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Abstract 
This paper investigates steady-state initialization both 
symbolically and numerically, and in particular 
demonstrates new ways of adapting the symbolic methods 
for finding steady-state solutions for Modelica models 
extending ideas that were previously manually 
implemented in libraries. The methods are compared on 
realistic Modelica models in Dymola. 
Keywords: initialization, fluid models, differential 
algebraic equation, static simulation, steady state 

1 Introduction 
Steady state behavior for models is an important study – 
for several reasons. The steady state solution can be the 
goal of the particular study, when studying how 
parameters influence its characteristics, – and also a 
starting point for normal simulation studies, since starting 
from a steady-solution avoids uninteresting transients.  

The goal of this paper is to investigate strategies for 
finding steady states of Modelica models. We survey 
different approaches and discuss their benefits and 
challenges. Additionally, we present strategies for 
automatic treatment of structural and numerical 
singularities arising due to the steady-state formulation. 
Such problems are for example encountered in fluid 
models. To the best of our knowledge, such automatic 
handling specifically for steady-state initialization has not 
previously been discussed in the literature even if several 
of the methods have been discussed.  

In addition to true steady-state solutions where all 
derivatives are zero and the solution is unchanging, we as 
an outlook consider have quasi steady-state where some 
states are changing, but the solution is fundamentally 
time-invariant – e.g., a vehicle running at a constant 
velocity. This creates unique challenges that will be 
discussed later. 

The stability of the steady-state solution could be 
analyzed by a linearization at that point, but we will not 
consider it in detail. 

2 Variants of initialization 
Normally Modelica models are initialized using the model 
equations, initial equations, fixed start-values as described 

in (Mattsson 2002), and supplemented by selecting non-
fixed start-values as described in section 8.6.2 
“Recommended selection of start-values” of Modelica 3.5 
(Olsson (editor), 2021). 

The problems are often numerically challenging and 
homotopy methods can be useful for handling that; see 
(Sielemann 2011), (Sielemann 2012), and (Casella 2011). 

Note that the initialization is applied after the index-
reduction, and we will thus primarily consider the ODE or 
index-1 DAE-formulation of the model that due to index-
reduction may require additional conditions. Note that 
historically the index reduction algorithm, (Pantelides 
1988) was proposed specifically to find those initial 
conditions. 

Note that the difference between the ODE and index-1 
formulation is important here as there might be initial 
conditions and/or start-values involving the algebraic 
variables. Additionally, index reduction sometimes lead to  
dynamic state selection, (Mattsson 2000) and the 
combination with steady state initialization poses specific 
problems that will be considered later. 

Various libraries have different mechanisms for 
conditionally disabling initial equations and start-values. 

2.1 Symbolic steady state initialization 
Steady state initialization changes this to instead of 
selecting start-values we set derivatives to zero. This 
might be seen as simply changing from computing a 
solution �(�) from (this is most easily seen in the ODE 
case): �� = �(�(�), �)

�(0) = �
  (1) 

 
to computing it from: ��(�) = �(�(�), �)

0 = ��(0) (2) 

However, even if this works in some cases there are 
number of issues in most cases: 

• The Jacobian ��/��  might be singular, either 
structurally or just at the initial point; indicating 
that there are multiple acceptable steady-state 
solutions; this is discussed in (Casella 2012). It 
can be difficult to give good numeric diagnostics 
for this, and we will return to this in Section 3. 
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• Some initial conditions might be specified, either 
to handle the singularity above or in order to get 
a specific quasi-steady-state solution. 

These problems can be overcome using specific 
remedies as will be explained later.  

2.2 Dynamic steady state finding 
Another alternative is to numerically integrate forward 
from the normal initial conditions until a dynamic steady-
state is reached (up to a certain precision). This is often 
simpler, and handles the issues above. Furthermore, by 
introducing pseudo dynamics, purely static models can be 
transformed to dynamic models. The dynamics are crafted 
so that the solution tends to a steady state equal to the 
static solution of the original model. This technique is 
often employed to break up algebraic loops for more 
robust solving of static problems. For both of these 
application it is important to automatically detect that the 
steady state has been reached so that the simulation can be 
terminated in a timely fashion. 

