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Abstract
A new design of the Modia experimental modeling lan-
guage based on Julia is presented. It has simple yet pow-
erful syntax and semantics. A unified means of describ-
ing the fundamental semantics, which is similar to Mod-
elica, is outlined. Furthermore, it is shown how domain
specific algorithms can be combined with equation based
modeling. It is demonstrated for multibody systems and
enables more efficient translation since much repetitive
analysis and transformations are avoided and faster simu-
lation. The drive train of a robot model was automatically
translated from Modelica to Modia. Modern simulation
algorithms from the Julia community allow working with
automatic differentiation and uncertainties.
Keywords: Modelica, Julia, Modia, Uncertainties, Multi-
body

1 Introduction
Modelica1 (Modelica Association 2021), the equation and
object oriented modeling language makes it easy to model
large industrial systems with millions of equations. How-
ever, the transformation of the equations to executable
form does not scale well since the current transformation
technology is based on flattening of the hierarchical model
structure. This means that certain structural and symbolic
algorithms have to make repetitive work since the inherent
structure is lost in the flattening process.

Furthermore, in the design of Modelica, several com-
promises needed to be made, for example, for multibody
systems to handle spanning trees, closed kinematic loops,
planar loops, over-determinism with quaternions, and re-
versing and zero flows for fluid systems. But even with
these compromises, non-optimal performance of model
transformation and simulation speed is achieved. On the
other hand, the multibody community has designed meth-
ods for efficient simulation based on the manual conver-
sion of the basic equations of motion and constraints to
efficient algorithmic code, see e.g. (Arnold 2016).

Modelica also has the restriction that the number of
equations and the number of states must be constant and
that array dimensions of variables, even parameters, must
be constant. There is a need for varying structure model-

1https://modelica.org/modelicalanguage.html

ing to enable robot gripping, satellite docking, turning off
parts of a fluid system, etc.

In this paper, we propose a hybrid solution: combin-
ing equation and object-oriented modeling with special-
ized algorithmic treatment of certain domains such as
multibody and fluid systems. This approach relies on the
powerful and fast programming language Julia2 (Bezan-
son et al. 2017). The Julia package Modia3 provides a
modeling language that is based on hierarchical collec-
tions of name/value pairs. A unifying semantics has been
defined for hierarchical modifiers à la Modelica and in-
heritance. Certain model instances are recognized as al-
gorithmic models, i.e. calls to Julia functions are sorted
among the solved equations. This technique also opens
up for closed coupling to FEM and CFD models. Using a
general-purpose algorithmic language instead of Modelica
algorithms and functions enables use of more advanced
data structures such as trees, dictionaries, etc.

It is important to have a stable model standard enabling
encoding know-how available in books and articles in a
formal language in order that these models can be stored
and reused over a long time. The Modelica language was
designed for this purpose. However, Modelica also needs
to be enhanced due to various new needs within the mod-
eling and simulation community. Modia was introduced
to provide an experimental platform for extensions to the
Modelica semantics and for experimentation of new trans-
formation and simulation algorithms.

Since Modelica is a well-established modeling lan-
guage there exist ten-thousands of models and it is very
important to be able to reuse this huge model knowledge
base. For that reason a translator between (so far for a
subset of) Modelica and Modia is developed.

The presented modeling framework based on Julia has
the advantage of using a modern infrastructure around the
DifferentialEquations.jl package4 (Rackauckas and Nie
2017b). For example, it enables using dual number rep-
resentation for automatic differentiation and uncertainty
information. Julia is also used for modeling in the Model-
ingToolKit (Ma et al. 2021) and experiments are made to
use Julia instead of MetaModelica for the OpenModelica
implementation (Tinnerholm et al. 2020).

2https://julialang.org/
3https://github.com/ModiaSim/Modia.jl
4https://github.com/SciML/DifferentialEquations.jl
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2 Modia Language
The Modia syntax and frontend has been redesigned since
(Elmqvist, Henningsson, and Otter 2017). The new de-
sign is completely based on hierarchical collections of
name/value pairs together with merging of such collec-
tions. This schema is used for models, variables, equations
and hierarchical modifiers.

2.1 Variables and models
Variables are implicitly defined by their references in
equations. A constructor Var allows defining variables with
attributes:

name = Var(attribute=value, ...)

Var is a function taking name/value pairs, building and return-
ing a corresponding dictionary.

Var(; kwargs...) = OrderedDict(kwargs)

Presently introduced attributes are: value, min, max, init,
start, and the Booleans: parameter, constant, input,
output, potential and flow. Example:

T = Var(parameter=true, value=0.2, min=0)

Some syntactically useful shortcuts using Var from ?? have
been defined:

Listing 1. Modia shortcuts.

Par(; kwargs...) =
Var(; parameter=true, kwargs...)

input = Var(input=true)
output = Var(output=true)
potential = Var(potential=true)
flow = Var(flow=true)

If the value has references to other declared variables in the
model, the expressions needs to be quoted that is enclosed
in :( ). A parameter can also be defined by name =
literal-value. time is a reserved name for the indepen-
dent variable having unit s for seconds. The Julia package Unit-
ful5 provides a means for defining units and managing unit in-
ference and checking. Definition of units is done with a string
macro u"..." (see e.g., Listing 3). Units are given to inputs,
states (init-attribute) and if the model equations contain sys-
tems of simultaneous equations, then approximate guess values,
optionally with units, must be given as start-attribute to iter-
ation variables.

A model (Listing 2) is also defined as a collection of name/-
value pairs with the constructor Model (similar to Var, but hav-
ing a tag to enable better diagnostics).

Listing 2. Syntax of a Modia model.

name = Model(
<variable-or-component-definition>,
...,
equations = :[
<equation1>
<equation2>
...]

)

5https://github.com/PainterQubits/Unitful.jl

The equations have Julia expressions in both left and right
hand side of the equal sign. Note that the entire array of
equations is quoted since enclosed in :[ ]. This enables
later processing such as symbolically solving the equation since
an AST (abstract syntax tree) is built-up instead of evaluating
the expressions.

For example, in Modia a low pass filter can be defined as:

Listing 3. Modia model of a low pass filter.

LowPassFilter = Model(
T = Par(value=0.2u"s", min=0u"s")
u = input,
y = output,
x = Var(init=0),
equations = :[

T * der(x) + x = u
y = x]

)

This corresponds to the following Modelica model:

Listing 4. Modelica model of a low pass filter.

block LowPassFilter
import Modelica.Blocks.Interfaces;
parameter SIunits.Time T = 0.2;
Interfaces.RealInput u;
Interfaces.RealOutput y;
Real x(start=0.0, fixed=true);

equation
T * der(x) + x = u;
y = x;

end LowPassFilter;

2.2 Connectors
Models which contain any flow variable, a variable having an at-
tribute flow = true, are considered connectors. Connectors
must have an equal number of flow and potential variables, vari-
ables that contain an attribute potential = true, and have
matching array sizes. Connectors may not have any equations.
An electrical connector with potential v (in Volt) and current i
(in Ampere) is defined as:

Pin = Model(v = potential, i = flow)

2.3 Components
Components are declared by using a model name as a value in a
name/value pair.

An electrical resistor with two Pins p and n can be described
as follows:

Listing 5. Resistor model using Pins.

