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Abstract
This paper presents current work on our Modelica Com-
piler framework in Julia: OpenModelica.jl.1 We provide a
brief overview of this novel framework and its features,
and we also present the latest addition to the possible
backend options. We target ModelingToolkit.jl (MTK), a
framework for symbolic-numerical computation and sci-
entific machine learning. We evaluated the performance
of our new backend using the ScalableTestsuite, a bench-
mark suite for Modelica Compilers. In our experiment,
we demonstrate that MTK can be used as a backend with
competitive simulation performance. In addition, using
the scientific machine learning features of the Modeling
toolkit, we were able to approximate models in the Scal-
ableTestsuite using surrogate techniques and how such
techniques can be used to accelerate the solving of non-
linear algebraic loops during tearing.

Based on our experiments, we propose using this new
framework to automatically generate surrogate compo-
nents of a Modelica model during the simulation to in-
crease performance. The experimental work presented
here provides one of the first investigations concerning
the integration of the symbolic-numerical abilities of Ju-
lia within a Modelica tool.
Keywords: Modelica, OpenModelica, Julia, Equation-
based modeling, Compiler-construction

1 Introduction
The ability to model cyber-physical systems (CPS) is es-
sential for many scientific and industrial processes. Mod-
elica is a standardized declarative equation-based object-
oriented language with a solid tool and library support.
Recently, researchers have shown an increased interest in
the Julia language (Bezanson et al. 2017), with the release
of several packages that bring acausal modeling to Julia,
such as Modia (Elmqvist and Otter 2017) and Modeling-
Toolkit (MTK) (Ma et al. 2021).

Thus several studies have begun to examine the impli-
cations of using Julia as a foundation to design new mod-
eling frameworks. In this paper, we present our contribu-
tion to this effort within the OpenModelica programming
environment (Fritzson, Pop, Abdelhak, et al. 2020).

1On GitHub: OpenModelica/OpenModelica.jl

1.1 Motivation
The main motivation for the work presented here is that
previous studies do not attempt to integrate Modelica
within Julia. Instead, they provide the possibility of
Modelica-like acausal modeling using Julia as a host lan-
guage. Tinnerholm et al. (2020) presented our first Mod-
elica compiler prototype in Julia. This compiler was de-
veloped with the goal to utilize Julia’s symbolic-numerical
capabilities and extend the current capabilities of Model-
ica. In this paper, we expand this work to implement a
full Modelica compiler using Julia with the goal to im-
prove and optimize existing models, and by adhering to
the standards of the Modelica language, we hope to facil-
itate the reuse of modeling know-how contained in exist-
ing Modelica libraries. Updates to this first iteration of
this compiler include automatic translation of the high-
performance frontend (Pop et al. 2019) along with ex-
perimental support for hybrid systems and a new backend
targeting ModelingToolkit. We have used this framework
to simulate Modelica models of systems containing thou-
sands of equations and variables to assess the performance
of our compiler.

1.2 Contributions
While several Modelica Compilers have been designed be-
fore, no compiler has previously used Julia as an imple-
mentation language. Thus, a central contribution of this
paper is evidence that such a compiler is both feasible and
is easily extendable. We demonstrate this by using the
symbolic-numerical capabilities of Julia and the scientific
machine learning capabilities of MTK to automatically
generate surrogate models within a modular and extend-
able pipeline. Another contribution of this paper is, to our
knowledge, the first empirical investigation concerning the
performance characteristics of ModelingToolkit when em-
ployed as a backend for a Modelica Compiler, demonstrat-
ing its claimed usefulness as a compiler component for
equation-oriented languages.

1.3 Paper Organization
This paper is organized as follows: The background is pre-
sented in section 2, this is followed by section 3 where we
present the structure of the compiler. In section 4 we re-
count how we verified the frontend together with some
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current performance characteristics when flattening the
cascaded first-order system from the ScalableTestsuite in
Listing 4 along with a description of experiments to assess
the correctness of the frontend. This section is followed
by section 5 which provides a benchmark highlighting the
current simulation performance of the new MTK backend
and comparing it to the OpenModelica Compiler (OMC).
This is followed by section 6 in which we demonstrate
how the scientific machine learning features of MTK can
be used to approximate models or subcomponents of mod-
els. In section 7 where we present our conclusions along
with recommendations for future work.

