
Investigating Steady State Initialization
for Modelica models

Hans Olsson1 Erik Henningsson2
1
 Dassault Systemes AB, Sweden, hans.olsson@3ds.com

2Dassault Systemes AB, Sweden, erik.henningsson@3ds.com

Abstract
This paper investigates steady-state initialization both
symbolically and numerically, and in particular
demonstrates new ways of adapting the symbolic methods
for finding steady-state solutions for Modelica models
extending ideas that were previously manually
implemented in libraries. The methods are compared on
realistic Modelica models in Dymola.
Keywords: initialization, fluid models, differential
algebraic equation, static simulation, steady state

1 Introduction
Steady state behavior for models is an important study –
for several reasons. The steady state solution can be the
goal of the particular study, when studying how
parameters influence its characteristics, – and also a
starting point for normal simulation studies, since starting
from a steady-solution avoids uninteresting transients.

The goal of this paper is to investigate strategies for
finding steady states of Modelica models. We survey
different approaches and discuss their benefits and
challenges. Additionally, we present strategies for
automatic treatment of structural and numerical
singularities arising due to the steady-state formulation.
Such problems are for example encountered in fluid
models. To the best of our knowledge, such automatic
handling specifically for steady-state initialization has not
previously been discussed in the literature even if several
of the methods have been discussed.

In addition to true steady-state solutions where all
derivatives are zero and the solution is unchanging, we as
an outlook consider have quasi steady-state where some
states are changing, but the solution is fundamentally
time-invariant – e.g., a vehicle running at a constant
velocity. This creates unique challenges that will be
discussed later.

The stability of the steady-state solution could be
analyzed by a linearization at that point, but we will not
consider it in detail.

2 Variants of initialization
Normally Modelica models are initialized using the model
equations, initial equations, fixed start-values as described

in (Mattsson 2002), and supplemented by selecting non-
fixed start-values as described in section 8.6.2
“Recommended selection of start-values” of Modelica 3.5
(Olsson (editor), 2021).

The problems are often numerically challenging and
homotopy methods can be useful for handling that; see
(Sielemann 2011), (Sielemann 2012), and (Casella 2011).

Note that the initialization is applied after the index-
reduction, and we will thus primarily consider the ODE or
index-1 DAE-formulation of the model that due to index-
reduction may require additional conditions. Note that
historically the index reduction algorithm, (Pantelides
1988) was proposed specifically to find those initial
conditions.

Note that the difference between the ODE and index-1
formulation is important here as there might be initial
conditions and/or start-values involving the algebraic
variables. Additionally, index reduction sometimes lead to
dynamic state selection, (Mattsson 2000) and the
combination with steady state initialization poses specific
problems that will be considered later.

Various libraries have different mechanisms for
conditionally disabling initial equations and start-values.

2.1 Symbolic steady state initialization
Steady state initialization changes this to instead of
selecting start-values we set derivatives to zero. This
might be seen as simply changing from computing a
solution �(�) from (this is most easily seen in the ODE
case): �� = �(�(�), �)

�(0) = �
 (1)

to computing it from: ��(�) = �(�(�), �)

0 = ��(0) (2)

However, even if this works in some cases there are
number of issues in most cases:

• The Jacobian ��/�� might be singular, either
structurally or just at the initial point; indicating
that there are multiple acceptable steady-state
solutions; this is discussed in (Casella 2012). It
can be difficult to give good numeric diagnostics
for this, and we will return to this in Section 3.

DOI
10.3384/ecp21181119

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

119

• Some initial conditions might be specified, either
to handle the singularity above or in order to get
a specific quasi-steady-state solution.

These problems can be overcome using specific
remedies as will be explained later.