Resistor = Model(
R = 1.0u"Ω",
p = Pin,
n = Pin,
equations = :[

0 = p.i + n.i
v = p.v - n.v
i = p.i
R*i = v ]

)
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2.4 Merging
Models and variables are defined with hierarchical collections
of name/value pairs. Setting and modifying parameters of com-
ponents and attributes of variables are also naturally structured
in the same way. A constructor Map is used for that. For exam-
ple, modifying the parameter T of the LowPassFilter model
defined in Listing 3 can be made by:

lowPassFilter = LowPassFilter |
Map(T = Map(value=2u"s", min=1u"s"))

The achieved semantics is the same as for hierarchical modifiers
in Modelica and results in:

lowPassFilter = Model(
T = Var(parameter=true, value=2u"s",

min=1u"s")
...)

The used merge operator | is an overloaded binary operator
of bitwise or with recursive merge semantics6. In Listing 6 a
sketch of the recursive merging function is given:

Listing 6. Merge operator | is an overloaded bitwise or.

function Base.:|(x, y)
result = deepcopy(x)
for (key, value) in y
if typeof(value) <: AbstractDict &&

key in keys(result)
value = result[key] | value

elseif key in keys(result) &&
key == :equations

equa = copy(result[key])
push!(equa.args, value.args...)
result[key] = equa

end
result[key] = value

end
return result

end

Merging of equations is handled specially by concatenating
the equations vectors. More details, for example, about redeclar-
ing and deleting names are given in the Modia tutorial7.

2.5 Inheritance
Various physical components sometimes share common proper-
ties. One mechanism to handle this is to use inheritance. Modia
makes a semantic unification by using merging.

Electrical components such as resistors, capacitors and induc-
tors are categorized as oneports (Listing 7) that have two pins.
Common properties are: constraint on currents at pins and def-
initions of voltage over the component and current through the
component:

Listing 7. Oneport model for electrical components.

OnePort = Model(
p = Pin,
n = Pin,
equations = :[
0 = p.i + n.i
v = p.v - n.v
i = p.i ]

)

6Python has also recently introduced the operator | for merging.
7https://modiasim.github.io/Modia.jl/stable/tutorial

Having such a OnePort definition (Listing 7) makes it con-
venient to define electrical component models by merging
OnePort with specific parameter definitions with default val-
ues and equations:

Listing 8. Electrical components merged with OnePort.

Resistor = OnePort | Model( R = 1.0u"Ω",
equations = :[ R*i = v ] )

Capacitor = OnePort | Model( C = 1.0u"F",
v = Var(init=0.0u"V"),
equations = :[ C*der(v) = i ] )

Inductor = OnePort | Model( L = 1.0u"H",
i = Var(init=0.0u"A"),
equations = :[ L*der(i) = v ] )

ConstantVoltage = OnePort | Model(
V = 1.0u"V",
equations = :[ v = V ] )

The resulting Resistor (Listing 8) defined by merging with
OnePort is identical to the Resistor defined in Listing 5
due to the concatenation of the equations vector performed
by the merge operator.

2.6 Connections
Connections are described as a special equation of the form:

connect( <connect-reference-1>,
<connect-reference-2>, ... )

A ’connect-reference’ has either the form ’connect instance
name’ or ’component instance name’.’connect instance name’
with ’connect instance name’ being either a connector instance,
input or output variable.

For connectors, all the corresponding potentials of the con-
nectors in the same connect statement are set equal. The sum
of all incoming corresponding flows to the model are set equal
to the sum of the corresponding flows into sub-components, i.e.
the same semantics as in Modelica.

Connected models
Having the electrical component models from Listing 8 enables
defining a filter (Listing 9), with internal resistance Ri of the
voltage source, by instantiating components, setting parameters
and defining connections.

Listing 9. Filter model defined with electrical components.

Filter = Model(
R = Resistor | Map(R=0.5u"Ω"),
Ri = Resistor | Map(R=0.1u"Ω"),
C = Capacitor | Map(C=2.0u"F"),
V = ConstantVoltage | Map(V=10.0u"V"),
equations = :[

connect(V.p , Ri.n)
connect(Ri.p, R.p)
connect(R.n , C.p)
connect(C.n , V.n) ]

)

3 Transformation of Modelica models
to Modia

A recursive-descent parser for Modelica has been developed in
Julia by Hilding Elmqvist (Otter, Elmqvist, et al. 2019). It builds
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an AST which is converted to the new Modia syntax.

Figure 1. RobotR3.oneAxis drive line model.

This paper focuses on combining equation based modeling
with algorithmic modeling of multibody systems. A good exam-
ple of this combined need is robot modeling with the multibody
part combined with rotational drive trains with inertias, gear-
boxes, springs, etc. and electrical motors with current amplifier
electronics. All this is complemented with input/output blocks
of the controllers. Such an example is available in the Modelica
Standard Library8 (Modelica Association 2020): Modelica.Me-
chanics.MultiBody.Examples.Systems.RobotR3. The Modelica
to Modia translator has been used to automatically translate the
drive line model RobotR3.OneAxis in Figure 1 to Modia. The
drive line consists of a path planning component, a P-PI con-
troller, an electrical motor with current controller, a gearbox
with friction, elasticity and damping and a rotational load iner-
tia. By this translation, the know-how stored as Modelica mod-
els (55 models, 700 lines of Modia code) can be reused in an
environment which enables more analyses than regular simula-
tion as is demonstrated below.

4 Symbolic transformations
The Modia model OneAxis is instantiated with Julia macro
@instantiateModel(OneAxis) that performs structural
and symbolic transformations based on the algorithms sketched
in (Otter and Elmqvist 2017), generates and compiles a function
called getDerivatives for calculation of derivatives and re-
turns a reference to the instantiated model where this function is
stored. Transformation is currently performed to ODE form (Or-
dinary Differential Equations in state space form) where deriva-
tives are explicitly solved for (x(t) is the state vector, p is a hier-
archical dictionary of parameters and t is time):

ẋ = f(x,p, t), x0 = x(t0) (1)

Physical models lead often to linear systems of equations, as
the Filter model in Listing 9. Modia generates very compact
code to built-up and solve linear systems of equations numeri-
cally during execution of the model, as shown for the Filter
model in Listing 10.

8https://github.com/modelica/ModelicaStandardLibrary

Listing 10. Generated function for model Filter.

function getDerivatives(_der_x,_x,_m,_time)
_p = _m.evaluatedParameters
_leq = nothing
time = _time * upreferred(u"s")
var"C.v" = _x[1] * u"V"
var"V.v" = (_p[:V])[:V]
var"C.p.v" = var"C.v" + -1var"V.v"
begin

local var"R.v", var"Ri.i", var"R.p.v"
_leq = _m.linearEquations[1]
_leq.mode = -3
while leqIteration(_leq, <more arg.>)

var"R.v" = _leq_mode.x[1]
var"Ri.i"= var"R.v"/((_p[:R])[:R]*-1)
var"R.p.v"= (_p[:Ri])[:R]*var"Ri.i"
append!(_leq.residuals, stripUnit(

var"R.v"-var"R.p.v"+var"C.p.v"))
end
_leq = nothing

end
var"der(C.v)" = -var"Ri.i" / (_p[:C])[:C]
_der_x[1] = stripUnit(var"der(C.v)")
if _m.storeResult

addToResult!(_m,_der_x,time,var"R.v",
var"R.p.v",var"Ri.i",var"C.p.v", var"

