
Modelica, FMI and SSP for LOTAR of

Analytical mBSE models: First

Implementation and Feedback

Clément Coïc1 Adrian Murton2 Juan Carlos Mendo3 Mark

Williams3 Hubertus Tummescheit1 Kurt Woodham4
1Modelon, Sweden, {clement.coic, hubertus.tummescheit}@modelon.com

2Airbus Operations Ltd. United Kingdom, adrian.murton@airbus.com
3The Boeing Company, USA, {juan.c.mendo, mark.williams}@boeing.com

4NASA Langley Research Center, USA, kurt.woodham@nasa.gov

Abstract
LOng Time Archiving and Retrieval (LOTAR) of models

is key to using the full capabilities of model-Based

System Engineering (mBSE) in a system lifecycle –

including certification. The LOTAR MBSE workgroup is

writing the EN/NAS 9300-Part 520 to standardize the

associated process, in the aeronautics industry, and

suggests the usage of Modelica, FMI and SSP standards

for its purpose. Acceptance of such a process requires a

match between industrial needs and software vendor

implementations. This is helped by a tool-agnostic

implementation of the process and following specific

adaptations within the Modelon Impact software. This

initiative – inside the LOTAR workgroups – highlights

the suitability of such a process but also points at flaws

or overhead due to the lack of connection between the

Modelica, FMI and SSP standards, as well as the

MoSSEC (ISO 10303-243) standard. The

recommendations proposed in this document could have

a significant impact on the final adoption of the LOTAR

standard – relying on Modelica, FMI and SSP standards.

Keywords: Archiving, Retrieval, LOTAR, mBSE,

MoSSEC, FMI, SSP

1 Introduction

Contrary to the software industry where end-of-life is

programmed and conversion to a newer alternative is

“enforced,” the industrial products containing complex

cyber-physical systems have longer lifecycles and

associated maintenance.

In the aerospace industry, designing an aircraft takes

about a decade. The production cycle averages three

decades, and their service life extends for another three

decades. Deciding to develop a new aircraft is a choice

that impacts two thirds of the next century. The

technology and design choices, the system and

component sizing, the rationale and arguments in each

decision taken shall be stored and kept accessible during

the aircraft’s entire lifecycle. This enables its potential

evolutions and design reuse opportunities. It capitalizes

on the work and knowledge and supports a response to

future questions. Other key aspects of data archiving and

retrieval in the aerospace industry is to provide a basis

for the certification of future modifications, address

component obsolescence, and support accident

investigations.

These are the challenges that the LOTAR international

consortium of Aerospace manufacturers –jointly

facilitated by AIA, ASD-Stan, AFNeT, prostep ivip and

PDES, Inc. – are facing through the creation and

deployment of the EN/NAS 9300 series of standards for

long-term archiving and retrieval of digital data. To

ensure industry adoption, the resulting process must be

based on standardized practices and proven solutions,

listed on the website (LOTAR International 2021). The

authors of this papers are active members of the “MBSE

workgroup” within the LOTAR consortium.

Model-Based System Engineering (MBSE) definition,
“the formalized application of modeling to

support system requirements, design,

analysis, verification and validation

beginning in the conceptual design phase

and continuing throughout the development

lifecycle” (INCOSE Operations 2007) is widely used

in the aerospace industry.

While MBSE includes all types of models, the authors

previously introduced the acronym “mBSE” [or “little m

BSE” as opposed to the “big M BSE”] to narrow the

focus on the preservation of system-descriptive and

analytical models that are explicit, coherent, and

consistent (Nallon 2021). The integrated models provide

high-fidelity, rich representations – potentially of

different granularity of sub-systems. These models are

viewpoints that support the decisions affecting the

product’s architecture, new technologies, or component

sizing. This distinction is necessary to separate this work

from other types of models, e.g. 3D CAD models. (This

does not mean that these models should be decoupled.)

DOI
10.3384/ecp2118149

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

49

The archiving and retrieval of the models developed is

mandatory to utilize the efforts and rationales the model

served throughout the lifecycle of the (cyber-physical)

system it represents. mBSE data is also applicable to the

certification process and in-service maintenance of

Aerospace products. The need for long-term archiving is

an existing regulatory requirement. As many design

representations shift to a digital format the urgency of

defining archiving standards is in response to a critical

industry need. EN/NAS 9300 Part 520 standardizes the

long-term archiving and retrieval process for analytical

mBSE models.