However, there are other potential downsides when 
using the dynamic steady state initialization: 

• The dynamic simulation usually takes longer than 
the static initialization. 

• Double integrators – especially in combination 
with “quasi-steady-state”, will tend to infinity. 

• The model may not have a steady-state solution; 
but instead tend to a periodic solution, quasi-
periodic, or even have a strange attractor. 

• The solution may have state events during the 
solution. There might also be time events if 
integrating forward in time. 

   Methods to detect periodic steady states have 
previously been considered in the Modelica context. 
(Kuhn 2017) investigates techniques to automatically 
identify periodic steady states in Modelica models of 
electrical AC systems. An additional example is the 
Electrified Powertrains Library (EPTL), which feature 
components that terminate a simulation when a periodic 
steady state is reached. 

   It might be possible to avoid time events and periodic 
solutions by integrating from minus infinity towards zero, 
and use implicit Euler with large step-sizes to artificially 
dampen oscillations. 

3 Symbolic steady state initialization 
We will now consider the specific issues related to 
symbolic steady state initialization, and our general 
approach for solving it. Specifically we will describe how 
the changes to the basic approach handles various cases. 

3.1 Outline of symbolic approach 
The goal of the symbolic approach is to set up the 
modified steady-state problem to ensure that it is 
structurally non-singular, and numerically non-singular at 
the desired steady state solution. 

We start from �� = �(�(�), �) but instead of setting the 
entire ��(0) = 0  we use the well-known maximum-
bipartite-matching; e.g., (Cormen 1990) for finding which 
elements of ��  that should be set to zero.  

The matching is similar to the matching for transient 
simulation where we require a perfect (one-to-one) 
matching of derivatives to these equations. The matched 
variables and equations are also sorted into strongly 
connected components and each of them solved 
separately; but we will not discuss that in detail. 

However, for initialization we instead attempt to match 
variables to �� = �(�(�), �) , prioritized to first match 
states and then derivatives of states so that all equations 
are matched to some variable – but not all variables is 
matched to an equation. 

The states and derivatives of states that were unmatched 
in this initialization problem are then set to default values 
(normally zero for derivatives) and start-value for states. 
This matching is based on the variable incidences for each 
equation, but modified as will be explained later. 

This procedure is then amended for an index-1 DAE by 
adding algebraic equations (and initial equations) and first 
matching all auxiliary variables. 

An important aspect is that when matching states to the 
equations we prioritize them to get the result of section 
8.6.2 “Recommended selection of start-values” of 
Modelica 3.5 (Olsson (editor) 2021). 

Note that this is only used for solving the initialization 
problem and we then use the equations in the usual way 
for dynamic simulations. 

This basic approach was implemented in Dymola in 
2004 based on the similarity with the normal state-
initialization. There are multiple variants of this; note that 
we symbolically manipulate the equations but do not aim 
to symbolically solve them in contrast to (Ochel 2014). 

3.2 Avoiding structural singularities 
For fluid models we have seen two specific causes of 

singularities. The first issue for fluid models, already 
handled in models in (Casella 2012), can be simplified to 
two tanks connected in a cycle where the outflow, f, from 
each tank depend on its mass, x, and some parameter A: �� = ���� ,  ���

��� = �� − ����� = �� − ��
(3) 

 
This can be integrated forward in time, but if we 

attempt to compute the steady-state solution we get a 
redundant equation: 0 = �� − ��0 = �� − �� (4) 