2.2 Dynamic steady state finding
Another alternative is to numerically integrate forward
from the normal initial conditions until a dynamic steady-
state is reached (up to a certain precision). This is often
simpler, and handles the issues above. Furthermore, by
introducing pseudo dynamics, purely static models can be
transformed to dynamic models. The dynamics are crafted
so that the solution tends to a steady state equal to the
static solution of the original model. This technique is
often employed to break up algebraic loops for more
robust solving of static problems. For both of these
application it is important to automatically detect that the
steady state has been reached so that the simulation can be
terminated in a timely fashion.

However, there are other potential downsides when
using the dynamic steady state initialization:

• The dynamic simulation usually takes longer than
the static initialization.

• Double integrators – especially in combination
with “quasi-steady-state”, will tend to infinity.

• The model may not have a steady-state solution;
but instead tend to a periodic solution, quasi-
periodic, or even have a strange attractor.

• The solution may have state events during the
solution. There might also be time events if
integrating forward in time.

 Methods to detect periodic steady states have
previously been considered in the Modelica context.
(Kuhn 2017) investigates techniques to automatically
identify periodic steady states in Modelica models of
electrical AC systems. An additional example is the
Electrified Powertrains Library (EPTL), which feature
components that terminate a simulation when a periodic
steady state is reached.

 It might be possible to avoid time events and periodic
solutions by integrating from minus infinity towards zero,
and use implicit Euler with large step-sizes to artificially
dampen oscillations.

3 Symbolic steady state initialization
We will now consider the specific issues related to
symbolic steady state initialization, and our general
approach for solving it. Specifically we will describe how
the changes to the basic approach handles various cases.

3.1 Outline of symbolic approach
The goal of the symbolic approach is to set up the
modified steady-state problem to ensure that it is
structurally non-singular, and numerically non-singular at
the desired steady state solution.

We start from �� = �(�(�), �) but instead of setting the
entire ��(0) = 0 we use the well-known maximum-
bipartite-matching; e.g., (Cormen 1990) for finding which
elements of �� that should be set to zero.

The matching is similar to the matching for transient
simulation where we require a perfect (one-to-one)
matching of derivatives to these equations. The matched
variables and equations are also sorted into strongly
connected components and each of them solved
separately; but we will not discuss that in detail.

However, for initialization we instead attempt to match
variables to �� = �(�(�), �) , prioritized to first match
states and then derivatives of states so that all equations
are matched to some variable – but not all variables is
matched to an equation.

The states and derivatives of states that were unmatched
in this initialization problem are then set to default values
(normally zero for derivatives) and start-value for states.
This matching is based on the variable incidences for each
equation, but modified as will be explained later.

This procedure is then amended for an index-1 DAE by
adding algebraic equations (and initial equations) and first
matching all auxiliary variables.

An important aspect is that when matching states to the
equations we prioritize them to get the result of section
8.6.2 “Recommended selection of start-values” of
Modelica 3.5 (Olsson (editor) 2021).

Note that this is only used for solving the initialization
problem and we then use the equations in the usual way
for dynamic simulations.

This basic approach was implemented in Dymola in
2004 based on the similarity with the normal state-
initialization. There are multiple variants of this; note that
we symbolically manipulate the equations but do not aim
to symbolically solve them in contrast to (Ochel 2014).

3.2 Avoiding structural singularities
For fluid models we have seen two specific causes of

singularities. The first issue for fluid models, already
handled in models in (Casella 2012), can be simplified to
two tanks connected in a cycle where the outflow, f, from
each tank depend on its mass, x, and some parameter A: �� = ���� , ���

��� = �� − ����� = �� − ��
(3)

This can be integrated forward in time, but if we

attempt to compute the steady-state solution we get a
redundant equation: 0 = �� − ��0 = �� − �� (4)

The proposed solution for such cases is to consider all
trivial equations when derivatives are set to zero, and see
if they form cycles (as in this case). Trivial equations are
equations that can be written on the form a=+/-b. This
automates the procedure from (Casella 2012).