2 Background
As stated in section 1 there exist as of 2021 several mod-
eling environments that provide the option of causal and
acausal modeling within the Julia ecosystem. Differen-
tialEquations.jl (Rackauckas and Nie 2017) is one such
environment. It provides a seamless foreign function in-
terface that allows interfacing algorithmic Julia code and
a variety of different solvers. A user of DifferentialE-
quations.jl writes imperative code in the Julia language
to conform to systems such as Nonlinear-systems, ODE-
systems, and DAE-systems. Tinnerholm et al. (2020) se-
lected DifferentialEquations.jl as the default backend tar-
get. A model of a hybrid system representing a bouncing
ball using DifferentialEquations.jl can be studied in List-
ing 1.

While DifferentialEquations.jl provides the abstrac-
tions necessary to write causal models in Julia, it does not
provide the abstractions of a full-fledged modeling lan-
guage. ModelingToolkit.jl (MTK) aims address this issue
(Ma et al. 2021). MTK is a recent modeling framework
to automate symbolic operations common for equation-
oriented languages, such as methods for index reduction.
It does so by using the symbolic-numerical capabilities
of Julia to preprocess an MTK model description into a
format that can be solved using the set of solvers pro-
vided by DifferentialEquations.jl. In other words, the iter-
ative process from an acausal description based on equa-
tions to a causal representation acceptable for a solver is
similar to that of a typical Modelica Compiler. The lan-
guage defined by MTK does not at the time of this writing
support hybrid systems. However, it is possible to post-
process MTK models to add events similar to Listing 1
where the Modelica when-equation is represented using
a ContinuousCallback which is illustrated in Listing 2.
If we compare the generated code in Listing 1 with that
of Listing 2 we can see that MTK is closer to Modelica
in the level of abstraction; however, MTK lacks control
structures found in Modelica such as for and if.

MTK does not only target DAE-systems, it also targets
several areas which are not the primary target of the Mod-
elica language such as:

• Stochastic differential(-algebraic) equations

• Partial differential equations

• Optimization problems

• Continuous-Time Markov Chains

• Nonlinear Optimal Control

This enables users of MTK to combine different systems
from different domains (Ma et al. 2021). Conceivably,
model exchange between this framework and Modelica
would be useful for efficient modeling and simulation of
large dynamic systems.

The main difference between Modelica and the lan-
guage defined by MTK is the level of abstraction. To give
an example, as of this writing, ModelingToolkit.jl requires
users to specify the application of index reduction explic-
itly; it also requires systems to be specified explicitly with
the state derivatives on the right-hand side. Thus, the user
specifies the transformation from a DAE-System into an
ODE-system, whereas in a Modelica compiler, these de-
cisions are generally abstracted away. Still, as we will il-
lustrate in this paper, MTK is suitable as a backend frame-
work for Modelica Compilers or other equation-oriented
languages frameworks in Julia.

Modia.jl (Elmqvist and Otter 2017) is another frame-
work that brings acausal modeling to Julia. Syntacti-
cally it is more similar to Modelica when compared to the
language defined by MTK. However, it is different from
the work presented here because its constructs are imple-
mented using Julia metaprogramming rather than tradi-
tional data structures used by compilers.

Yet another modeling framework is Causal.jl (Sarı and
Günel 2019). However, as the name implies, it is a causal
modeling framework reminiscent of Simulink.

3 Compiler Structure
In this section, we will elaborate on the different compo-
nents that make up OpenModelica.jl. To provide a brief
overview of the size of this application, a summary of the
current size of this compiler by lines of code (LOC) is pro-
vided in Table 1. For comparison, the OMC compiler has
about 1,100,000 LOC MetaModelica code for the fron-
tend+backend and about 67,000 LOC C code for the run-
time system. Using Julia is clearly an advantage as one
can delegate functionalities such as finding strongly con-
nected components to existing Julia libraries.