The proposed solution for such cases is to consider all 
trivial equations when derivatives are set to zero, and see 
if they form cycles (as in this case). Trivial equations are 
equations that can be written on the form a=+/-b. This 
automates the procedure from (Casella 2012).  
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As previously indicated the symbolic selection of initial 
conditions is based on matching variables to equations 
based on their incidence. We thus modify the equation 
graph causing the cycle (in this case the two derivative-
equations) by adding an incidence to an extra algebraic 
variable in them and introducing a new equation with 
incidence to the derivative-variables of these equations 
(the variable is called ℎ below; the equation is left empty) 
which gives the graph: 

 
Figure 1 Matching for two tanks 

The variables are in three groups, since we first match ℎ, ��, ��; then attempt to match  ��, �� and finally attempt 
to match ���, ���. The matchings are solid lines and other 
incidences are dotted thinner lines. 

 The unmatched derivative ���  is set to zero, and the 
unmatched state ��  becomes an arbitrary start-value 
(there is a priority depending on whether start-values are 
set and at what level, such that the start-value that is 
“highest up” is prioritized). The other state is initialized 
based on �� = �� giving �(��,  ��) = �(��,  ��). 

We then modify the new matching to remove the extra 
equation and extra variable ℎ,  but keep the previously 
matched variables. (There might be other ways of getting 
to this desired matching without temporarily adding an 
extra variable and equation and then removing them). This 
matches ��� with ��� = �� − ��; and the equations are then 
as usual sorted into strongly connected components where 
each component in this case is scalar; and only the one 
involving �� require the solution of a non-linear equation. 

From a modeling perspective another possibility would 
be to have an initial equation for the total mass in the 
system, replacing the arbitrary start-value for one of the 

masses. The chosen approach naturally handles that, and 
the initial equation can either be conditional on steady-
state initialization or always applied. 

3.3 Avoiding singularity at the solution 
The second issue for fluid models can occur for any 
differentiated media such as the function for density as a 
function of the states: 

� = �(�, �) (5) 
Which is differentiated to give: 

�� = � (�, �)�� ! �"(�, �)�� (6) 
If we just solve the equations without symbolic processing 
as suggested in (Casella 2012) this is unproblematic. 

However, if we want to perform a structural analysis to 
see which derivatives we can set to zero we get a problem. 
Specifically we might attempt to match T or p to this 
equation during steady initialization and attempt to 
compute them from it – because they influence � (�, �) 
and �"(�, �). 

Numerically this will not be well-behaved when we 
approach the steady-state solution since the influence of T 
and p on � (�, �)�� ! �"(�, �)��  gradually disappear as 
the derivatives approach zero.  

We handle that by modifying the incidence for all 
initialization equations by removing checking what 
happens if the state-derivatives are set to zero. If the 
equation no longer contains a non-derivative variable we 
remove the incidence from the equation to that variable 
when finding the steady-state solution. 

3.4 Higher order derivatives 
The original description separated variables into states and 
derivatives of states. For higher order derivatives that 
naturally occur in mechanical systems that is not always 
straightforward -- consider a simple rotational model: 

 
Figure 2 Two inertias 

The rotational speed, w, is both a state and a derivative; 
and it may even have a start-value. 

However, the state-variable w can be matched to the 
equation der(phi)=w; i.e. it will be treated as if it only were 
a derivative-variable. Thus such higher order derivatives 
cause no direct problem, and since the state is matched to 
equations its start-value is ignored (assuming there is no 
fixed=true). We might in the future prioritize start-values 
for such combinations of state/derivative instead of setting 
derivatives to zero, but other related issues are more 
important. 

3.5 Dynamic State Selection 
Consider the pendulum in Cartesian coordinates.  
model Pendulum 

  Real vx,vy; 

inertia 

J=J 

inertia1 

J=J 

spring 

c=c 

�� 

�� 

�� 

�� 

��� 

��� 

ℎ  

�� = �(��,  ��) 

�� = �(��,  �� 

��� = �� − �� 

��� = �� − �� 

 

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181119

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

121



  Real x(start=0.5),y(start=0.7); 

  Real f; 

equation  

  x^2+y^2=1; 

  der(x)=vx; 

  der(y)=vy; 

  der(vy)=-9.81+f*y; 

  der(vx)=f*x; 

end Pendulum; 

Note that the start-values are inconsistent guess-values. 
In Modelica tools the pendulum is usually solved using 

the dynamic dummy derivative method, since there is no 
static selection of states that generate a good solution. 