Investigating Steady State Initialization for Modelica models

120 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181119

As previously indicated the symbolic selection of initial
conditions is based on matching variables to equations
based on their incidence. We thus modify the equation
graph causing the cycle (in this case the two derivative-
equations) by adding an incidence to an extra algebraic
variable in them and introducing a new equation with
incidence to the derivative-variables of these equations
(the variable is called ℎ below; the equation is left empty)
which gives the graph:

Figure 1 Matching for two tanks

The variables are in three groups, since we first match ℎ, ��, ��; then attempt to match ��, �� and finally attempt
to match ���, ���. The matchings are solid lines and other
incidences are dotted thinner lines.

 The unmatched derivative ��� is set to zero, and the
unmatched state �� becomes an arbitrary start-value
(there is a priority depending on whether start-values are
set and at what level, such that the start-value that is
“highest up” is prioritized). The other state is initialized
based on �� = �� giving �(��, ��) = �(��, ��).

We then modify the new matching to remove the extra
equation and extra variable ℎ, but keep the previously
matched variables. (There might be other ways of getting
to this desired matching without temporarily adding an
extra variable and equation and then removing them). This
matches ��� with ��� = �� − ��; and the equations are then
as usual sorted into strongly connected components where
each component in this case is scalar; and only the one
involving �� require the solution of a non-linear equation.

From a modeling perspective another possibility would
be to have an initial equation for the total mass in the
system, replacing the arbitrary start-value for one of the

masses. The chosen approach naturally handles that, and
the initial equation can either be conditional on steady-
state initialization or always applied.

3.3 Avoiding singularity at the solution
The second issue for fluid models can occur for any
differentiated media such as the function for density as a
function of the states:

� = �(�, �) (5)
Which is differentiated to give:

�� = � (�, �)�� ! �"(�, �)�� (6)
If we just solve the equations without symbolic processing
as suggested in (Casella 2012) this is unproblematic.

However, if we want to perform a structural analysis to
see which derivatives we can set to zero we get a problem.
Specifically we might attempt to match T or p to this
equation during steady initialization and attempt to
compute them from it – because they influence � (�, �)
and �"(�, �).

Numerically this will not be well-behaved when we
approach the steady-state solution since the influence of T
and p on � (�, �)�� ! �"(�, �)�� gradually disappear as
the derivatives approach zero.

We handle that by modifying the incidence for all
initialization equations by removing checking what
happens if the state-derivatives are set to zero. If the
equation no longer contains a non-derivative variable we
remove the incidence from the equation to that variable
when finding the steady-state solution.

3.4 Higher order derivatives
The original description separated variables into states and
derivatives of states. For higher order derivatives that
naturally occur in mechanical systems that is not always
straightforward -- consider a simple rotational model:

Figure 2 Two inertias

The rotational speed, w, is both a state and a derivative;
and it may even have a start-value.

However, the state-variable w can be matched to the
equation der(phi)=w; i.e. it will be treated as if it only were
a derivative-variable. Thus such higher order derivatives
cause no direct problem, and since the state is matched to
equations its start-value is ignored (assuming there is no
fixed=true). We might in the future prioritize start-values
for such combinations of state/derivative instead of setting
derivatives to zero, but other related issues are more
important.

3.5 Dynamic State Selection
Consider the pendulum in Cartesian coordinates.
model Pendulum

 Real vx,vy;

inertia

J=J

inertia1

J=J

spring

c=c

��

��

��

��

���

���

ℎ

�� = �(��, ��)

�� = �(��, ��

��� = �� − ��

��� = �� − ��

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181119

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

121

 Real x(start=0.5),y(start=0.7);

 Real f;

equation

 x^2+y^2=1;

 der(x)=vx;

 der(y)=vy;

 der(vy)=-9.81+f*y;

 der(vx)=f*x;

end Pendulum;

Note that the start-values are inconsistent guess-values.
In Modelica tools the pendulum is usually solved using

the dynamic dummy derivative method, since there is no
static selection of states that generate a good solution.