The frontend is made up of OMParser and OMFron-
tend; the backend of OMBackend and the runtime of
MetaModelica.jl. Internally three intermediate represen-
tations are used: Absyn2, SCode3 and DAE.4 An overview
of the compiler pipeline is presented in Figure 1. An ex-
ample of how to simulate and plot a Modelica model in
Julia is given in Listing 3.

2On GitHub: OpenModelica/Absyn.jl
3On GitHub: OpenModelica/SCode.jl
4On GitHub: OpenModelica/DAE.jl
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Listing 1. Automatically generated Julia code for a simple hy-
brid system. The Julia code presented in this listing is targeting
the IDA solver in Sundials (Hindmarsh et al. 2005) using Differ-
entialEquations.jl.

function BouncingBallRealsStartConditions(
aux, t)

local x = zeros(2)
local dx = zeros(2)
local p = aux[1]
local reals = aux[2]
reals[1] = 1.0
dx[1] = reals[2]
dx[2] = -(p[2])
x[2] = reals[2]
x[1] = reals[1]
return (x, dx)

end
function BouncingBallRealsDifferentialVars

()
return Bool[1, 1]

end
function BouncingBallRealsDAE_equations(res

, dx, x, aux, t)
local p = aux[1]
local reals = aux[2]
res[1] = dx[2] - -(p[2])
res[2] = dx[1] - reals[2]
reals[2] = x[2]
reals[1] = x[1]

end
function BouncingBallRealsParameterVars()

local aux = Array{Array{Float64}}(undef,
2)

local p = Array{Float64}(undef, 2)
local reals = Array{Float64}(undef, 2)
aux[1] = p
aux[2] = reals
p[2] = 9.81
p[1] = 0.7
return aux

end
saved_values_BouncingBallReals =

SavedValues(Float64, Tuple{Float64,
Array})

function BouncingBallRealsCallbackSet(aux)
local p = aux[1]
function condition1(x, t, integrator)
x[1] - 0.0

end
function affect1!(integrator)

integrator.u[2] = -(p[1] * integrator.u
[2])

end
cb1 = ContinuousCallback(

condition1,
affect1!,
rootfind = true,
save_positions = (true, true),
affect_neg! = affect1!,

)
savingFunction(u, t, integrator) =
let

(t, deepcopy(integrator.p[2]))
end

cb2 = SavingCallback(savingFunction,
saved_values_BouncingBallReals)

return CallbackSet(cb1, cb2)
end

Listing 2. An MTK version of the bouncing ball produced by
the new backend.

using ModelingToolkit
using DiffEqBase
using DifferentialEquations
function BouncingBallRealsModel(tspan =

(0.0, 1.0))
pars = ModelingToolkit.@parameters(begin

(e, g, t) end)
vars = ModelingToolkit.@variables(begin (

h(t), v(t)) end)
der = Differential(t)
eqs = [

der(h) ~ v,
der(v) ~ -g

]
nonLinearSystem = ModelingToolkit.

ODESystem(eqs, t, vars, pars,
name = :($(Symbol("BouncingBallReals"))

),
)
pars = Dict(e => float(0.7), g => float

(9.81), t => tspan[1])
initialValues = [h => 1.0, v => 0.0]
firstOrderSystem = ModelingToolkit.

ode_order_lowering(nonLinearSystem)
reducedSystem = ModelingToolkit.

dae_index_lowering(firstOrderSystem)
problem = ModelingToolkit.ODEProblem(

reducedSystem, initialValues, tspan,
pars)

return problem
end
function BouncingBallRealsCallbackSet()

function condition1(x, t, integrator)
x[1] - 0.0

end
function affect1!(integrator)

integrator.u[2] = -(integrator.p[1] *
integrator.u[2])

end
cb1 = ContinuousCallback(

condition1,
affect1!,
rootfind = true,
save_positions = (true, true),
affect_neg! = affect1!,

)
return CallbackSet(cb1)

end
BouncingBallRealsModel_problem =

BouncingBallRealsModel()
function BouncingBallRealsSimulate(tspan =

(0.0, 1.0))
solve(BouncingBallRealsModel_problem,

tspan = tspan, callback =
BouncingBallRealsCallbackSet())

end
function BouncingBallRealsSimulate(tspan =

(0.0, 1.0); solver = Tsit5())
solve(BouncingBallRealsModel_problem,

tspan = tspan, solver)
end

Session 1B: Julia
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Listing 3. This listing illustrates how to export and simulate a
Modelica model in Julia. Once preprocessed by the frontend the
call to OMBackend.translate stores the final MTK program for
future analysis or simulation. The input parameter modelName
provided by the caller and it is assumed that the file containing
a Modelica model is named after this parameter.