Note that there are two dynamic dummy derivative 
systems, each selecting one state among two possibility – 
one for positions and one for velocities. 

However, that is an implementation detail and from a 
user perspective we prefer to hide those dummy variables 
and instead give start-values for the normal variables. 
Using high order derivatives all differentiated equations 
can be written as: 

�� ! $� = 1 (7&) 2��� ! 2$� $ = 0 (7') 2�(� ! 2�� � ! 2$( $ ! 2$� � = 0 (7)) $( = −9.81 ! �$ (7�) �( = �� (7-) 
Simply ignore the dummy derivatives? 

Hiding the dummies causes two problems: the first is that 
it looks as if we need two steady-state conditions and have 
four free derivatives (two velocities and two 
accelerations) that we could set to zero for steady-state 
initialization, but in reality there are only two free 
derivatives in total (one velocity and one acceleration). 

If we ignore that and set the two velocities to zero that 
directly collapses one existing equation: 

2��� ! 2$�$ = 0 ./01234⎯⎯⎯6 0 = 0  (8) 
Similarly setting the two accelerations to zero simplifies 
another existing equation: 

2�(� ! 2�� � ! 2$( $ ! 2$� � = 0 ./01234⎯⎯⎯6 2�� � ! 2$� � = 0 (9) 
Which have the following Jacobian with respect to the 
velocities:  

72� 2$4�� 4$� 8 (10) 

When the velocities goes to zero the second row tends to 
zero. 

Solving that problem leads to the second problem, that 
some choices of velocity and acceleration-variables for 
steady state lead to singular systems, which is exactly the 
reason we used dynamic dummy-derivatives in the first 
place. It is not certain that a dummy-derivative system is 
singular at exactly the steady state solution, but it seems 
likely and will occur in this case if we set 

$( = $� = 0 (11)  
which gives the following Jacobian with respect to �, $, �� , �( , � (where the second and third rows are zero at 
the solution):  

⎣⎢
⎢⎢
⎡ 2� 2$ 0 0 02�� 0 2� 0 02�( 0 4�� 2� 00 −� 0 0 −$−� 0 0 1 −�⎦⎥

⎥⎥
⎤

(12) 

Directly using the dummy derivatives 

An alternative would then to be to attempt to set the actual 
derivatives of the dynamic dummy derivative method to 
zero. But that seems underspecified, since it involves 
projecting the original derivatives using an unspecified 
projection matrix. 

This approach might work using an iterative scheme 
where the projection matrix is recomputed until 
convergence, but it seems needlessly complicated and it is 
not obvious that it will generate a unique solution. 
Proposed solution 

The proposed remedy here involves modifying the initial 
equations in a consistent way.  

First we set all derivatives in each dummy derivative 
system to zero as if we ignore the dummy derivatives, and 
then we balance that by removing the corresponding 
differentiated constraint that becomes identically zero for 
that choice (after verifying that it is in fact the case). 

Additionally we propagate these zeros to other dummy 
derivative systems, since normally the acceleration 
constraints also involve velocities. 

For the pendulum this means that we want to solve: 
�� ! $� = 1 (13&) �� = 0 (13') $� = 0 (13)) $( = −9.81 ! �$ (13�) �( = �� (13-) �( = 0 (13�) $( = 0 (13�) 

and verify that the differentiated constraints are zero: 2��� ! 2$� $ = 0 (14&) 2�(� ! 2�� � ! 2$( $ ! 2$� � = 0 (14') 

4 Future work: Quasi Steady State 
Quasi steady state, where some derivatives have non-zero 
values is important in practice. The goal would be to 
directly study the model in operation without unnecessary 
transients. A realistic example would be a model of a car 
running at 60 km/h.  