V.v")
end
return nothing

end

Assume a nonlinear equation system

0 = g(w,v) (2)

has been identified with unknowns w and variables v that are
known at this stage. If g is linear in w, the tearing algorithm of
(Otter and Elmqvist 2017) is applied to split this linear equation
system in an explicitly solvable part w2 and an implicit part w1:

w2 := g1(w1,v) (3)
r := g2(w1,w2,v) (= 0) (4)
= A(w2,v)w1 −b(w2,v) (5)

Since it is known that (2) is linear in w, it is possible to rear-
range (conceptually) equations (3,4) into the form (5). This is,
however, not actually done, because A has n2 elements and then
the size of the rearranged code would grow with O(n2). Instead,
only code is generated to compute the residual r, in order that
the code size grows with O(n):

while leqIteration(leq)
w1 := leq.x
w2 := g1(w1,v)
leq.r := g2(w1,w2,v)

end

Function leqIteration provides first leq.x = 0 and the while loop
computes leq.r := −b. This vector is copied into an auxiliary
vector inside the data structure leq. Afterwards, leq.x = ei is set
to the i-th unit vector and again the residual leq.r is computed.
When varying i from 1 to n, all columns of A are computed.
Afterwards the linear system Aw1 = b is solved and in a last
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iteration the body of the while loop is again evaluated with the
solution to get w1 := leq.x and compute w2.

During symbolic processing it is analyzed whether A is only
a function of parameters p, so does not change after initializa-
tion. In this case, the LU-decomposition of A is computed once
during initialization and stored in the data structure leq. During
simulation, only a (cheap) backwards solution is applied to com-
pute the solution. If the residual equation has size one, a simple
division is used, instead of calling a linear equation solver.

By default, the linear equation solver of Julia package Recur-
siveFactorization.jl9 is used that implements the left-looking LU
algorithm of (Toledo 1997). This solver is used up to a dimen-
sion of n = 500, because a benchmark shows a large speed-up
with respect to the default linear solver based on OpenBLAS10

that would otherwise be used.
The ODE and DAE integrators of Julia package Differen-

tialEquations.jl11 (Rackauckas and Nie 2017a) are used with the
generated getDerivatives function. If a DAE integrator
is selected, the getDerivatives function is (automatically)
called as needed by the interface of the DAE integrator.

Additionally, a powerful feature is included: If a DAE inte-
grator is used and the size n of a linear equation system exceeds
a particular limit (by default n ≥ 50) and the unknowns w1 are
a subset of the derivatives of the DAE states, then the following
technique is used: During integration, the relevant DAE state
derivatives are used as solutions leq.x of the linear equation sys-
tem and the residuals leq.r are used as residuals for the DAE
solver. The effect is that during integration no linear equation
system is solved, but just the residuals leq.r of the linear equa-
tion system are computed once for every model evaluation. Dur-
ing events (including initialization), the linear equation system
is constructed and solved and provides consistent initial condi-
tions for the DAE solver. The big benefit is that simulation speed
can increase tremendously, see the benchmarks in section 7.

5 Operations on Modia models
5.1 Simulation with parameter merging
The Modia model OneAxis (Listing 11) is instantiated, simu-
lated and results plotted with the following commands:

Listing 11. Instantiate, simulate and plot results of model One-
Axis.

using Modia
@usingModiaPlot
oneAxis = @instantiateModel(OneAxis)
simulate!(oneAxis, Tsit5(),

stopTime=1.6u"s",
merge=Map(load=Map(J=12.0)))

plot(oneAxis, [..])

Function simulate! performs one simulation of the instanti-
ated model with a solver from the Julia package DifferentialE-
quations.jl12 (Rackauckas and Nie 2017b). This package con-
tains a large set of solvers. In Listing 11 the solver Tsit5 is
used. With various keyword arguments the simulation run can
be defined. Especially, the stop time is set in the example to
1.6 s. If no unit is given, a unit of seconds is assumed. Further-
more, parameters and initial values can be provided by a hierar-

9https://github.com/YingboMa/RecursiveFactorization.jl
10https://www.openblas.net/
11https://github.com/SciML/DifferentialEquations.jl
12https://github.com/SciML/DifferentialEquations.jl

chical Map that is merged with the current values via the merge
keyword. The simulation result is stored inside the instantiated
model and is plotted with function call plot.

Hierarchical parameters and initial values can also be read
from file, for example from a JSON file as shown in Listing 12.

Listing 12. JSON file for OneAxis parameterization.

{"axis": {
"gear": {

"ratio": 210.0,
"c" : 8.0,
"d" : 0.01,
"Rv0" : 0.5,
"Rv1" : 7.69e-4},

"motor": {
"J": 0.0013,
"k": 1.616,
"w": 5500.0,
"D": 0.6,
"w_max": 315.0,
"i_max": 9.0},

...
}

The parameters and initial values read with function
readMap(..) are stored in a hierarchical map that can
be directly merged in to the model before simulation starts:

simulate!(oneAxis, Tsit5(),
stopTime = 1.6u"s",
merge=readMap("oneAxisParameters.json"))

Units can be defined using dictionaries (value, unit) as shown in
Listing 13. These dictionaries are converted to Julia values with
units before the merging is done.

Listing 13. JSON structure for parameterization with units.

{"axis": {
"gear": {
"ratio": 210.0,

"c": {"value":8.0,"unit":"N/m"}
...

}

It is also possible to encode and decode such JSON parametriza-
tions which contains Julia expressions for parameter propagation
and calculations.

This offers new possibilities not available in the Modelica
language: Since parameters and initial values are stored in a
data structure, this data structure can be read from file or from
a database system, then manipulated and finally simply merged
into the model.

Typically, in Modelica parameter values are propagated and
changes are performed via modifiers. For larger model hierar-
chies it is always hard to figure out which of the parameters to
propagate and modify, because the set of parameters is too large.
Sometimes records are used for the model parameterization, but
then the corresponding models must be specially designed for
these records, and the modeler ends up with a large set of differ-
ent record types that cannot be conveniently utilized.

5.2 Simulation with different precisions
By default, a simulation is performed with 64 bit precision (Julia
type Float64). However, the generated getDerivatives
function does not depend on a particular type of the floating
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point variables. Julia has a very elaborate type system and it
is very easy to utilize different types when calling a function,
provided a concrete type is not explicitly defined in the function
signature. Note, the concrete type signature is given when call-
ing the getDerivatives function from the solver, and then
the function is specially compiled for this signature.

There is, however, one restriction: The used integrator must
be prepared to use any type of floating point variables. This is
the case for solvers that are natively defined in Julia, such as
integrator Tsit5. DifferentialEquations.jl supports also exter-
nal solvers that are typically implemented in C or Fortran for
64 bit precision only. These solvers cannot be used with other
floating point types.

In Modia, the floating point precision is defined with the key-
word FloatType of macro @instantiateModel. For ex-
ample, the following definition simulates with 32 bit precision:

oneAxis = @instantiateModel(OneAxis,
FloatType = Float32)

simulate!(oneAxis, ...)

Simulation can also be performed with higher precision:

• FloatType = Double64 from package Double-
Floats.jl13 uses two Float64 numbers and double word
arithmetic to perform floating point operations with
roughly 30 significant digits in an efficient way.

• FloatType = BigFloat is a Julia built-in floating
point type wrapping the GNU Multiple Precision Arith-
metic Library (GMP)14 and the GNU MPFR Library15

to support computations with any type of desired float-
ing point precision. The drawback is that the computation
might be slow.