function runTest(modelName)
#= OMParser phase =#
ast::Absyn.Program = OMFrontend.parseFile

("./Models/$(modelName).mo")
#= OMFrontend phases =#
scodeProgram::SCode.Program = OMFrontend.

translateToSCode(ast)
(dae, cache) = OMFrontend.

instantiateSCodeToDAE(modelName,
scodeProgram)

#= Backend phases =#
OMBackend.translate(dae; BackendMode =

OMBackend.MODELING_TOOLKIT_MODE)
res = OMBackend.simulateModel(modelName,

tspan = (0.0, 1.0))
#= Optionally plot the result =#
OMBackend.plot(res)

end

Table 1. Current sizes of OpenModelica.jl compiler phases by
LOC.

Compiler Phase Lines

Runtime 1,853
FrontEnd 135,103
BackEnd & Code generation 6,073
Total size 143,029

3.1 OMParser.jl
The parser, OpenModelicaParser.jl was adapted from the
existing OMC parser.5 which is written in ANTLR (Parr
and Quong 1995) It is currently capable of parsing large
files such as the entire Modelica Standard Library.6 Af-
ter a successful parse, the AST can be fed to the frontend
module, OMFrontend.jl the data structure representing the
AST is defined by Absyn.jl.2 In Listing 3 this parser
is invoked by OMFrontend.parseFile("./Models/$(

modelName).mo").

3.2 OMFrontend.jl
To flatten the Modelica code, we use the OMFron-
tend.jl, which was automatically generated from the high-
performance frontend of the OMC (Pop et al. 2019).
Previously, we used the old frontend (Tinnerholm et al.
2020); however, as part of the work presented here, the
MetaModelica-Julia translator introduced by Tinnerholm
et al. (2020) was used to automatically generate a Julia im-
plementation of the high-performance frontend (Pop et al.

5On GitHub: adrpo/OpenModelicaParser.jl
6Modelica Standard Library (Version 3.2.1)

On GitHub: modelica/ModelicaStandardLibrary

Figure 1. An illustration of the compiler pipeline including cur-
rent available backends targeting ModelingToolkit.jl and Differ-
entialEquations.jl. The Modelica AST is represented using Ab-
syn.jl. Inside OMFrontend.jl the SCode representation defined
by SCode.jl is used. Flat Modelica is encoded using DAE.jl

2019). Consequently, the frontend is implemented in au-
tomatically generated Julia code generated by translating
the existing OpenModelica frontend. While the transla-
tion of the old frontend7 was achieved without any major
modifications, we had to manually resolve cases of mutu-
ally circular module dependencies for the new since Julia
does not handle them while MetaModelica does.

3.3 OMBackend.jl
OMBackend is the backend module of this compiler, and
it is implemented as a separate package. Current backend
targets include both ModelingToolkit and DifferentialE-
quations.jl. Simulations targeting DifferentialEquations.jl
use the Sundials IDA solver and is based on the DAE-
mode implementation by W. Braun, Casella, Bachmann,
et al. (2017). It currently provides support for continu-
ous systems and experimental support for hybrid systems.
An example of code generated for a hybrid system is the
bouncing ball model, see Listing 1.

3.3.1 The MTK-Backend

The new backend based on ModelingToolkit (MTK-
Backend) is capable of automatically translating Modelica
models into equivalent MTK models. The MTK backend
works by accepting the flat Modelica/Hybrid DAE that is
described by DAE.jl. Since MTK automatically handles
transformations such as index reduction, no such algo-
rithm is applied by the backend. MTK is also acausal in

7The old frontend is the frontend the high-performance frontend re-
placed (Pop et al. 2019).
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the sense that there need not to be a causal order between
the equations. However, MTK requires the system to be
in explicit form, so the derivatives are reordered using
MTK’s symbolic algebra routines. An MTK translation
of the Modelica code in Listing 4 can be studied in List-
ing 5. In Listing 5 the function Casc10Model defines the
model, the parameters are defined using parameters and
the variables are defined using variables. The statement
ode_order_lowering transforms the system to first-order
form and dae_index_lowering performs index reduction8.