The goal of this section is two-fold; both to indicate 
how a tool in the future could automatically find these 
solutions, and also to demonstrate the problem to avoid the 
unintended solutions shown here. 

4.1 Why quasi steady state is complicated 
Let us start by a simple example of two connected inertias. 
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Figure 3 Two Inertias, Quasi Steady State 

Assuming we want quasi steady-state and set 
inertia.w(start=5, fixed=true); something odd happens in 
this example. Just setting all other derivatives to zero 
makes the other inertia starts stationary and then we get a 
periodic solution for the angular velocities. 

If we use a damper (or spring-damper) the states will as 
default be in the damper and thus as default the damper 
will have derivative zero, but if we set options to avoid 
states in the damper there is a risk of a similar non quasi-
steady-state solution. 

Note that it is not necessarily that we give a rotational 
velocity – a more realistic case is that we attach an engine 
(can even be a simple constant torque) to one inertia and 
some losses such as bearing-friction to the other. The 
result is the same, we can set one acceleration to zero, but 
not the other; and the solution will then start with a similar 
transient until reaching a quasi steady state. 

Obviously this is not the desired quasi-steady solution, 
and the idea with investigating a small example is to find 
an approach that can be applied to a large system, like a 
car. 

One approach is that instead of selecting initial 
conditions among the existing derivatives we add the 
initial equations ?� = 0 and ?( = 0, and that is similar to 
treating w=5 as a normal non-initial equation during 
index-reduction. However, if we had another spring (or 
spring-damper) followed by an inertia we would need to 
set  ?� = 0 and ?( = 0 for this new inertia, etc.  

Partially this is just prioritizing setting high order 
derivatives to zero, i.e. ?� = 0  instead of ? = 0, but ?(   
does not even exist in the model, and even constructing ?(  
in the first inertia does not create the next one. Thus further 
investigations are needed. We can also consider a clutch 
instead of a spring-damper, and a solution can have the 
two inertias rotating with different (steady-state) speeds. 

 
Figure 4 Advanced Quasi Steady State 

An additional complication occurs if there are multiple 
disconnected mechanical systems – the initialization 
procedure outlined here will allow them to move 
independently of each other. 

This also indicates that the original name we used for 
the approach “DefaultSteadyState” is misleading, since 
using steady state as “default” for a few variables does not 
guarantee a meaningful result. 

4.2 Simple quasi steady state theory 
Assume we have a system: 

�� = �(�) (15&) 
and we want to generalize the notion steady state to cases 
where the derivative is non-zero but the system does not 
change. The simplest possibility is that the derivative is 
constant which gives that the following should be valid for 
all points in time: �� = �(� ! ���) (15') 
This implies that the derivative is in the non-trivial null-
space 

ker C��
��D (16) 

and such null-spaces exist if the model is translationally 
invariant, such that y=T(x,p) behaves the same as x, with 
the restriction that the transformation has determinant 1 
(and is differentiable in p). In general quasi steady state 
meaning that all points on the trajectory are “equivalent” 
seems like a good definition for quasi steady state, and 
smooth transformations allow that, and for a general fixed 
transformation we have 

�� = C��
��DE� ���(�, �)� (17) 

For translational invariance FG 
GHI = J and we can select 

a trajectory as a varying transformation of one point (since 
it always gives the same derivative). The restriction is then 

that the derivatives are given as 
G 
G". 

The benefit of this formulation can be seen for second 
order 1D-mechanical systems where we directly see that 
velocities should be in this null-space. Compare this with 
setting ?( = 0 (i.e., setting the third order derivative of the 
angle to zero) that require differentiating the model 
equations an additional time. Both formulations ensure 
quasi steady state behavior. 

The null-space can be fairly simple, e.g. all absolute 
positions (with equal weight), and without relative 
positions. If we have a rotational motion with gears it is 
less trivial, but still straightforward. 

