. ISBN: 978-3-
662-44926-4. DOI: 10.1007/978-3-662-44926-4_6.

ASAM (2021). ASAM MCD-1 XCP Standard. URL: https : / /
www.asam.net /standards/detail /mcd- 1- xcp/wiki/ (visited
on 2021-04-18).

Baydin, Atilim Gunes et al. (2015). Automatic differentiation in
machine learning. URL: https : / / arxiv.org /abs /1502 .05767
(visited on 2021-05-06).

Benedikt, M et al. (2013-06). “NEPCE-A Nearly Energy Pre-
serving Coupling Element for Weak-Coupled Problems and
Co-Simulation”. In: IV International Conference on Compu-
tational Methods for Coupled Problems in Science and Engi-
neering, Coupled Problems. Ibiza, Spain, pp. 1–12.

Blochwitz, Torsten et al. (2011). “The Functional Mockup Inter-
face for Tool independent Exchange of Simulation”. In: 8th
International Modelica Conference. URL: http://www.ep.liu.
se/ecp/063/013/ecp11063013.pdf.

Blochwitz, Torsten et al. (2012). “Functional Mockup Interface
2.0: The Standard for Tool Independent Exchange of Simu-
lation Models”. In: 8th International Modelica Conference.
URL: https://lup.lub.lu.se/search/ws/files/5428900/2972293.
pdf.

Busch, Martin (2016-09). “Continuous Approximation Tech-
niques for Co-Simulation Methods: Analysis of Numerical
Stability and Local Error”. In: Journal of Applied Mathemat-
ics and Mechanics 96.9, pp. 1061–1081. ISSN: 00442267.
DOI: 10.1002/zamm.201500196.

fmpy (2021). URL: https://github.com/CATIA-Systems/FMPy
(visited on 2021-04-20).

Franke, Rüdiger et al. (2009). “Stream Connectors – An Exten-
sion of Modelica for Device-Oriented Modeling of Convec-
tive Transport Phenomena”. In: Proceedings of the 7th Inter-
national Modelica Conference (Como, I, September 20–22,
2009). Ed. by Francesco Casella. Linköping Electronic Con-
ference Proceedings. Linköping: Linköping University Elec-
tronic Press, pp. 108–121. DOI: 10.3384/ecp09430078. URL:
http://dx.doi.org/10.3384/ecp09430078.

Franke, Rüdiger et al. (2017). “Discrete-time models for control
applications with FMI”. In: Proceedings of the 12th Interna-
tional Modelica Conference, Prague, Czech Republic, May
15-17, 2017. 132. Linköping University Electronic Press,
pp. 507–515. URL: https : / / 2017 . international . conference .

modelica.org/proceedings/html/submissions/ecp17132507_
FrankeMattssonOtterWernerssonOlssonOchelBlochwitz.pdf.

Fritzson, Dag, Jonas Ståhl, and Iakov Nakhimovski (2007).
“Transmission Line Co-Simulation of Rolling Bearing Appli-
cations”. In: 48th Conference on Simulation and Modelling.
Göteborg, Sweden: Citeseer, pp. 24–39.

Gomes, Cláudio et al. (2018). “Co-Simulation: A Survey”. In:
ACM Computing Surveys 51.3, 49:1–49:33. DOI: 10 . 1145 /
3179993.

Gomes, Cláudio et al. (2021). “The FMI 3.0 Standard Interface
for Clocked and Scheduled Simulations”. In: Proceedings
of the 14th International Modelica Conference. 14th Inter-
national Modelica Conference. online: Linköping University
Electronic Press, Linköpings Universitet, to be published.

Modelica Association (2015-07). FMI Development Process
And Communication Policy. URL: https : / / github . com /
modelica / fmi - standard . org / blob / master / assets / FMI _
DevelopmentProcess_1.0.pdf.

Modelica Association (2021a-04). Functional Mock-up Inter-
face Specification, v3.0beta.1. URL: https : / / github . com /
modelica/fmi-standard/releases/tag/v3.0-beta.1.

Modelica Association (2021b). FMI Website. URL: https://fmi-
standard.org/ (visited on 2021-04-18).

Modelica Association (2021c). FMI Website. URL: https://fmi-
standard.org/tools/ (visited on 2021-04-18).

Ochel, Lennart et al. (2019-02). “OMSimulator - Integrated FMI
and TLM-Based Co-Simulation with Composite Model Edit-
ing and SSP”. In: The 13th International Modelica Confer-
ence, Regensburg, Germany, March 4–6, 2019, pp. 69–78.
DOI: 10.3384/ecp1915769.

Reference FMUs (2021). URL: https : / / github. com /modelica /
Reference-FMUs (visited on 2021-05-02).

Sadjina, Severin et al. (2017-07). “Energy Conservation and
Power Bonds in Co-Simulations: Non-Iterative Adaptive Step
Size Control and Error Estimation”. In: Engineering with
Computers 33.3, pp. 607–620. ISSN: 1435-5663. DOI: 10 .
1007/s00366-016-0492-8.

The Functional Mock-up Interface 3.0 - New Features Enabling New Applications

26 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118117