Note that there are two dynamic dummy derivative
systems, each selecting one state among two possibility –
one for positions and one for velocities.

However, that is an implementation detail and from a
user perspective we prefer to hide those dummy variables
and instead give start-values for the normal variables.
Using high order derivatives all differentiated equations
can be written as:

�� ! $� = 1 (7&) 2��� ! 2$� $ = 0 (7') 2�(� ! 2�� � ! 2$($! 2$� � = 0 (7)) $(= −9.81 ! �$ (7�) �(= �� (7-)
Simply ignore the dummy derivatives?

Hiding the dummies causes two problems: the first is that
it looks as if we need two steady-state conditions and have
four free derivatives (two velocities and two
accelerations) that we could set to zero for steady-state
initialization, but in reality there are only two free
derivatives in total (one velocity and one acceleration).

If we ignore that and set the two velocities to zero that
directly collapses one existing equation:

2��� ! 2$�$ = 0 ./01234⎯⎯⎯6 0 = 0 (8)
Similarly setting the two accelerations to zero simplifies
another existing equation:

2�(� ! 2�� � ! 2$($! 2$� � = 0 ./01234⎯⎯⎯6 2�� � ! 2$� � = 0 (9)
Which have the following Jacobian with respect to the
velocities:

72� 2$4�� 4$� 8 (10)

When the velocities goes to zero the second row tends to
zero.

Solving that problem leads to the second problem, that
some choices of velocity and acceleration-variables for
steady state lead to singular systems, which is exactly the
reason we used dynamic dummy-derivatives in the first
place. It is not certain that a dummy-derivative system is
singular at exactly the steady state solution, but it seems
likely and will occur in this case if we set

$(= $� = 0 (11)
which gives the following Jacobian with respect to �, $, �� , �(, � (where the second and third rows are zero at
the solution):

⎣⎢
⎢⎢
⎡ 2� 2$ 0 0 02�� 0 2� 0 02�(0 4�� 2� 00 −� 0 0 −$−� 0 0 1 −�⎦⎥

⎥⎥
⎤

(12)

Directly using the dummy derivatives

An alternative would then to be to attempt to set the actual
derivatives of the dynamic dummy derivative method to
zero. But that seems underspecified, since it involves
projecting the original derivatives using an unspecified
projection matrix.

This approach might work using an iterative scheme
where the projection matrix is recomputed until
convergence, but it seems needlessly complicated and it is
not obvious that it will generate a unique solution.
Proposed solution

The proposed remedy here involves modifying the initial
equations in a consistent way.

First we set all derivatives in each dummy derivative
system to zero as if we ignore the dummy derivatives, and
then we balance that by removing the corresponding
differentiated constraint that becomes identically zero for
that choice (after verifying that it is in fact the case).

Additionally we propagate these zeros to other dummy
derivative systems, since normally the acceleration
constraints also involve velocities.

For the pendulum this means that we want to solve:
�� ! $� = 1 (13&) �� = 0 (13') $� = 0 (13)) $(= −9.81 ! �$ (13�) �(= �� (13-) �(= 0 (13�) $(= 0 (13�)

and verify that the differentiated constraints are zero: 2��� ! 2$� $ = 0 (14&) 2�(� ! 2�� � ! 2$($! 2$� � = 0 (14')

4 Future work: Quasi Steady State
Quasi steady state, where some derivatives have non-zero
values is important in practice. The goal would be to
directly study the model in operation without unnecessary
transients. A realistic example would be a model of a car
running at 60 km/h.

The goal of this section is two-fold; both to indicate
how a tool in the future could automatically find these
solutions, and also to demonstrate the problem to avoid the
unintended solutions shown here.

4.1 Why quasi steady state is complicated
Let us start by a simple example of two connected inertias.

Investigating Steady State Initialization for Modelica models

122 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181119

Figure 3 Two Inertias, Quasi Steady State

Assuming we want quasi steady-state and set
inertia.w(start=5, fixed=true); something odd happens in
this example. Just setting all other derivatives to zero
makes the other inertia starts stationary and then we get a
periodic solution for the angular velocities.