4.3 Multi-dimensional fixed speed rotations 
However, if we want to consider a car turning with a fixed 
steering angle (i.e. with a constant yaw) it becomes 
complicated. In general we propose the equation: 

K��(�
, �)
�� L �� = ���(�
, �)� (18) 

The desired solution for rotation can be seen a pure 
rotation – but around an unknown point in space, and for 
the positions the second derivatives are thus non-zero (and 
proportional to the distance from the rotation center for 
absolute coordinates). If we use � = {NH , N., O}  as 
invariant position and angle of the main object and then 
relative coordinates, x, we have the invariants: 

N( = ��N� , O, O� , �, ��� = -QR��-EQRN� , 0, O� , �, ��� (19&) 
O( = ��O� , �, ��� (19') 
�( = ℎ�O� , �, ��� (19)) 

inertia 

J=1 kg m² 

inertia1 

J=2 kg m² 

spring 

c=1 N m/rad 

inertia 

J=J 

bearingFriction 
torque 

tau 

const 

k=10 

inertia2 

J=J clutch 
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with the solution �( = 0, �� = 0, O( = 0, N( = N�SO� . For a 
rocket in space all positions and angles can be invariant, 
but for more earthly applications, such as a typical car (on 
a tarmac that is big, flat, and even), the positions in the 
plane are the invariant positions, and the yaw angle the 
invariant angle (the yaw velocity is O�). 

This seems straightforward, but it is not clear how to 
perform this when only using the equations - without any 
additional knowledge. Additionally if the road surface 
depends on the position or is slanted, there are no solutions 
that rotate with a fixed speed. 

However, this is the desired solution if we want to set 
the speed for the car (or have the engine running), and 
have the steering wheel off-center (or in general anything 
that makes the car non-symmetric) – i.e. it is the natural 
extension of the simple translational case for quasi steady 
state to 3-dimensions and also the special case of 2-
dimensions (Höbinger and Otter, 2008). 

Note that this is mostly restricted to mechanical 
systems, due to lack of invariants in other cases. Electrical 
systems are invariant with respect to the potentials – even 
more generally than mechanical systems (the potential can 
be any time-varying function), but grounding the circuit 
eliminates that – and grounding is used for normal 
simulation as well. 

5 Evaluating the methods 
There are three factors we want to consider for these 
methods: 

• Does is find the desired steady-state solution? 
• How easy is it to set up the problem? 
• How quickly do we compute the solution? 

5.1 Furuta pendulum 
In order to dynamically find a steady state solution we 
currently have to add dampers to all joints to ensure that 
the steady state solution is asymptotically stable. And then 
set flag to find dynamic steady-state. 

To generate the symbolic steady state solution the 
dampers in Figure 5 are not necessary (although possible), 
just setting the symbolic steady-state flags suffice. 
However, unless we set the guess-value for R2.phi close 
to zero this generates an unstable steady-state solution. 

The symbolic handling automatically detects that 
R1.phi is a free variable, since the rotation axis is aligned 
with gravity. It is thus selected as a fixed start value in 
accordance with Section 3.2. 

 

 
Figure 5 Damped Furuta Pendulum 

5.2 Three tanks 
This is a simple model in the Fluid package in the standard 
library. 

 
Figure 6 Three Tanks Steady State 

Merely simulating the model gives the following plot 
(converging to a steady state): 

 
Figure 7 Solution for Three Tanks Steady State 

There is a global setting for initialization in the model 
which has three relevant possibilities: 

• FixedInitial – the default giving the plot 
• Steady-state initial 
• Initial guess-value 
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The initial guess-value in combination with steady-state 
flags finds a desired solution, and reports that one tank 
level and all tank temperatures are free initial values. 