3.4 MetaModelica.jl

MetaModelica.jl9 provides a compatibility layer between
Julia and MetaModelica (Fritzson, Pop, and Aronsson
2005). It reimplements several constructs of MetaModel-
ica such as match and matchcontinue. Furthermore, Meta-
Modelica.jl replicates the existing runtime of OMC. This
package is used extensively in the translated modules.

4 Verification
The compiler presented in this paper consists of several
components, see Figure 1 where each component contains
thousands of LOC, see Table 1.

To verify the parser, we parsed the Modelica Standard
Library, along with some other models, some of which
contained errors. This was done to establish that it re-
ported the same errors as the existing parser in OpenMod-
elica.10 Verifying the correctness of the frontend was more
difficult since it consists of over 130,000 lines of automat-
ically generated Julia code. We tested our implementation
by lowering the hybrid DAE produced by the frontend and
compared the result of simulating these models with the
simulation results of OpenModelica. One excerpt of the
verification experiments can be studied in Figure 2. The
runnable code is available in listing 5. The corresponding
Modelica model is available in Listing 4. The results are
by no means exhaustive, but our preliminary verification
experiments suggest that the translated frontend behaves
correctly for the set of models that we tested.

5 Simulation Performance
The previous section has shown that we can generate
and simulate Modelica models targeting DifferentialEqua-
tions.jl and MTK directly. In this section, we present the
current simulation performance of the new MTK back-
end using the cascaded first-order system from the Scal-
ableTestsuite (Casella 2015) and how the simulation per-
formance of the MTK backend compares to OpenMod-
elica. Two model from the benchmark suite where used
CascadedFirstOrder, see Listing 4. The parameters of

8Index reduction and the lowering of the ODE is not always neces-
sary. For instance, an index 1 DAE does not need to have its’ index
reduced. Still, for generality, we do this for all systems.

9On GitHub: OpenModelica/MetaModelica.jl
10A subset of these tests are available on GitHub: adrpo/OpenMod-

elicaParser.jl/test
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Figure 2. The result of simulating the cascading first-order sys-
tem between 0.0 to 2.0 seconds, with N = 10 simulated using
the new MTK backend and OMC. The plot shows x1, ...,x5 of
X(t). Since the curves are almost identical, markers are added
to differentiate between the MTK and OpenModelica solutions.

these were modified to increase the number of equations
and events gradually.

5.1 Experimental setup
In this subsection, we describe the experimental setup of
the model included our experiments.

To assess simulation performance of Cascaded-
FirstOrder we generated code using the model in List-
ing 4 with the following values for the parameter
N: 10,100,200,400,800,1600,3200,6400,12800,25600.
The resulting model with N = 10 can be studied in List-
ing 5. However, due to long compilation times of MTK
when N > 3200 we limited11 our benchmark to the follow-
ing values for N: 10,100,200,400,800,1600,3200. We
simulated models using ModelingToolkit v5.16.0 with Ju-
lia 1.6.1 and OpenModelica 1.18.0. All tests were run on
a 16-core AMD TR 1950X with 128GB of RAM. When
measuring simulation times for OMC and for Julia, we
used Benchmarktools.jl (Chen and Revels 2016) Two ex-
periments were run for the CascadedFirstOrder model.

For the first experiment we used the following solvers:

• OMC Sundials IDA solver (Hindmarsh et al. 2005)

• MTK The default solver,12 invoked when calling solve
without auxiliary arguments

In the second experiment, we selected Tsit5 (Tsitouras
2011) as the solver for MTK. For OpenModelica, we kept
the IDA solver since, at the time of writing, the Tsit5-
solver is not available within the OpenModelica environ-
ment.