If we use a damper (or spring-damper) the states will as
default be in the damper and thus as default the damper
will have derivative zero, but if we set options to avoid
states in the damper there is a risk of a similar non quasi-
steady-state solution.

Note that it is not necessarily that we give a rotational
velocity – a more realistic case is that we attach an engine
(can even be a simple constant torque) to one inertia and
some losses such as bearing-friction to the other. The
result is the same, we can set one acceleration to zero, but
not the other; and the solution will then start with a similar
transient until reaching a quasi steady state.

Obviously this is not the desired quasi-steady solution,
and the idea with investigating a small example is to find
an approach that can be applied to a large system, like a
car.

One approach is that instead of selecting initial
conditions among the existing derivatives we add the
initial equations ?� = 0 and ?(= 0, and that is similar to
treating w=5 as a normal non-initial equation during
index-reduction. However, if we had another spring (or
spring-damper) followed by an inertia we would need to
set ?� = 0 and ?(= 0 for this new inertia, etc.

Partially this is just prioritizing setting high order
derivatives to zero, i.e. ?� = 0 instead of ? = 0, but ?(
does not even exist in the model, and even constructing ?(
in the first inertia does not create the next one. Thus further
investigations are needed. We can also consider a clutch
instead of a spring-damper, and a solution can have the
two inertias rotating with different (steady-state) speeds.

Figure 4 Advanced Quasi Steady State

An additional complication occurs if there are multiple
disconnected mechanical systems – the initialization
procedure outlined here will allow them to move
independently of each other.

This also indicates that the original name we used for
the approach “DefaultSteadyState” is misleading, since
using steady state as “default” for a few variables does not
guarantee a meaningful result.

4.2 Simple quasi steady state theory
Assume we have a system:

�� = �(�) (15&)
and we want to generalize the notion steady state to cases
where the derivative is non-zero but the system does not
change. The simplest possibility is that the derivative is
constant which gives that the following should be valid for
all points in time: �� = �(� ! ���) (15')
This implies that the derivative is in the non-trivial null-
space

ker C��
��D (16)

and such null-spaces exist if the model is translationally
invariant, such that y=T(x,p) behaves the same as x, with
the restriction that the transformation has determinant 1
(and is differentiable in p). In general quasi steady state
meaning that all points on the trajectory are “equivalent”
seems like a good definition for quasi steady state, and
smooth transformations allow that, and for a general fixed
transformation we have

�� = C��
��DE� ���(�, �)� (17)

For translational invariance FG
GHI = J and we can select

a trajectory as a varying transformation of one point (since
it always gives the same derivative). The restriction is then

that the derivatives are given as
G
G".

The benefit of this formulation can be seen for second
order 1D-mechanical systems where we directly see that
velocities should be in this null-space. Compare this with
setting ?(= 0 (i.e., setting the third order derivative of the
angle to zero) that require differentiating the model
equations an additional time. Both formulations ensure
quasi steady state behavior.

The null-space can be fairly simple, e.g. all absolute
positions (with equal weight), and without relative
positions. If we have a rotational motion with gears it is
less trivial, but still straightforward.

4.3 Multi-dimensional fixed speed rotations
However, if we want to consider a car turning with a fixed
steering angle (i.e. with a constant yaw) it becomes
complicated. In general we propose the equation:

K��(�
, �)
�� L �� = ���(�
, �)� (18)

The desired solution for rotation can be seen a pure
rotation – but around an unknown point in space, and for
the positions the second derivatives are thus non-zero (and
proportional to the distance from the rotation center for
absolute coordinates). If we use � = {NH , N., O} as
invariant position and angle of the main object and then
relative coordinates, x, we have the invariants:

N(= ��N� , O, O� , �, ��� = -QR��-EQRN� , 0, O� , �, ��� (19&)
O(= ��O� , �, ��� (19')
�(= ℎ�O� , �, ��� (19))

inertia

J=1 kg m²

inertia1

J=2 kg m²

spring

c=1 N m/rad

inertia

J=J

bearingFriction
torque

tau

const

k=10

inertia2

J=J clutch

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181119

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

123

with the solution �(= 0, �� = 0, O(= 0, N(= N�SO� . For a
rocket in space all positions and angles can be invariant,
but for more earthly applications, such as a typical car (on
a tarmac that is big, flat, and even), the positions in the
plane are the invariant positions, and the yaw angle the
invariant angle (the yaw velocity is O�).

This seems straightforward, but it is not clear how to
perform this when only using the equations - without any
additional knowledge. Additionally if the road surface
depends on the position or is slanted, there are no solutions
that rotate with a fixed speed.

However, this is the desired solution if we want to set
the speed for the car (or have the engine running), and
have the steering wheel off-center (or in general anything
that makes the car non-symmetric) – i.e. it is the natural
extension of the simple translational case for quasi steady
state to 3-dimensions and also the special case of 2-
dimensions (Höbinger and Otter, 2008).

Note that this is mostly restricted to mechanical
systems, due to lack of invariants in other cases. Electrical
systems are invariant with respect to the potentials – even
more generally than mechanical systems (the potential can
be any time-varying function), but grounding the circuit
eliminates that – and grounding is used for normal
simulation as well.

5 Evaluating the methods
There are three factors we want to consider for these
methods:

• Does is find the desired steady-state solution?
• How easy is it to set up the problem?
• How quickly do we compute the solution?

5.1 Furuta pendulum
In order to dynamically find a steady state solution we
currently have to add dampers to all joints to ensure that
the steady state solution is asymptotically stable. And then
set flag to find dynamic steady-state.

To generate the symbolic steady state solution the
dampers in Figure 5 are not necessary (although possible),
just setting the symbolic steady-state flags suffice.
However, unless we set the guess-value for R2.phi close
to zero this generates an unstable steady-state solution.

The symbolic handling automatically detects that
R1.phi is a free variable, since the rotation axis is aligned
with gravity. It is thus selected as a fixed start value in
accordance with Section 3.2.

Figure 5 Damped Furuta Pendulum

5.2 Three tanks
This is a simple model in the Fluid package in the standard
library.

Figure 6 Three Tanks Steady State

Merely simulating the model gives the following plot
(converging to a steady state):

Figure 7 Solution for Three Tanks Steady State

There is a global setting for initialization in the model
which has three relevant possibilities:

• FixedInitial – the default giving the plot
• Steady-state initial
• Initial guess-value

world

x

y

a

b

n=
{0

,1
,0

}

R
1

B1

r={0.5,0,0}

b a a b

n={1,0,0}

R2

B
2

r=
{0,-0.5,0} b

a

a b

n={1,0,0}

R3

B
3

r=
{0,-0.5,0} b

a

damper1

d=d

damper2

d=d

damper3

d=d

0 40 80 120 160 200
2

3

4

5

6

7

8

9

[m
]

tank1.level tank2.level tank3.level

Investigating Steady State Initialization for Modelica models

124 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181119

The initial guess-value in combination with steady-state
flags finds a desired solution, and reports that one tank
level and all tank temperatures are free initial values.

The built-in steady-state initial setting also finds a
steady-state solution and reports the same free initial
values, but additionally generate a diagnostic that there are
four redundant consistent initial conditions are
automatically removed:

Removed the following equations which
are redundant and consistent:
der(tank3.U) = der(tank3.m)*tank3.medium.u

+ tank3.m*der(tank3.medium.u);
der(tank1.U) = der(tank1.m)*tank1.medium.u

+ tank1.m*der(tank1.medium.u);
der(tank2.U) = der(tank2.m)*tank2.medium.u

+ tank2.m*der(tank2.medium.u);
pipe1.port_a.m_flow+pipe2.port_a.m_flow

 +pipe3.port_a.m_flow = 0.0;

5.3 HeatLosses in MultiBody
This example model is interesting because it mixes
different domains and has dynamic state selection.