Section 2 of this paper concisely introduces the

suggested steps for archiving and retrieval and discusses

the supplemental needs of the data archive and model

manifest. Section 3 presents a tool-agnostic

implementation and its integration within Modelon

Impact. Section 4 discusses the prototype results and

proposes specific recommendations for the standards

being used.

2 Archiving and retrieval process
2.1 Abstract and Keywords

While the EN/NAS 9300 Part 520 describes the

archiving and retrieval process in more detail, the main

points are listed below.

Archiving

• Develop and validate an mBSE model,

• Create an associated meta-data manifest,

• Export the model as an FMU or SSP,

• Include the manifest in the “extra” folder of the

FMU or SSP

• Archive the FMU or SSP, together with its

manifest, in the archiving platform/repository,

• Populate the AIP (Archive Information Package)

with information from the manifest

Retrieval

• Access the AIPs on the archiving platform

• Select the desired archived FMU/SSP by

examining the repository’s AIPs

• Retrieve the FMU/SSP

• Consult the associated manifest to validate the

retrieval results

• Verify that the model is not corrupt

For this standard to be easily deployable, the emphasis

is on the archiving and retrieving process of the model,

not its creation. A tool vendor is welcomed and even

encouraged to implement some of these steps earlier in

the modeling process. In a typical scenario, the model

manifest is populated early in the model’s lifecycle. The

population process is typically iterative throughout the

product design phase and could be optimized to support

additional goals such as model exchange. These steps

will typically happen prior to the model’s export as an

FMU for archival purposes. However, as long as the

consistency of the model and the meta-data is sustained,

the order of operations is not imposed.

2.2 Relying on existing standards

The LOTAR MBSE workgroup made an extensive effort

to reference and map most related standards, their

applicability, usage, and maintenance (Williams 2021).

One aim was to define which standards to rely on for the

archive and manifest formats. The first consideration was

a neutral format with the widest potential tool support for

long term archiving. The second consideration was

endorsement by the Aerospace OEMs. It was found that:

• The FMI standard has reached a level of maturity

and availability that supports model archiving and

preservation.

• The SSP standard – being the structured system

variant of the FMI standard – is also a

recommended alternative for system model

archiving and preservation.

• The ISO STEP AP243 (MoSSEC 2021) standard, in

a format similar to the Model Identity Card (MIC),

is the recommended format for the model manifest.

These mature tool-agnostic standards form a solid

base for the Part 520 standard on which any tool vendor

can build a marketable solution.

2.3 LOTAR manifest

The LOTAR manifest is the identity card that enables

each model to travel and be identified uniquely. In the

first tool-agnostic implementation presented by this

paper the manifest is stored as an XML (W3C 2006) file

with tags arranged in various categories, which gather

attributes and associated values.

As represented in Listing 1., the simplicity of the

XML mark-up language makes it a suitable candidate for

parsing of the manifest or performing further action on it

– e.g. generation of a graphical representation, or

populating repository attributes.

Listing 1. A short extract from a sample manifest:

<LOTAR_Manifest>

 <GeneralPLM>

...

 </GeneralPLM>

 <DevelopmentIntegrationAndExecution>

...

 </DevelopmentIntegrationAndExecution>

 <PhysicsContentAndUsage>

 <PhysicsContentProperties

 Dimension=""

 PhysicsDomain=""

Modelica, FMI and SSP for LOTAR of Analytical mBSE models: First Implementation and Feedback

50 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118149

 Timescale=""

 Linearity=""

 ModelType_Usage="">

 </PhysicsContentAndUsage>

 <ValidityRange

 ValidityRange="">

 </ValidityRange>

 <ModelFidelity

 RepresentedPhenomena=""

 NeglectedPhenomena="">

 </ModelFidelity>

 </PhysicsContentAndUsage>

...

 <ModelVariables

 </ModelVariables>

 <VerificationAndValidation

...