5.2 Evaluating simulation performance
In Figure 3 we present the result of our first experiment.
From the graph, we can see that the simulation time of

11The MTK-models where N > 3200 are available on request.
12The default solver is selected automatically by DifferentialEqua-

tions.jl depending on the characteristics of the model (Rackauckas and
Nie 2019). See solver selection algorithm.
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Figure 3. The mean simulation time of the cascading first-order
system, with N = 10,100,200,400,800,1600,3200 simulated
using the new MTK backend and OMC.
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Figure 4. Same simulation as in Figure 3 using Tsit5 together
with MTK.

MTK is superior to the OMC until N > 400, then the simu-
lation time of MTK increases exponentially. This is prob-
ably due to conservative solver selection by MTK. This
behavior was also observed when we compiled the auto-
matically generated MTK code, where we observed an ex-
ponential increase in compilation time when N > 3200.
Because of this, we omitted these models from the exper-
iments. The result of the second experiment can be stud-
ied in Figure 4, it demonstrates superior simulation per-
formance of MTK when compared to OMC when using
an alternative solver, Tsit5 (Tsitouras 2011). While this
is due to Tsit5 being more efficient for non-stiff problems
in comparison to the IDA solver of OpenModelica 1.18.0,
these results indicate that MTK can compete with OMC
in terms of simulation performance. Still, while we were
able to generate MTK code for up to 25,600 equations and
variables, we experienced an exponential increase in com-
pilation time when N > 3200 the reason for this behavior
seems to be performance issues during the symbolic trans-
formations of MTK v5.16.0.

6 Surrogate-based Optimization
The use of surrogates/metamodeling to accelerate compu-
tationally heavy models is not new. The idea is to replace

Listing 4. The Cascaded first order system from the scalable
testsuite (Casella 2015).

model CascadedFirstOrder
"N cascaded first order systems,

approximating a pure delay"
parameter Integer N = 10 "Order of the

system";
parameter Real T = 1 "System delay";
final parameter Real tau = T/N "

Individual time constant";
Real x[N] (each start = 0, each fixed =

true);
equation

tau*der(x[1]) = 1 - x[1];
for i in 2:N loop

tau*der(x[i]) = x[i-1] - x[i];
end for;

end CascadedFirstOrder;

computationally expensive components of a model with
a surrogate model/metamodel to reduce computation cost
and consequently reducing the feedback loop for modelers
(Wang and Shan 2006).

In the context of Julia, Yingbo et al. have previously
shown how to accelerate models by employing surrogates
using MTK, where they employed surrogates to acceler-
ate a Heating, ventilation, and air conditioning (HVAC)
model claiming a 590X speedup compared to Dymola (Ma
et al. 2021). This suggests that the ability to generate
surrogates in a Modelica Compiler is a useful feature for
users.

In this paper, we introduced a new backend in our Julia-
based Modelica Compiler, the MTK backend. Conse-
quently, it is able to use the surrogate facilities of MTK.
In Listing 6 we illustrate how a surrogate can be gener-
ated from one of the models used in section 5 with Surro-
gates.jl13. In this example, we translate a Modelica model
into an equivalent MTK model. We then create a radial
surrogate of this model based on 30 samples, and the re-
sulting simulation can be seen in Figure 5.

It is possible to use other software to generate surro-
gates based on Modelica models within a Julia environ-
ment. However, a novelty of the work presented here is the
ability to generate surrogates for internal equations dur-
ing compilation time. One application is employing sur-
rogates for computational expensive external functions or
(non)linear loops. Another feature could be to introduce
a Modelica annotation Surrogatize to indicate to the
compiler to automatically replace that component with a
suitable surrogate.

6.1 Employing surrogates in the context of
solving nonlinear systems of equations

In this subsection, we demonstrate how such a nonlinear
algebraic loop can be replaced with a surrogate.