The built-in steady-state initial setting also finds a 
steady-state solution and reports the same free initial 
values, but additionally generate a diagnostic that there are 
four redundant consistent initial conditions are 
automatically removed: 

Removed the following equations which 
are redundant and consistent:  
der(tank3.U) = der(tank3.m)*tank3.medium.u 

+ tank3.m*der(tank3.medium.u); 
der(tank1.U) = der(tank1.m)*tank1.medium.u 

+ tank1.m*der(tank1.medium.u); 
der(tank2.U) = der(tank2.m)*tank2.medium.u   

+ tank2.m*der(tank2.medium.u); 
pipe1.port_a.m_flow+pipe2.port_a.m_flow 

 +pipe3.port_a.m_flow = 0.0; 

5.3 HeatLosses in MultiBody 
This example model is interesting because it mixes 
different domains and has dynamic state selection. 

 
Figure 8 Multiple Springs with Heatlosses 

The heat-losses are due to friction in the dampers, and 
should be zero in steady-state (confirmed by examining 
the solution at steady-state). 

The symbolic steady-state settings directly finds the 
steady-state solution (the straight lines in the diagram) 
matching the dynamic solution. 

 

 
Figure 9 Solution for Multiple Springs with Heatlosses 

The dynamic steady-state does not quickly find that the 
solution has converged, since there is a hidden slowly 
damped oscillation. 

5.4 Quasi-steady state vehicle 
Using constant torque for a simple translational vehicle 
with a non-rigidly attached trailer: 

 
Figure 10 Quasi Steady-State for Simple Vehicle 

Using dynamic steady state automatically finds the 
steady-state velocity (after 1 minute). 

 
Figure 11 Solution to Quasi Steady-State for Simple Vehicle 

Since the quasi-steady symbolic solution is not yet 
implemented we would have to manually add the 
corresponding initial equations based on Section 4.2 (the 
first two give that the derivatives are in the null-space and 
the final one is setting a second order derivative to zero): 
  vehicle.v=trailer.v; 

  vehicle.a=trailer.a; 

  vehicle.a = 0; 

directly giving the solid line above. 

5.5 Implementation notes 
The symbolic steady state initialization with the 
improvements listed in section 3 were implemented 
already in Dymola 2020, but Dymola 2022 and 
3DExperience 2022x adds the possibility of ignoring 
some state initializations in the model which makes it 
easier to perform the tests. The flags used are: 
Advanced.Translation. 
 DefaultSteadyStateInitialization=false; 
Advanced.Translation. 
 DefaultSteadyStateInitializationLevel=1; 

   Finding the dynamic steady-state initialization was 
implemented in Dymola 2022, and is enabled by the flag: 
Advanced.Simulation. 
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 SteadyStateTermination=true; 
   By default the simulation is automatically terminated 

when all state derivatives have an absolute value less than 2 % of the scale of the corresponding state, taking into 
account the time scale of the simulation. This default 
tolerance is chosen in accordance with the common 
definition of settling time within control theory (Tay, 
Mareels and Moore 1998). The tolerance can be modified 
by  
Advanced.Simulation. 
   SteadyStateTerminationTolerance 
for details see (Dassault Systèmes 2021). 

5.6 Evaluation 
Both methods quickly find a steady-state solution, and are 
fairly easy to set up. 

The downside of finding dynamic steady-state is that 
one must ensure that the system is sufficiently damped to 
reach a steady state; whereas the downside of symbolic 
steady state is that it may find an unwanted steady-state 
solution. 

6 Outlook for standardization 
The new features are specific to Dymola, and not standard 
Modelica. 

The Modelica Language has no features for switching 
between setting values for states and steady-state 
initialization. However, many Modelica models have such 
settings, locally and/or using an inner component to have 
a “global” setting. 

The examples show that such settings, when they exist, 
work similarly as the tool-setting for symbolically solving 
the steady-state problem. This means that any 
standardization effort needs to ensure that the existing 
models can seamlessly switch to the new formulation 
which will be an additional effort. 