 </VerificationAndValidation>

</LOTAR_Manifest>

The different categories in the manifest aim to capture

the design intent of the model (what), the rationale and

purpose for creating the model (why), the content,

fidelity, and format of the model (what/how), as well as

its provenance (who/when).

These specific metadata categories can be mapped to

ISO STEP AP243 (MoSSEC), and they are used to

capture the systems engineering context around each

model to be archived. The MoSSEC specification

standardizes such context. Sharing or archiving, the

MoSSEC-styled metadata information facilitates every

model’s availability, retrieval, and reusability

3 First implementation

The LOTAR mBSE workgroup solicited Modelon to

implement a tool-agnostic version of the archive and

retrieval process. The aim was to detect the “paper cuts”

in the process that could hinder the standard’s adoption.

Performing this type of early prototyping, prior to the

standard’s initial release, verifies the viability of the

identified mBSE data standards and the associated

workflow needed for archiving, sharing, and retrieving

analytical models.

3.1 Definition of the prototype system

As this work focuses on the archiving and retrieval

process, the prototype system is made as simple as

possible while still illustrating the optional process steps.

The LOTAR mBSE workgroup selected the Regulated

Actuator system represented in Figure 1 for their proof of

concept.

Figure 1. Regulated Actuator System

The diagram represents a system whose goal is to

control the position of a flight control surface to simplify

the (auto) pilot’s response when facing external loads.

The system is composed of three subsystems:

• The controller, a simple PID (proportional,

integral, derivative) controller that receives the

(auto) pilot position commands and the measured

actuator position. It then outputs a command

based on the errors detected between both.

• The plant model gathers both the actuator and

load models. An output is the actual surface

position.

• A sensor model inserts a delay in the

measurement.

The three models are highly simplified representations

of the physics involved. The focus is to define a common

process independent of the tools and potentially different

environments that could be used by different teams.

Furthermore, each subsystem is modeled separately and

exported as an FMU; the overall system can be exported

as a SSP – by composition of the previously built FMUs.

3.2 A tool-agnostic implementation

3.2.1 Modelica models and FMU generation

The three models described in section 3.1 and presented

in Figure 1 are developed using the Modelica language.

Once more, the reason is not to take advantage of the

language capabilities but to take advantage of its

openness. Indeed, the models are deliverables to the

prototyping effort and can be shared in text format for

further use. A derived advantage is the inclusion of the

documentation-annotation provisions in MLSv35r0

(Modelica Association 2021) that enables embedding the

model description and experimental frame, within the

model itself, in HTML format.

The FMUs (Functional Mockups Units) are generated

using the Modelon compiler included in Modelon Impact

but could have been generated by any other Modelica

compiler, e.g., OpenModelica. They have been generated

in both the Model Exchange and Co-Simulation formats

for further study and use.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118149

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

51

Note: for LOTAR purposes, a co-simulation FMU has

a clear advantage because the solver is stored within the

FMU – by definition. This is a highly relevant point for

long term archiving. Which solvers will be available in

50 years from now? How will one be able to couple them

with another FMU? Nevertheless, the model exchange

FMU also has obvious advantages because they are great

candidates for a direct coupling into an SSP prior to

archiving. The results of this prototype will be analyzed

by the LOTAR team to understand the preferred archive

alternatives, and the best potential formats for archiving.

A Modelica language tool may not always provide the

source, and entire repositories of archived formats may

need to be converted to alternative standards in the

future.

The following steps of the process are achieved by

relying on Python scripts – using open-source or, at least,

free of use packages. As a reminder, this is an

implementation that helps to bring the standard to life

but not the standard itself – anyone is free to implement

it using different means.

3.2.2 Creation of the LOTAR manifest

The LOTAR manifest being written is an XML file

(W3C 2021), created using the Python module

xml.etree.ElementTree. The XML tree structure is built

first and then attributes are set to their values. Unknown

values are left as empty strings.

In the future envisioned process, populating the

manifest metadata should be a semi-automatic process

using a tool specific implementation that occurs prior to

the start of the archival process.