5.3 Simulation with uncertainties
Julia package Measurements.jl16 (Giordano 2016) provides cal-
culations with uncertainties described by normal distributions
using linear error propagation theory. This package allows to
define uncertain variables with nominal value and standard de-
viation. For example v = 2.0± 0.2 defines that variable v has a
nominal value of 2.0 and a standard deviation of 0.2. In other
words, with a probability of about 95 %, variable v is in the
range 1.6 ≤ v ≤ 2.4. The package overloads the Julia operators
on floating point operations to perform propagation of uncer-
tainties. This works also for functions, such as, solving linear
equation systems. An example is given in Listing 14:

Listing 14. Uncertainty modeling with Measurements.jl.

using Measurements

v1 = 2.0 ± 0.2
v2 = 3.0 ± 0.3
v3 = v1 + v2 # = 5.0 ± 0.36
v4 = v3 - v1 # = 3.0 ± 0.3
v5 = v1*v2 # = 6.0 ± 0.85

In order to utilize this feature in Modia, the setting FloatType
= Measurement{Float64} has to be used, defining that 64
bit floating point numbers with uncertainties are treated. Note,

13https://github.com/JuliaMath/DoubleFloats.jl
14https://gmplib.org/
15https://www.mpfr.org/
16https://github.com/JuliaPhysics/Measurements.jl

the uncertainty propagation again goes through all code, also
through the integration algorithms. Therefore, this approach
only works for solvers implemented in Julia. In Listing 15 this
type of uncertainty modeling is applied on the OneAxis model,
where uncertainties are defined for the load inertia J and the gear
stiffness c:

Listing 15. Uncertainty modeling for OneAxis model.

using Modia, Measurements
@usingModiaPlot

OneAxis2 = OneAxis | Model(
load = Map(J = 19.5 ± 4.0),
axis = Map(c = 8.0 ± 0.8),
angle_error = :(

axis.axisControlBus.angle_ref-load.phi)
)

oneAxis2 = @instantiateModel(OneAxis2,
FloatType=Measurement{Float64})

simulate!(oneAxis2, Tsit5(), stopTime=0.3)
plot(oneAxis2, "angle_error")

Function plot displays the nominal value as thicker line and
the standard deviation as a transparent area around the nominal
value, see Figure 2.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
time [s]

0.0

0.5

1.0

1.5

2.0

1e 3 OneAxis2 (Tsit5, Measurement{Float64})

angle_error

Figure 2. Control error of OneAxis model with nominal value
(thick line) and standard deviation (transparent area).

Usage of the Measurements.jl package is attractive because,
with very small effort, uncertainties of many variables can be de-
fined and the propagated uncertainties of all variables computed
in a reasonably efficient way. The drawbacks of this approach
are that only normal distributions are supported and that uncer-
tainty propagation is performed with linear theory, based on the
analytic derivatives of all expressions. This means that larger
parameter uncertainties will not be properly described by this
approach and if the model contains discontinuous changes then
the calculated standard deviations might be questionable.

5.4 Monte Carlo Simulation
Monte Carlo Simulation is a standard technique to evaluate a
model with respect to uncertain parameters and initial values by
randomly generating parameter and initial values with respect
to given distributions and perform simulations for every ran-
domly selected value set. The Julia package MonteCarloMea-
surements.jl17 (Carlson 2020) provides a variant via the nonlin-

17https://github.com/baggepinnen/MonteCarloMeasurements.jl
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ear propagation of arbitrary multivariate distributions by means
of method overloading. This approach is attractive because the
setup and usage is very simple, provided the underlying simu-
lation environment is prepared to operate on any floating point
type, as it is the case for Modia. A simple example of this pack-
age is given in Listing 16:

Listing 16. Example of MonteCarloMeasurements.jl.

using MonteCarloMeasurements, Distributions

uniform(vmin,vmax) = StaticParticles(5,
Distributions.Uniform(vmin,vmax))

v1 = uniform(2.0, 3.0) # v1.particles =
# [2.7, 2.9, 2.3, 2.5, 2.1]

v2 = uniform(5.1, 8.3)
v3 = v1 + v2 # v3.particles =

# [8.76, 10.24, 10.28, 9.2, 7.52]

Function uniform defines a uniform distribution between a
minimum and maximum value. It generates five random values
according to the given distribution and stores these five values
internally in a vector. The five random values are just for il-
lustration in this example. For realistic computations, typically
several thousand random values are generated. The Julia pack-
age Distributions.jl18 (Besançon et al. 2019) provides a large set
of probability distributions and functions operating on them and
can be used to generate a large variety of distributions for Mon-
teCarloMeasurements.jl.

The package overloads all operations for floating point num-
bers by replacing for example the addition of two scalars by the
addition of the two vectors, in which the randomly generated
values are stored. Furthermore, the package is implemented to
make effective use of SIMD19 instructions available on modern
processors. There is also support for computation on GPUs. To
handle some corner cases, a few instructions in Modia had to be
adapted to make Modia work with this package. In Listing 17,
this type of Monte Carlo Simulation is applied on the OneAxis
model, again, with uncertainties for the load inertia J and the
gear stiffness c using 100 samples per distribution:

Listing 17. OneAxis model with MonteCarloMeasurements.jl.

using Modia,
using MonteCarloMeasurements, Distributions
@usingModiaPlot

uniform(vmin,vmax) = StaticParticles(100,
Distributions.Uniform(vmin,vmax))

OneAxis3 = OneAxis | Model(
load = Map(J = uniform(11.5, 27.5),
axis = Map(c = uniform(6.6, 9.6),
angle_error = :(

axis.axisControlBus.angle_ref-load.phi)
)

oneAxis3 = @instantiateModel(OneAxis3,
FloatType=StaticParticles{Float64,100})

simulate!(oneAxis3, Tsit5(), stopTime=0.3)
plot(oneAxis3, "angle_error")

18https://github.com/JuliaStats/Distributions.jl
19Single Instruction, Multiple Data (= computers with multiple pro-

cessing elements performing the same operation on multiple data points
simultaneously).

Function plot displays the nominal value as thicker line and
the particles of the corresponding variable as transparent, thin
lines, see Figure 3.
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Figure 3. Control error of OneAxis model with mean value
(thick line) and 100 particles (transparent, thin lines).

Usage of the MonteCarloMeasurements.jl package is attrac-
tive because, with very small effort, uncertainties of a reasonable
amount of variables with large uncertainties can be defined for a
large variety of probability distributions and the nonlinear prop-
agation of these distributions is computed in an efficient way.

5.5 Linearization
An instantiated Modia model can be linearized:

using Modia
oneAxis = @instantiateModel(OneAxis)
(A0, x0) = linearize!(oneAxis)
(A1, x1) = linearize!(oneAxis, Tsit5(),

stopTime=1.0, analytic=true)
xNames = get_xNames(oneAxis)

The first linearize! call initializes model oneAxis, com-
putes the Jacobian of the state derivatives with respect to
the states x numerically with a central finite difference ap-
proximation using Julia package FiniteDiff.jl20, and returns
the Jacobian as matrix A0 together with the initial state vec-
tor x0 computed during initialization. The nonlinear Modia
model is hereby approximated at the initial state with the
linear differential equation system ∆ẋ = A0∆x, x ≈ x0 +
∆x. Linearization is performed with respect to the floating
point type as defined by FloatType. If FloatType =
Measurement{Float64}, the elements of matrix A are of
this type, that is, contain uncertainties. Further processing is
possible, especially with Julia package ControlSystems.jl21 that
also supports linear systems with uncertainties. In the near fu-
ture, instantiation and linearization will be also supported with
respect to top-level inputs and outputs of a Modia model.