One downside of having the steady-state setting in the 
model is that although index-reduction automatically 
handles algebraic couplings for the dynamic equations that 
does not automatically remove initialization equations. 
However, that is not a major issue as tools can detect such 
redundant initial equations and automatically remove 
them. 

A specific issue with having steady-state settings 
locally in components is that this can easily set up quasi 
steady-state problems generating undesirable solutions as 
indicated above. 

7 Conclusions 
This paper demonstrates that Modelica allows powerful 
initialization techniques, both symbolic and numeric. The 
methods have been implemented in Dymola 2022 and 
3DEXPERIENCE 2022x. 

However, to be standardized in Modelica this must be 
integrated in models complementing the existing model 

settings and it must be possible to detect and preferably 
solve quasi steady state problems.  

Acknowledgements 
Some of this work has been part of the ModeliScale 
research project, and we also acknowledge the customers 
providing us with challenging models. 

References 
Dassault Systèmes. (2021) Dymola 2022: Dymola, Dynamic 

Modeling Laboratory, User Manual 2A: Model Development 
Tools. Dassault Systèmes AB, Lund, Sweden. 

Casella, Francesco, and Michael Sielemann, and Luca 
Savoldelli (2011) “Steady-state initialization of object-
oriented thermo-fluid models by homotopy methods” In  
Proceedings of the 8h International Modelica Conference. 86-
96 

Casella, Francesco (2012): On the Formulation of Steady-State 
Initialization Problems in Object-Oriented Models of Closed 
Thermo-Hydraulic System.  

Cormen, Thomas H. and Charles E. Leiserson, and Ronald L. 
Rivest (1990) Introduction to Algorithms. MIT Press. ISBN 
0-07-013143-0 

Höbinger, Mathias and Martin Otter (2008): “PlanarMultiBody 
A Modelica Library for Planar Multi-Body Systems”. In:  
Proceedings of 6th International Modelica Conference 549-
546 

Ochel, Lennart, and Bernhard Bachmann and Francesco 
Casella (2014): “Symbolic Initialization of Over-determined 
Higher-index Models” In: Proceedings of the 10h 
International Modelica Conference. 1179 – 1187. 

Olsson, Hans (editor) (2021): Modelica A Unified Object-
Oriented Language for Systems Modeling Language 
Specification Version 3.5. 
URL: https://specification.modelica.org/maint/3.5/MLS.pdf 

Kuhn, Martin Raphael (2017): “Periodic Steady State 
Identification for use in Modelica based AC electrical system 
simulation”. In: Proceedings of the 12th International 
Modelica Conference. 493 – 505. 

Mattsson, Sven Erik, and Hans Olsson and Hilding Elmqvist 
(2000) “Dynamic Selection of States in Dymola”. In: 
Modelica Workshop 2000. 61 –67. 

Mattsson, Sven Erik, and Hilding Elmqvist, and Martin Otter, 
and Hans Olsson (2002) “Initialization of hybrid differential-
algebraic equations in Modelica 2.0”. In: Proceedings of 2nd 
International Modelica Conference. 9-15. 

Pantelides, Constantinos (1988) “The Consistent Initialization 
of Differential-Algebraic Systems” In SIAM Journal on 
Scientific and Statistical Computing 9:2, pg 213-231. 

Sielemann, Michael, and Francesco Casella, and Martin Otter, 
and Christoph Clauß, and Jonas Eborn, and Sven Erik 
Mattson, and Hans Olsson (2011) “Robust Initialization of 
Differential-Algebraic Equations Using Homotopy” In  
Proceedings of the 8h International Modelica Conference. 

Sielemann, Michael (2012) “Probability-One Homotopy for 
Robust Initialization of Differential-Algebraic Equations” In  
Proceedings of the 9h International Modelica Conference. 
223-236. 

Investigating Steady State Initialization for Modelica models

126 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181119



Tay, Teng-Tiow, and Ivan Mareels, and John B. Moore (1998) 
High Performance Control. Birkhäuser Basel. 

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181119

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

127