However, the EN/NAS 9300 Part 520 standard has not

been formally released yet, so this is currently performed

manually. Nevertheless, this first implementation

highlighted many commonalities with the

“modelDescription,xml” file contained in the FMUs. The

PyFMI (PyFMI 2020) package is used to load and

interact with the FMU in its most basic form: accessing

the modelDescription information. This way, many fields

of the manifest are automatically populated by the

Python script. A simple extract is defined in Listing 2.

Listing 2. A short extract from a sample manifest:

Root

manifest=ET.Element('LOTAR_manifest')

LOTAR_manifest > GeneralPLM

GeneralPLM=ET.SubElement(manifest,'GeneralPLM')

LOTAR_manifest > GeneralPLM > ...

ProvenanceOwnershipDate=ET.SubElement(GeneralPLM,

'ProvenanceOwnershipDate')

Populate creation date

ProvenanceOwnershipDate.set('Created_on',

model.get_generation_date_and_time())

Note that another option would be to extract and parse

the XML file directly. This would be, however, more

laborious and the solution presented relies on maintained

python packages, and thus is more convenient.

At this point, it becomes important to note that a

subset of model manifest fields can be taken straight

from the “modelDescription.xml”. However, the model

manifest offers extra metadata that travels with the

original model, regardless of its format: FMU or native.

3.2.3 Inclusion of the manifest in a Functional

Mockup Unit

Because the FMU is a zip file, the inclusion of the

manifest can be performed automatically with a Python

module such as zipfile (Pyhton Software Foundation

2021). Three specific points are listed here:

• To prevent conflicts, the naming of the manifest

uses reverse domain notation such as
extra/org.mossec/
LOTAR_Manifest.xml

• Ensure the manifest is added in the “extra” folder

of the FMU recently available FMIv2.0.2

(Modelica Association, 2020) in the standard.

• To minimize the file corruption risks, it is

recommended to open the FMU in a mode in

which it is only possible to append new files, not

to modify existing ones.

The FMU is now ready for archiving on the platform.

3.2.4 Accessing the manifest

Once the FMU is archived, the manifest should be

accessible by the repository, so the contained

information enables the user to identify the correct model

needed for retrieval. The selected implementation

consists of inverting the previous process: open the zip in

read only mode, extract a copy of the manifest in a

preselected location in the repository and then access this

copy. This can be achieved with the same Python module

zipfile.ZipFile.

Note that one recommendation for the repository

could be to perform this manifest manipulation when

archiving the FMU, keeping a pointer toward the original

source file – thus collecting an organized set of

manifests. Retrieval could then consist of browsing the

set of stored manifests and selecting the correct one. The

archiving platform could then access the related FMU,

verify that the same manifest is included and perform the

retrieval. From a LOTAR perspective, the manifest is

very similar to the AIP mentioned previously and could

be replicated accordingly. This would ensure the model

metadata would exist both internally and externally to

the FMU zipfile.

3.2.5 Repeating the process at system level

The prototype was designed so that a system level

example could be studied and refined. The regulated

actuator model is built as an SSP by composition of the

existing FMUs. The manifest template, as defined in the

first version of the EN/NAS 9300-Part 520, applies

primarily to subsystem level component models and is

Modelica, FMI and SSP for LOTAR of Analytical mBSE models: First Implementation and Feedback

52 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118149

not directly applicable yet to system level simulations or

setups. The Python scripts were adapted to reach the

manifests inside the FMU zip files when archiving. In

the future, the manifest of a structured system model

should be defined and stored in the “extra” folder of the

SSP – for consistency.

3.2.6 Availability of developed models and code

The LOTAR MBSE workgroup and Modelon agreed to

make these models and Python code available to the

LOTAR and eventually to the broader community. This

is an added benefit of this first implementation: publicly

available basic models and Python scripts – relying on

open-source or free of use packages – that follow and

implement the process from the draft Part 520 standard.

This way, there are no proprietary restrictions preventing

a tool vendor from implementing the standard. Modelon

illustrates this fact with the addition of a custom function

within Modelon Impact to write and add the manifest

when exporting an FMU.