The second linearize! call simulates the model
with method Tsit5 until the stop time, linearizes the sys-
tem analytically using Julia package ForwardDiff.jl22 (Rev-
els, Lubin, and Papamarkou 2016) and returns the Jacobian
as matrix A1 together with the state vector x1 at the stop
time. Analytic differentiation may not always work. For
example, an error is currently triggered if FloatType =

20https://github.com/JuliaDiff/FiniteDiff.jl
21https://github.com/JuliaControl/ControlSystems.jl
22https://github.com/JuliaDiff/ForwardDiff.jl
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Measurement{Float64} is used. Furthermore, analytic
linearization takes some time, because the complete model is
analytically differentiated, code generated and compiled.

Function call get_xNames(instantiatedModel) re-
turns the names of the state vector x as a vector of strings. This
allows to interpret further operations on the linearized system
with respect to the nonlinear Modia model.

6 Modia with 3D models
6.1 Domain specific algorithms
Equation based modeling, for example with the Modelica lan-
guage (Modelica Association 2021), maps a hierarchical model
to a set of equations and transforms these equations appropri-
ately. The drawback of this approach is that if a model contains,
say, N instances of a body, the equations of the body are present
N-times in the generated code. As a result, this approach does
not scale for large models because the code size grows at least
proportionally with the number of instances (and their number
of equations) and therefore inherently limits the size of models
that can be practically handled.

Traditional, domain-specific software, such as an electrical
circuit simulator or a multibody program23, have a completely
different architecture: The equations of a component, say of a
body, are available in a few variants and every variant is hard-
coded in a function. If N bodies with the same variant are used,
then the corresponding function is called N times, and the equa-
tions of the body are present only once. Therefore, the code size
is independent from the size of the model. Additionally, special
algorithms can be used, for example, to treat 3-dimensional ro-
tations specially, handle over-determinism in planar kinematic
loops, or use special sparse matrix methods, such as an O(n)
multibody algorithm. The drawback of this approach is that the
introduction of new component types or the combination of sub-
models of different domains is orders of magnitude more diffi-
cult for a user to define than with equation based modeling.

In Modia, a new technique is utilized to combine the ad-
vantages of both approaches in a generic way, i.e., to combine
equation-based modeling with domain-specific software. This
approach is sketched and demonstrated in this section by com-
bining equation based modeling with a multibody program24.

In the simplest case, a multibody program for tree-structured
systems basically has the following structure in pseudo-code no-
tation, where q is the vector of generalized joint coordinates (for
example angles of revolute joints) and v is the vector of general-
ized joint velocities:

mbs= readAndInit("fileName")

q̇ = v
v̇ = h(mbs,q,v)

(6)

The multibody system is defined on file. This file is read with
function readAndInit(..) that returns an object reference
mbs (so basically a pointer) of an internal data structure that al-
lows fast evaluation of function h (6) which computes the deriva-
tive of v. In the following it is shown how three basic issues are
solved in Modia:

23https://uwaterloo.ca/motion-research-group/multibody-system-
dynamics-international-research-activities

24Modia uses an approach where one ODE-system is generated. The
alternative of using co-simulation of coupled ODE-systems has inherent
numerical issues and is not used.

• Replacing the definition of the multibody system on file by
a definition with the Modia language.

• Handle object references, such as mbs, in the Modia lan-
guage.

• Handle state constraints, DAE index reduction and sys-
tems of equations that might occur when combining a
multibody system with equation based models, for ex-
ample when a drive train without gear elasticity (say,
RobotR3.Utilities.AxisType2) is connected to a flange of
a revolute joint.

6.2 Modia3D
Modia3D25 (Neumayr and Otter 2018; Neumayr and Otter
2019a) is a Julia package that implements basically a multibody
program, so targeted for solvers with adaptive step-size to com-
pute results close to real physics, and combines this with the
generic component-based design pattern of modern game en-
gines. This allows a very flexible definition of 3D systems of
any kind. Hereby, a coordinate system located in 3D is used
as a primitive that has a container with optional components
(such as geometry, visualization, dynamics, collision properties,
light, camera, sound, etc.), see for example (Nystrom 2014)26,
Unity27, Unreal Engine28, three.js29.

From a user’s point of view, Modia3D provides a set of pre-
defined model components (= constructor functions that gener-
ates dictionaries). The core component is Object3D that de-
fines a coordinate system moving in 3D together with associated,
optional features, see Figure 4. An Object3D is described rela-

parent Object3D

Object3D

rotation

translation

feature

Figure 4. Object3D defined relative to its parent.

tive to an optional parent Object3D by vector translation
that defines the coordinates of the Object3D in its parent system
and by vector rotation that defines three rotation angles to
rotate the parent system into the Object3D system.

An example of a simple pendulum with damping in its joint
is shown in Listing 18. The Object3D object that has fea-
ture Scene is the root of all other Object3Ds and defines a
global inertial system. It is called world in the example.
Object3D body defines a solid part that has a mass of 1 kg.
On the body an Object 3D axle is defined that is trans-
lated 0.5 m along the negative x-axis of the body. Finally, a
RevoluteWithFlange joint, that is a revolute joint with a
flange, constrains the motion of axle with respect to world so
that axle can only rotate around its z-axis.

25https://github.com/ModiaSim/Modia3D.jl
26http://gameprogrammingpatterns.com/component.html
27https://docs.unity3d.com/Manual/GameObjects.html
28https://docs.unrealengine.com/en-us/Engine/Components
29https://threejs.org/docs/index.html#api/core/Object3D
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Listing 18. Simple pendulum with damping in its joint.

Pendulum = Model(
# Multibody components
world = Object3D(feature = Scene()),
body = Object3D(feature = Solid(

massProperties =
MassProperties(mass = 1.0))),

axle = Object3D(parent = :body,
translation=[-0.5, 0.0, 0.0]),

rev = RevoluteWithFlange(axis=3,
obj1=:world, obj2=:axis),

# Equation based components
damper = Damper | Map(d=100.0),
fixed = Fixed,
equations = :[

connect(damper.flange_b, rev.flange),
connect(damper.flange_a, fixed.flange)]

)

pendulum = @instantiateModel(
buildModia3D(Pendulum),
unitless=true)

simulate!(pendulum, stopTime=3.0)
plot(pendulum, "rev.phi")

The remaining elements of the Pendulum use predefined
Models of a small Modia library that corresponds to the Mod-
elica.Mechanics.Rotational library. In particular a rotational 1D
Damper is connected to a fixed point on one side and on the
other side it is connected to the flange of the revolute joint.

Before calling @instantiateModel(..), the special
function buildModia3D must be called on the model to in-
troduce a few equations to the model that depend on the used
multibody components (details are given below). Additionally,
option unitless=true has to be given temporarily, because
units are not yet fully supported in Modia3D. The instantiated
model can be simulated and variables plotted as before.

Feature Visual introduces objects for 3D animation by
defining shapes like box, sphere, cylinder, 3D meshes on file
in different formats (3ds, dxf, obj, stl), text, grids, or coordi-
nate systems. A visualMaterial defines its visual proper-
ties. In Listing 19 an Object3D with a half transparent light blue
cylinder with radius 0.01 and height 0.12 is created. For further
details on visual objects see (Neumayr and Otter 2018, Section
2.2).