13On Github:On GitHub: SciML/Surrogates.jl
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Listing 5. Automatically generated MTK version of the Model-
ica code in Listing 4.

using ModelingToolkit
using DiffEqBase
using DifferentialEquations
function Casc10Model(tspan = (0.0, 1.0))

pars = @parameters((T, tau, N, t))
vars = @variables((x7(t),

x1(t),
x10(t),
x3(t),
x2(t),
x8(t),
x9(t),
x4(t),
x5(t),
x6(t)))

der = Differential(t)
eqs = [der(x7) ~ (tau^-1)*(x6 - x7), der(

x1) ~ (tau^-1)*(1.0 - x1),
der(x10) ~ (tau^-1)*(x9 - x10),

der(x3) ~ (tau^-1)*(x2 - x3),
der(x2) ~ (tau^-1)*(x1 - x2), der(

x8) ~ (tau^-1)*(x7 - x8),
der(x9) ~ (tau^-1)*(x8 - x9), der(

x4) ~ (tau^-1)*(x3 - x4),
der(x5) ~ (tau^-1)*(x4 - x5), der(

x6) ~ (tau^-1)*(x5 - x6)]
nonLinearSystem = ODESystem(eqs, t, vars,

pars,
name = :($(

Symbol("
Casc10"))
))

pars = Dict(T => float(1.0),
tau => float(T / float(N)),
N => float(10), t => tspan

[1])
initialValues = [x7 => 0.0, x1 => 0.0,

x10 => 0.0, x3 => 0.0,
x2 => 0.0, x8 => 0.0,
x9 => 0.0, x4 => 0.0,
x5 => 0.0, x6 => 0.0]

firstOrderSystem = ode_order_lowering(
nonLinearSystem)

reducedSystem = dae_index_lowering(
firstOrderSystem)

problem = ODEProblem(reducedSystem,
initialValues, tspan, pars)

return problem
end
Casc10Model_problem = Casc10Model()
function Casc10Simulate(tspan = (0.0, 1.0))

solve(Casc10Model_problem, tspan = tspan)
end
function Casc10Simulate(tspan = (0.0, 1.0);

solver = Tsit5())
solve(Casc10Model_problem, tspan = tspan,

solver)
end

Listing 6. An example on how to automatically create a surro-
gate for Casc400 via a Julia script.

modelName = "Casc400"
n_sample = 30
surrogateFunction = (x, y, startTime,

stopTime) -> Surrogates.RadialBasis(x,y
,startTime,stopTime)

#= Use backend target =#
ast = OMFrontend.parseFile("./Models/$(

modelName).mo")
scodeProgram = OMFrontend.translateToSCode(

ast)
(dae, cache) = OMFrontend.

instantiateSCodeToDAE(modelName,
scodeProgram)

OMBackend.translate(dae; BackendMode =
OMBackend.MODELING_TOOLKIT_MODE)

#= Run Modelica model =#
omResult = OMBackend.simulateModel(

modelName, tspan = (0.0, 1.0))
solution = getSolution(omResult)
#= Create surrogates for all states =#
x = sample(n_sample, startTime, stopTime,

SobolSample())
y = omResult.(x)
surrogates = populateSurrogateArray()
#= Evaluate surrogates =#
surrogateResult = Array{Float64}(undef,

modelN, length(omResult.u))
for i = 1:length(stateVars)

surrogateResult[i,:] = surrogates[i].(
omResult.t)

end

Figure 5. The graph to the left depicts the result of evaluating
a Radial surrogate generated for the CascadedFirstOrder model
with N = 400. The true function is represented in blue, the result
of evaluating the surrogate is depicted in red. The right graph
depicts the error as a function of time.
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Listing 7. Modelica model where large parts of the simulation
time are needed to solve a nonlinear loop.

model nonLinearScalable
parameter Real a = 0.5;
parameter Integer N = 10;
Real x[N](each start=2.5);
Real y(start=0,fixed=true);

equation
for i in 1:N loop
N+1 = exp(time*i*a+x[i]) + sum(x);

end for;
der(y) = sum(x)*time;

end nonLinearScalable;

Figure 6. Simulation of nonLinearScalable using OMBackend
and our surrogate function. The error is shown in red.

For the Modelica model nonLinearScalable, displayed
in Listing 7, there is a dense nonlinear loop in variables
x1, . . . ,xN , that needs to be solved in each integration step
to calculate the state variable y. The system is scalable in
N.

During compilation, the loop is detected, and we collect
all equations and variables involved in the loop to generate
a function to solve the algebraic loop. For this example,
we manually generated training data by solving the loop
at time points in [0,1] with a Newton method. Then a
small neural network was trained on these solutions to re-
place the Newton solver normally used to solve the nonlin-
ear algebraic system in the function nonLinearScalable-
Model_surrogateODE.