3.3 A tool-specific implementation

3.3.1 Modelon Impact in four sentences

Modelon Impact is a cloud native based modeling and

simulation environment relying on and enhancing open

technologies such as Modelica, FMI or Python (Modelon

2020). Modelon Impact is aimed at democratizing

simulation to a broader audience by providing a user

friendly, yet powerful interface to develop and simulate

models or utilize them in a very narrow context,

including the use of web applications (Coïc 2020a).

Modelon Impact offers both steady-state and dynamic

simulation capabilities (Coïc 2020b), which exposes

more opportunities to the model developer to make a

model best suited to the model user. Finally, it is

possible to implement user specific workflows in

Modelon Impact through Python-based custom functions

which can interact with the Modelon Impact API.

3.3.2 A custom function for the manifest generation

One convenient way to implement a Modelon Impact

specific implementation of this process is to develop a

dedicated custom function that would write and add the

manifest to the FMU when compiling a model.

The tool-agnostic prototype is Python-based and

relying uniquely on open-source technologies. The step

to implement a Modelon Impact custom function is thus

minor as these also rely on the Python language.

Custom functions are available in Modelon Impact by

hovering over the simulate button (see Figure 1) or by

selecting the dedicated function in the experiment mode

(see Figure 2). In the latter case, more actions are

possible through user inputs. For example, it was decided

to add the “Author name” and “Organization” as a user

input fields so that this information would always be

added to the manifest.

Figure 1. Direct generation of LOTAR manifest in

Modelon Impact

Figure 2. Generation of the LOTAR manifest after optional

user input provision, in Modelon Impact

Notes:

• This is hard to demonstrate in a paper, but a short

demonstration of the python interface using

PyFMI (PyFMI 2020) is available.

• The rest of the process is independent of the

modeling and simulation environment but occurs

on the archiving platform. Therefore, Modelon

limits their tool-specific implementation to this

step.

4 Discussions and recommendations
The completion of this prototype, prior to the release of

the Part 520 process standard, brought great insights on

the applicability of the representative workflow and the

potential need for future improvements. The following

recommendations and criticisms concern both the

Part 520 and the Modelica, FMI and SSP data standards.

This paper is directed toward the users of these

technologies.

4.1 Self-criticism

Constructive criticism is what ensures quality of work.

This prototype was developed with this in mind: stress-

test the process in order to spot any inconvenient or non-

finalized steps. Listed below is a list of items that were

identified as sources of improvement. The items are

tagged with “minor” and “major” keywords to highlight

their criticality. However, a “minor” item is not

irrelevant as in the long run it could be a paper cut that

prevents the standards future adoption.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118149

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

53

• [Major] Create a proper mapping between the

FMI “modelDescription.xml” and the LOTAR

manifest. When filling out the manifest, many

items were extracted from the PyFMI API. While

this is convenient, this also shows some

redundancies. A proper mapping would highlight

whether the manifest should become a small

extension of the existing modelDescription or

remain a separate file.

• [Major] Define the content of the manifest for an

SSP. Many of the fields identified for the FMU

LOTAR manifest are less relevant at system level

– especially if each FMU contains its own

manifest. For example, what is the value of

identifying the physical domains involved in an

SSP if each FMU specifies its own? A substantial

effort is expended by the industrials, under the

guidance of prostep ivip to transform the “Glue

Particle” into a data standard. This should expand

the investigation of adding descriptive metadata

to an SSP.

• [Major] How to precisely specify the format of

the validation and verification scenarios. The

LOTAR manifest includes these attribute fields

but does not constrain their format. Specifying the

file type for reference results would be a key to

future success – especially when the validation

tests are performed several decades later after

retrieval from an archive.

• [Minor] Update the “Required” fields of the

manifest. The manifest identified some fields as

required (i.e. mandatory information) but the

current version is not easily adapted to the FMI

standard. For example, a field for

“TargetTool_Name” is required while one benefit

of the FMI standard is to be tool independent.

Nevertheless, this field is relevant if some

dedicated tests were performed in the future

targeting a specific tool. This information could

be maintained as a reference (although not

“required”).

• [Minor] Harmonize hierarchy and naming

convention. Both “snake_case” and “camelCase”

are used in the current LOTAR manifest sample.

Some attributes repeat words in their names. This

redundancy could be avoided by employing an

additional hierarchical layer. This change is

necessary to make the manifest more “attractive”

for users and to remove sources of errors by using

a formal naming convention.