Listing 19. A visual Object3D with a light blue cylinder.

cylinder = Object3D(
feature = Visual(
shape = Cylinder(

diameter = 0.01, length = 0.12),
visualMaterial = VisualMaterial(
color = "LightBlue",
transparency = 0.5)))

)

Feature Solid defines solid bodies. Argument shape ac-
cepts primitive shapes and 3D meshes on file in obj-format.
There are several ways for defining massProperties, in-
cluding mass, center of mass, and inertia tensor of the solid:
The default setting computes the mass properties from the den-
sity defined with the optional solidMaterial keyword and
from the shape of shape. A solid object is considered in colli-
sion situations if keyword collision is set to true. Further-

more, it is possible to use keyword collisionMaterial to
define properties of the collision behaviour, for example sliding
friction coefficient and coefficient of restitution (Neumayr and
Otter 2019b). In Listing 20 one link of a KUKA YouBot robot is
defined as a solid 3D mesh with collision properties and its mass
properties are computed from shape geometry and mass.

Listing 20. A solid Object3D that is allowed to collide and mass
properties computed from shape geometry and mass.

body = Object3D(
feature = Solid(

shape = FileMesh(file =
"YouBot/arm_joint_2.obj"),

massProperties =
MassPropertiesFromShapeAndMass(

mass = 1.318),
collision = true)

)

Feature Scene provides many options. A few are shown
in Listing 21: With keyword gravity a uniform gravity field
is defined pointing in negative z-direction. Only if enable-
ContactDetection is set to true, collision handling is per-
formed for all solid Object3Ds with enabled collision option.

Listing 21. World Object3D with scene defining a uniform grav-
ity field pointing in negative z-direction and enabled contact de-
tection.

world = Object3D(
feature = Scene(

gravity = UniformGravityField(
g = 9.81, n = [0,0,-1]),

enableContactDetection = true)
)

For modeling of freely moving bodies, without any kinematic
constraint, Modia3D provides a FreeMotion joint with six de-
grees of freedom. It describes the orientation of Object3Ds by
Tait-Byran (or Cardan) angles with rotation sequence x-y-z with
respect to its parent Object3D, which is usually world. An ad-
vantage of this approach is that the state variables are illustrative
for the user. Furthermore, in contrast to quaternions, Tait-Byran
angles do not introduce nonlinear algebraic constraints and are
directly defined in ODE form. If the main rotation is approxi-
mately around one axis (frequently given in technical applica-
tions) Tait-Byran angles behave nearly linear, so that integrators
with adaptive step size selection can use larger steps compared
to a description with quaternions.

However, a significant drawback of Tait-Byran angles is gim-
bal lock: When the second rotation about the local y-axis is

α2 = 90◦+n ·180◦ n ∈ Z, (7)

x- and z-axes are parallel. In this configuration only the sum of
the first and third angle is unique. As a consequence, the model
equations become singular and simulation fails.

In Modia3D this situation is avoided by adaptive rotation se-
quence handling. For this, the second angle is monitored by a
zero crossing function which stops time integration, if the abso-
lute difference between its value and the gimbal lock condition
(7) falls below a certain limit. Before restart, the FreeMotion
joint is switched to the alternative rotation sequence x-z-y such
that its relative orientation remains unchanged. Since x- and z-
axes are nearly parallel, the new second Tait-Byran angle about
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the local z-axis obviously is far away from a gimbal lock con-
figuration. After restart the same procedure is applied where the
second angle about z is monitored and a switch back to rotation
sequence x-y-z is triggered if the gimbal lock limit is reached
again.

6.3 Modia3D implementation
In this section a sketch is given how the internal Modia3D structs
and functions are interfaced with a Modia Model:

All Modia3D models, with exception of the joints, are defined
in the following way:

Listing 22. Modia3D interface definition.

Object3D(;kwargs...) = Par(;
_constructor =

:(Modia3D.Composition.Object3D),
kwargs...)

Visual(; kwargs...) = Par(;
_constructor =

:(Modia3D.Shapes.Visual), kwargs...)

Solid(; kwargs...) = Par(;
_constructor =
:(Modia3D.Shapes.Solid), kwargs...)

...

Par (see Listing 1) is a special Var provided by Modia and
states that all keyword arguments are treated as parameters.
The definition Object3D(; kwargs...)=Par(...) de-
fines a function Object3D that has an arbitrary number of
keyword arguments and calls Modia constructor Par with
these keyword arguments, together with _constructor =
:(Modia3D.Composition.Object3D). Therefore, call-
ing function Object3D returns a dictionary containing these
keyword arguments together with the _constructor key-
word argument.

For the code generation, Modia processes certain keywords
of a parameter, for example, to access the parameter value in the
generated Julia function. Other keywords, such as the Modia3D
keywords, are ignored for the code generation. Before simu-
lation starts, all parameters are evaluated. This means that the
hierarchical dictionary of the parameter definitions are traversed
recursively and parameter expressions and propagated parame-
ters are evaluated. Furthermore, whenever a _constructor
key is found, the corresponding constructor is called with the
keyword arguments defined in that dictionary, the generated
instance is compiled, and the value of the corresponding key
(which was previously a dictionary) is replaced with a reference
to the instance.

For example, body = Object3D(..) triggers a call
of the constructor of the mutable struct Object3D in mod-
ule Modia3D.Composition with the feature as key-
word argument and the returned instance is used as value
for key body. Some arguments of Modia3D components
reference other Modia3D components, for example axle =
Object3D(parent = :body, ...). Since :body is a
Julia Symbol, upper hierarchies of the hierarchical parameter
dictionary are searched for a key corresponding to this sym-
bol. Once found, the symbol used in parent is replaced by the
value of key body, so by the reference to the body instance. Af-
ter the parameter evaluation, the complete Modia3D data struc-
ture of this model is instantiated and available in the dictionary

of evaluated parameters. Note, all this is generic and not spe-
cific to Modia3D.

In order that state constraints can be defined and index re-
duction performed, the interface to the Modia3D functionality
is designed to define differential equations only on the Modia
side. Since all Modia3D states are a subset of the gener-
alized joint coordinates, part of the joint definition is done
with the Modia language. For example, the definition of the
RevoluteWithFlange joint is shown in Listing 23

Listing 23. Modia definition of a revolute joint with a flange.

RevoluteWithFlange(; obj1, obj2, axis=3,
phi=Var(init=0.0), w=Var(init=0.0),
canCollide=true) = Model(;

_constructor = Par(value =
:(Modia3D.Composition.Revolute),
_jointType = :RevoluteWithFlange),

obj1 = Par(value = obj1),
obj2 = Par(value = obj2),
axis = Par(value = axis),
canCollide = Par(value = canCollide),
flange = Flange, # defined in Rotational
phi = phi,
w = w,

equations = :[
phi = flange.phi
w = der(phi)]

)

This definition contains a _constructor variant, where only
parts of the elements are parameters (defined with Par) and
parts of the elements are Modia variables and equations. Only
elements _constructor, obj1, obj2, axis are included
in the parameter data structure. All other elements, especially
equations, are processed in the usual way by Modia.

Function buildModia3D(model), see Listing 18, re-
cursively traverses model, so a hierarchical dictionary, and
collects all information about the used joints (identified
by _constructor = Par(..., _jointType=xx) to-
gether with the path name of this joint. Based on this informa-
tion, the code from Listing 24 is merged to the model.