The speedup of the simulation time with the surrogate
compared to simulating with a nonlinear solver that uses
the Newton method was approximately 163.2 while the
memory consumption was reduced from around 10.6MiB
to 0.4MiB.

The solution of state variable y of nonLinear-
Scalablewhere the nonlinear equation system is solved
with Newton’s method and with a surrogate can be studied
in Figure 6. Because a simple structure for the neural net-
work was chosen, some accuracy was lost while speeding
up the simulation significantly.

To conclude, this integration enables the possibility of

Listing 8. The generated Julia code corresponding to listing 7.
Some equations in the nonlinear system are left but are available
upon request.

function nonLinearScalableAlgebraicLoop()
parameters = ModelingToolkit.@parameters

((a, N, t))
vars = ModelingToolkit.@variables((y(t),

x1, x2, x3, x4, x5, x6, x7, x8, x9, x

10))
eqs = [

0 ~ 0.0 - (((t * a + x1) + (x10 +
(x9 + (x8 + (x7 + (x6 + (x5 +
(x4 + (x3 + (x2 + x1))))))))))
- float(N + 1)),

....]
nonLinearSystem = ModelingToolkit.

NonlinearSystem(eqs, vars, parameters
, name = :($(Symbol("
nonLinearScalable"))))

return nonLinearSystem
end

function makeNLProblem()
loop = nonLinearScalableAlgebraicLoop()
nlsys_function = (generate_function(loop,

expression = Val{false}))[2]
end

nonLinearScalableNonLinearFunction =
makeNLProblem()

function nonLinearScalableModel_ODE(dx, x,
aux, t)

p = aux[1]
u = aux[2]
func!(res, u) =

nonLinearScalableNonLinearFunction(
res, u, vcat(p, [t]))

sol = nlsolve(func!, u, ftol = 1.0e-12;
method = :newton)

aux[2] = sol.zero
dx[1] = (u[8] + u[9] + u[7] + u[6] + u[5]

+ u[4] + u[3] + u[2] + u[11] + u
[10]) * t

end

function
nonLinearScalableModel_surrogateODE(dx,
x, aux, t)

u = aux[2]
aux[2] = m([t])
dx[1] = (u[8] + u[9] + u[7] + u[6] + u[5]

+ u[4] + u[3] + u[2] + u[11] + u
[10]) * t

end

OpenModelica.jl: A modular and extensible Modelica compiler framework in Julia targeting ModelingToolkit.jl

116 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181109



auto-tuning Modelica models or parts of such models to
accelerate simulation time in a fashion similar to that of
Ma et al. (2021). This trade-off between accuracy and sim-
ulation time may be suitable for industrial applications,
e.g. automatically reducing the high detailed development
model to a real-time capable surrogate running on an inte-
grated chip.

7 Conclusion and Future Work
The results of this paper indicate the feasibility of a Mod-
elica Compiler in Julia. Concerning the experiments in
section 5, we acknowledge that there is a wide range of
different solvers available in MTK and in OpenModel-
ica. Thus, the goal of these experiments is not to assess
the performance of handwritten MTK-models but rather
to characterize the performance of automatically gener-
ated MTK-models in the context of the compiler presented
here.

Furthermore, having access to the ModelingToolkit
ecosystem enables several extensions. One such extension
is the possibility to generate surrogates during compila-
tion time automatically. Challenges for such a scheme in-
clude not only the selection of surrogatisation techniques
but also how to decide what part of a model to replace and
what kind of surrogate to employ.

Another direction for future work would be to exam-
ine further the application of surrogatisation techniques in
the context of algebraic loops or whole sub-models. That
is replacing algebraic loops in large industrial grade DAE
systems with suitable surrogates during compilation time.
While we presented some initial examples as a part of this
paper, further work is required to establish the efficiency
of such techniques. To conclude, in this paper, we present
OpenModelica.jl, a non-monolithic Modelica Compiler
written in Julia using the high-performance frontend from
the OMC that can connect the Modelica ecosystem with
the ecosystem of Julia and ModelingToolkit.
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