• [Minor] Investigate how to add additional

metadata to the manifest. It is expected that

companies will need to define their own specific

metadata that they will need to store within the

manifest. This could be achieved in several

different ways – e.g. by adding new attributes to

existing tags or by defining new dedicated tags

(for example, an “extra” tag?). This

recommendation would be easy to implement.

4.2 Recommendations on used standards

The LOTAR MBSE workgroup remains confident that

FMI and SSP standards provide a solid basis for the

Part 520 standard. This makes the following constructive

criticism even more relevant, as any improvement on

these standards and/or associated tool implementations

would also benefit the Part 520 indirectly. The criticality

tags are also used here.

• [Major] Provide user entries for relevant metadata

fields. When compiling an FMU or SSP, many of

the “modelDescription” or “SystemStructure”

fields are not defined, and the user is not provided

with the choice to specify them. A simple

example is the author field – that can be reached

using PyFMI by “model.get_author()”, where

“model” represents the loaded FMU. For LOTAR

purposes, the author’s name is highly relevant, so

are many other missing fields. It would be

beneficial for the tool vendors to provide support

for the missing fields.

• [Major] Improve support of SSP. While the FMI

standard is highly supported by many tool

vendors, the SSP standard lacks application

support – only a few tools include the option.

Several use cases (Thomas 2015) would benefit

from wider SSP deployment. Long time archiving

and retrieval of structured system models would

offer additional options for the archivist.

• [Minor] Add a documentation bridge. Modelica is

seen by the LOTAR MBSE workgroup as one of

the main languages for model development. The

Modelica specification includes a documentation-

annotation that enables embedding the model

description and experimental frame. Nevertheless,

the effort the model developer expends when

creating a Modelica model is lost when exporting

the model as an FMU or SSP. The MoSSEC or

MIC information would be extremely valuable. A

path to explore would be the recommended

approach to “compile” the documentation as

HTML – similar to how it is done in libraries – in

the resource folder of the FMU or SSP. Exporting

only the top-level documentation would be

appreciated by the model consumers.

• [Minor] Contribute to the reference results format

specification. As discussed in the self-criticism

section, it is relevant to specify how an FMU or

SSP should be tested to validate its behavior and

verify its integrity. This seems as relevant for the

LOTAR purposes as it should be for the FMI and

SSP standards.

Modelica, FMI and SSP for LOTAR of Analytical mBSE models: First Implementation and Feedback

54 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118149

• [Suggestion] Better support of metadata in the

Modelica language. Allow the specification of

many of the metadata (e.g. LOTAR fields) in a

structured form in the Modelica model itself,

maybe by embedding such a manifest. Then the

manifest can be moved automatically from the

source, to the FMU, and parts extracted to the

SSP if needed. This would prevent changing the

FMU after its generation, to add the manifest in

the extra folder.

This section should act as a trigger for discussion or

call for cooperation on these topics. The LOTAR MBSE

workgroup would welcome any further joint actions with

the Modelica Association and its members.

4.3 Further discussion

Several additional points are currently under discussion

in the workgroup. Two are discussed here:

• In which form the model shall be archived? In the

first implementation of the archiving process,

Modelon included the Modelica source code as a

resource in the FMU. This brings advantages for a

future use of the model after retrieval. Nevertheless,

what format of the model shall be stored in the

archive is yet to be defined as this shall be generic to

any software and prevent model corruption in the

future.

• How can we ensure the framework to simulate the

model will be available in the future? There are

many dependencies for a model simulation: a

compatible operating system, python packages, etc.

Current discussions involve, for example, a

“dynamic” archiving platform – that could perform

regression tests of the stored at each dependency

update – or to store an image/container of the

dependencies together with the model. There seems

to be a trade-of between heavy platform

implementation and heavy archive files.

Validation and Verification of the LOTAR is another

highly relevant point, which could have its own paper.

5 Summary and conclusions
The LOTAR MBSE workgroup aims at standardizing the

long-term usage of models – driven by the aerospace

industry’s needs. The archiving process would also be

applicable and valuable to other industries. A proper

archiving and retrieval process would ensure model

capitalization and reusability. Modelica is seen as one of

the main languages for future model development, and

the FMI and SSP standards provide a solid foundation

for the EN/NAS 9300 Part 520 standard.