Listing 24. Code generated by buildModia3D(model).

model | Model(_id = rand(Int),
equations = :[

_mbs1 = initJoints!(_id,
instantiatedModel,
$ndofTotal, time)

_mbs2 = setJointStates!(_mbs1,
($jointStates...))

$jointForces = getJointForces!(_mbs2,
_leq, ($jointAccelerations...))

]
)

The value of a Julia expression preceded by $ is inserted in
the quoted expression, in this case, the ast of equations (see
the result in Listing 25). Variable _id is a random number to
provide a unique identification (details are given below). The
getDerivatives function generated by Modia for the Pen-
dulum example of Listing 18 is shown in Listing 25.

When the statement
_mbs1 = initJoints!(_p[:_id],_m,1,_time)
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Listing 25. The getDerivatives function of the Pendulum
example of Listing 18.

function getDerivatives(_der_x,_x,_m,_time)
_p = _m.evaluatedParameters
_leq = nothing
var"rev.phi" = _x[1]
var"rev.w" = _x[2]
_mbs1 = initJoints!(_p[:_id],_m,1,_time)
_mbs2 = setJointStates!(_mbs1,

var"rev.phi", var"rev.w")
var"damper.tau" = (_p[:damper])[:d] *

var"rev.w"
begin
local var"der(rev.w)"
_leq = _m.linearEquations[1]
_leq.mode = -3
while leqIteration(_leq, <more arg.>)

var"der(rev.w)" = _leq.x[1]
append!(_leq.residuals,

getJointForces!(_mbs2, _leq,
var"der(rev.w)") -

SVector(-var"damper.tau"))
end
_leq = nothing

end
_der_x[1] = var"der(rev.phi)"
_der_x[2] = var"der(rev.w)"
...

is called the first time, it traverses the evaluated parameters dic-
tionary _m.evaluatedParameters until parameter _id
with the provided value (_p[:_id]) is found. Afterwards,
it inspects all Object3D instances in this subtree and checks
that they are correctly defined, for example that exactly one of
them has a Scene and that all Object3Ds are directly or indi-
rectly connected to this object. Finally, an internal data struc-
ture is instantiated in which all needed information is stored, in
particular references to the root Object3D world, and to the
Scene. A reference to this data structure is stored in the dic-
tionary _m.userObjects[:_id] by using _id as key. In
all subsequent calls, this data structure is retrieved by accessing
the dictionary. A reference to this data structure is returned as
_mbs1. The statement
_mbs2 = setJointStates!(_mbs1, ...)
copies the joint states in to the internal multibody data structure.
Function getJointForces!(_mbs2,...) computes the
generalized joint forces from the generalized joint accelerations
(here: der(rev.w)). Since the generalized joint accelerations
are unknowns, this function call has to be inverted. This is per-
formed by treating the function call as a residual equation of a
linear equation system and the technique sketched in section 4
is used to solve this linear equation system with the while loop
in Listing 25. If further equations are defined in the model as
function of the unknown joint accelerations, for example iner-
tias and ideal gear boxes connected to a flange of a joint, then
these equations show also up in the body of the while-loop.

Note, the essential part of the multibody-related code - the
three function calls - is independent of the size of the multibody-
system. However, all states, derivatives of states and generalized
forces of the joints are present in function getDerivatives,
so the code size is linearly dependent on the degrees of freedom
of the multibody system. But this code size is two to three orders
of magnitude smaller, as a corresponding code of a Modelica
multibody model.

6.4 Animation
Modia3D provides a generic interface to visualize simulation re-
sults with various 3D renderers:

• Both, the free community as well as the professional edi-
tion30 of the DLR Visualization library31 (Bellmann 2009;
Hellerer, Bellmann, and Schlegel 2014) are supported that
provide rendering during simulation and generation of
videos in different formats at the end of the simulation.

• Another option is the automatic generation of a three.js
JSON file at the end of the simulation. This file can be im-
ported in the three.js editor32 that allows flexible inspec-
tion of the animation and provides several ways for ren-
dering the scene with different cameras and light options.
Furthermore, the animation can be exported in the stan-
dard file format glTF33 or its binary glb version for which
many viewers are available. The initial configuration can
also be exported in obj, ply or stl format.

• Moreover, an interesting feature of Microsoft Office 2019
(e.g. Word or PowerPoint) is the importing and rendering
of these file formats. While for Office 2019 only a static
rendering is possible, the latest Office 365 Subscription
also supports playing the animation sequence.

6.5 Example: YouBot robot
The KUKA YouBot robot is a mobile robot with a 5 degree-
of-freedom arm that was manufactured by KUKA in the years
2010-2016. This robot is an attractive benchmark because a lot
of data, such as CAD drawings, visualization files, and solid
data is freely available from the youbot-store34. The YouBot
robot is modeled with Modia in a similar way as the Pendulum
example, see Listing 18. In Figure 5, one Youbot is handing over
a ball to another Youbot. The animation is stored in a JSON file,
imported into three.js, exported in glb format and can be viewed
with any glb viewer, such as the Windows 3D viewer included
in Windows 10. The video of this example is available in the
Modia3D tutorial35

7 Benchmarks
In order to evaluate the efficiency of Modia translations and sim-
ulations, the recursively defined benchmark model of figure 6 is
used. It consists of a tree of solid wooden boxes and wooden
spheres that are connected together with revolute joints in the
form of a mobile. In every joint damping is present defined
with Damper and Fixed components that are connected to the
flange of the respective joint. With parameter depth the depth
of the mobile model is defined and the Modia model36 is recur-
sively constructed. This model represents a reasonable mix of
Modia language and of multibody components. The essential
Modia code parts are shown in Listing 26.

30https://visualization.ltx.de/
31http://www.systemcontrolinnovationlab.de/the-dlr-visualization-

library/
32https://threejs.org/editor/
33https://www.khronos.org/gltf
34http://www.youbot-store.com/wiki/index.php/YouBot_3D_Model
35https://modiasim.github.io/Modia3D.jl/resources/videos/-

YouBotsGripping.mp4
36Modia3D/test/Profiling/Mobile.jl
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Figure 5. One YouBot handing over a ball to another Youbot
(animation file in glb format, visualized with Windows 3D
Viewer).

Figure 6. Recursively defined benchmark model mobile (here
with depth=8).