A prototype implementation of the process described

in the Part 520 was conducted in both a tool agnostic

way and within Modelon Impact – as a tool-vendor proof

of concept. This work proved the suitability of the

process and confirmed the LOTAR MBSE workgroup’s

recommendation of relying on FMI and SSP standards.

This work also enabled identifying the next lines of

actions on both the development of the Part 520 and the

standards used – especially FMI and SSP.

Recommendations addressed in this paper are from the

perspective of any general user who may need to

replicate this work. The LOTAR MBSE workgroup

would welcome any further joint actions on the identified

items.

References

Coïc C., Andreasson J., Pitchaikani A., Åkesson J. and

Sattenapalli H., (2020). “Collaborative Development and

Simulation of an Aircraft Hydraulic Actuator Model”.

Presentation: Asian Modelica Conference, Tokyo, Japan.

Coïc C., Hübel M. and Thorade M., (2020). “Enhanced Steady-

State in Modelon Jet Propulsion Library, an Enabler for

Industrial Design Workflows”. Proceedings of the American

Modelica Conference 2020, Boulder, Colorado, USA,

March 23-25, 2020.

INCOSE Technical Operations, (2007). Systems Engineering

Vision 2020, Version 2.03. International Council on Systems

Engineering, San Diego, CA, USA. Technical Publication:

INCOSE-TP-2004-004-02.

LOTAR International, (2021). “LOTAR Standard, Overview

on Parts”. URL: https://lotar-international.org/lotar-standard/

Modelon, 2020. Modelon Impact “Lowering barriers and

bridging gaps”. URL: https://www.modelon.com/modelon-

impact-introduction/

Modelica Association, (2021). Modelica – A Unified

ObjectOriented Language for Systems Modeling. Language

Specification Version 3.5, Revision 1. Tech. rep. Linköping:

Modelica Association. URL:

https://www.modelica.org/documents/MLS.pdf [MOD21]

Modelica Association, (2020). Functional Mock-up

Interface, Standard specification, Version 2.02. URL:
https://github.com/modelica/fmi-

standard/releases/download/v2.0.2/FMI-Specification-

2.0.2.pdf

MoSSEC, (2021). “Modelling and Simulation information in a

collaborative Systems Engineering Context, Developer’s

Overview”. Data Standard: ISO 10303-243. URL:

http://www.mossec.org/

PyFMI, (2020). “Python package for loading and interacting

with Functional Mock-Up Units”, Branch Version 2.6.x.

URL: https://github.com/modelon-community/PyFMI
Thomas, E., Thomas, O., Bianconi, R., Crespo, M. and

Daumas J., (2015). “Towards Enhanced Process and Tools

for Aircraft Systems Assessments during very Early Design

Phase”. Proceedings of the 11th International Modelica

Conference, Versailles, France.

Nallon J. & Williams M., (2020). “MBSE Tools Database

Update, and Integrate Models with Tools”. Presentation:

INCOSE International Workshop, TIMLM Working Group,

Torrance, CA, USA. URL:

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=

mbse:incose_mbse_iw_2020:iw2020_timlm_mbseworkshop

.pdf

W3C, (2006). “Extensible Markup Language (XML)”, Version

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118149

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

55

1.1 (Second Edition), World Wide Web Data Standard.

URL: https://www.w3.org/TR/2006/REC-xml11-20060816/

Williams M., Mendo J. and Nallon J., (2021). “Where is your

Roadmap for implementing MBSE Data Standards?”

Presentation: INCOSE International Workshop, TIMLM

Working Group, Torrance, CA, USA. URL:

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=

mbse:incose_mbse_iw_2021:iw2021_mbse-

standards_timlm.pdf

Python Software Foundation, (2021). “Working with zip

archives”. The Python Standard Library, Data Compression

and Archiving, documentation library. URL:

https://docs.python.org/3/library/zipfile.html

Modelica, FMI and SSP for LOTAR of Analytical mBSE models: First Implementation and Feedback

56 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118149