Listing 26. Recursively defined benchmark model mobile.

function createMobile(depth)
if depth == 1
Model(

rod = Rod,
sphere = Object3D(

parent=:(rod.frame0), ...)
else
Model(

rod = Rod,
bar = Bar | Map(L=barLength(depth)),
sub1 = createMobile(depth-1),
sub2 = createMobile(depth-1),
rev0 = RevoluteWithDamping(

obj1=:(rod.frame2),
obj2=:(bar.frame0)),

rev1 = RevoluteWithDamping(
obj1=:(bar.frame1),
obj2=:(sub1.rod.frame1)),

rev2 = RevoluteWithDamping(
obj1=:(bar.frame2),
obj2=:(sub2.rod.frame1)))

end
end
mobile = Model(

world = Object3D(feature=Scene(..)),
top = createMobile(8), # depth = 8
rev0 = RevoluteWithDamping(

obj1=:world,
obj2=:(top.rod.frame1),
phi_start=0.2))

Since a Modia model is basically a hierarchical dictionary, it
can be constructed with the full power of the Julia programming
language, and in particular with a recursive function. Essen-
tial properties of the benchmark model are summarized in Ta-
ble 1. For various depths, simulations have been carried out

Table 1. Properties of the mobile benchmark.
#states are the number of ODE states.
#unknowns are the number of scalar unknowns of an equivalent
Modelica model before alias elimination (up to 3 digits).
#solids are the number of solid boxes and spheres.
#joints are the number of Revolute joints (= number of Damper
components).

depth #states #unknowns #solids #joints

1 2 603 4 1
2 8 1140 11 4
3 20 3590 25 10
4 44 7800 53 22
5 92 16300 109 46
6 188 33300 221 94
7 380 67000 445 190
8 764 135000 893 373
9 1532 271000 1790 766

10 3068 543000 3580 1534

for 5s with 500 communication points and a relative tolerance of
10−4. All parameters are evaluated and animation and plotting is
switched off. Equivalent Modelica models have also been con-
structed and simulations performed with OpenModelica37 and
two commercial Modelica tools. Comparing Modelica simula-
tion tools with Modia can only be done very roughly, because
the Modelica tools provide different timing information, or some
timing information is not available and needs to be estimated
with a stop watch. The timing given for Modia is the time to ex-
ecute @instantiate(..., logExecution=true) in
Table 2 and simulate!(..) in Table 3.

Timings until simulation starts are given in Table 2 (column
2 gives absolute time and columns 3-5 timing factors relative to
column 2).

The standard approach in Modia, M-ODE, provides the multi-
body equations in the form joint-forces = f1(joint-accelerations),
so given the generalized accelerations in the joints, the general-
ized joint forces are computed, see subsection 6.3. This single
equation can be combined with additional equations, for exam-
ple an inertia can be attached directly to a revolute flange and
then an additional equation is added that is a function of the joint
acceleration. Also, a joint can be rheonomic, so the movement
given. In all these cases, a linear system of equations is gener-
ated where the generalized joint accelerations, or angular accel-
erations in attached drive trains or generalized forces of rheo-
nomic joints are the unknowns. So, this approach is general and
allows to handle all cases that can appear in Modelica models.

The experimental approach M-DAE, provides instead the
multibody equations in the form joint-accelerations = f2(joint-
forces) and this function solves internally a linear system of
equations over function f1(..). An error is raised if this func-
tion call appears in a system of equations. The effect is that, for
example, it is no longer possible to attach an inertia of a drive

37https://www.openmodelica.org/
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Table 2. Time-to-start-simulate including reading of model,
symbolic transformations and
Modia: Generation of one Julia function, eval(..) of this function
and executing this function twice.
Modelica tools: Generation of many C-Code functions, compi-
lation, generation of executable and starting the exectuable.
M-DAE: Modia code: joint-accelerations = f2(joint-forces)
M-ODE: Modia code: joint-forces = f1(joint-accelerations)
tool1: The better of the two commercial Modelica tools.
tool2: OpenModelica 1.17.0.

depth M-DAE M-ODE tool 1 tool 2

6 1.5s × 3 × 15 × 120
7 4s × 4.5 × 10 × 50
8 15s × 3.5 × 4.3 × 90
9 50s × 5 × 2.3 –

10 204s – – –

train directly to a joint flange (a drive train must be attached with
a compliant shaft). Also rheonomic joints cannot be used. The
benefit of M-DAE is that the symbolic engine does not longer see
an algebraic loop but only sortable statements, so the symbolic
processing is faster and the generated code is smaller. Note,
an alternative would be to use an O(n) algorithm, (Featherstone
1983) or (Brandl, Johanni, and Otter 1986), to compute the ac-
celerations. The drawback would be, that the same restrictions
as for M-DAE hold, e.g., it would not be possible to connect a
1D inertia to a joint flange.

As sketched at the end of section 4, when a DAE solver is
used, all linear equation systems that exceed a given size are
solved from the DAE solver during integration, provided all
the unknowns of the linear equation system are a subset of the
DAE state derivatives. The linear equation systems present for
M-ODE and M-DAE fulfill the pre-requisites of this approach.
The effect is that during integration no linear equation system is
solved, but just the residuals of the linear equation system are
computed.

For depth ≤ 5, the Time-to-start-simulate of the Modelica
tools is at least several seconds and is much longer as the ac-
tual simulation run, whereas the Modia simulation (both M-ODE
and M-DAE) starts nearly immediately. For depth ≤ 8, Time-
to-start-simulate is below 15s for M-DAE and a factor of 4-120
larger for the Modelica tools.

For depth > 10, Time-to-start-simulate is no longer reason-
able for M-DAE (and any other of the evaluated tools). The rea-
son is that the generated Julia function becomes larger than a few
thousand lines of code and then the quadratic increase of the Ju-
lia compilation time becomes dominant and limits the practical
usage. For depth = 10, the compilation of the generated Julia
code takes 174 seconds whereas the symbolic treatment of the
model takes only 30 seconds. This barrier can be removed, be-
cause the generated Julia code can still be made more compact
and also the technique of the Modelica tools can be used to split
the computation in several functions.

The timings for the simulation runs are sketched in Table 3.
As ODE integrator CVODE and as DAE integrator IDA from
the Sundials suite (Hindmarsh et al. 2005) is used. Modia uti-
lizes these solvers via Sundials.jl (Rackauckas and Nie 2017a).
As can be seen, the simulation time of M-DAE is 1-2 orders of
magnitude smaller than with the other solutions. The reason is

Table 3. Simulation times for mobile benchmark.
M-ODE and the Modelica tools use Sundials CVODE and solve
a linear equation system in the model.
M-DAE: Modia with Sundials.IDA() and residual algorithm.
M-ODE: Modia with Sundials.CVODE().
tool 1: The better of the two commercial Modelica tools.
tool 2: OpenModelica 1.17.0

depth M-DAE M-ODE tool 1 tool 2

6 0.1s × 30 × 30 × 240
7 0.3s × 80 × 80 × 110
8 1.8s × 100 × 180 × 120
9 10.5s – – –

10 55s – – –

that M-ODE, tool 1 and tool 2 solve a large, dense linear system
of equations in every model evaluation, whereas M-DAE just
computes the residuals of this equation system. The CVODE
and IDA integrators calculate and factorize the system Jacobian
for the benchmark simulation only about 10-20 times during one
simulation run. This is just a small fraction of the linear equa-
tion systems that are solved inside every model evaluation of
M-ODE, tool 1 and tool 2.

8 Conclusion and Outlook
The paper outlines a path for utilization of available Modelica
models in modern tools based on Julia, at the same time allow-
ing integration of domain specialized models, such as multibody
models, coded in Julia. In addition, the Modia language and new
symbolic and numerical treatment of DAEs provide an experi-
mental platform for developing new modeling capabilities. To
make this path feasible, the translator from Modelica to Modia
needs to be extended and be able to invoke domain specializa-
tions for multibody, fluid, media, etc. fully automatically.

It has been shown how simulation with uncertainties can be
performed efficiently. A natural next step is to use these solver
capabilities in the context of optimization and machine learning
for surrogate models for speeding up simulations utilizing avail-
able packages from the Julia eco-system.

The Modia prototype handles benchmark models consisting
of large multibody systems together with equation-based com-
ponents much more efficiently as the examined Modelica tools
- both for startup/compilation time as well as for simulation
speed.
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