Figure 8 Multiple Springs with Heatlosses

The heat-losses are due to friction in the dampers, and
should be zero in steady-state (confirmed by examining
the solution at steady-state).

The symbolic steady-state settings directly finds the
steady-state solution (the straight lines in the diagram)
matching the dynamic solution.

Figure 9 Solution for Multiple Springs with Heatlosses

The dynamic steady-state does not quickly find that the
solution has converged, since there is a hidden slowly
damped oscillation.

5.4 Quasi-steady state vehicle
Using constant torque for a simple translational vehicle
with a non-rigidly attached trailer:

Figure 10 Quasi Steady-State for Simple Vehicle

Using dynamic steady state automatically finds the
steady-state velocity (after 1 minute).

Figure 11 Solution to Quasi Steady-State for Simple Vehicle

Since the quasi-steady symbolic solution is not yet
implemented we would have to manually add the
corresponding initial equations based on Section 4.2 (the
first two give that the derivatives are in the null-space and
the final one is setting a second order derivative to zero):
 vehicle.v=trailer.v;

 vehicle.a=trailer.a;

 vehicle.a = 0;

directly giving the solid line above.

5.5 Implementation notes
The symbolic steady state initialization with the
improvements listed in section 3 were implemented
already in Dymola 2020, but Dymola 2022 and
3DExperience 2022x adds the possibility of ignoring
some state initializations in the model which makes it
easier to perform the tests. The flags used are:
Advanced.Translation.
 DefaultSteadyStateInitialization=false;
Advanced.Translation.
 DefaultSteadyStateInitializationLevel=1;

 Finding the dynamic steady-state initialization was
implemented in Dymola 2022, and is enabled by the flag:
Advanced.Simulation.

world

x

y

m
=

1 kg

body1

bar1

r={0.3,0,0}

a b

bar2

r={0.3,0,0}

a b

a

b

spring1

c=
30 N

/m

a

b

dam
per1

d=
2 N

 s/m

a

b

springD
am

per

d=
2 N

 s/m

c=
30 N

/m

m
=

1 kg

body2

bar3

r={0.3,0,0}

a b

a

b

springD
am

perS
eries

c=
30 N

/m

d=
2 N

 s/m

m
=

1 kg

body3
a

b

spring

c=
30 N

/m

const

k=20

convection

Gc

TAmbient

degC

0 1 2 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[m
]

springDamper.s // 3 springDamper.s // 2 springDamperSeries.s // 2 springDamperSeries.s // 3

vehicle

inc. cr w ind

trailer

inc. cr w ind

torque1

tau

springDamper

d=100 N s/m
c=100 N/m

const1

k=100

0 25 50
-20

0

20

40

60

80

100

[k
m

/h
]

trailer.v // 3 trailer.v // 2

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181119

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

125

 SteadyStateTermination=true;
 By default the simulation is automatically terminated

when all state derivatives have an absolute value less than 2 % of the scale of the corresponding state, taking into
account the time scale of the simulation. This default
tolerance is chosen in accordance with the common
definition of settling time within control theory (Tay,
Mareels and Moore 1998). The tolerance can be modified
by
Advanced.Simulation.
 SteadyStateTerminationTolerance
for details see (Dassault Systèmes 2021).

5.6 Evaluation
Both methods quickly find a steady-state solution, and are
fairly easy to set up.

The downside of finding dynamic steady-state is that
one must ensure that the system is sufficiently damped to
reach a steady state; whereas the downside of symbolic
steady state is that it may find an unwanted steady-state
solution.

6 Outlook for standardization
The new features are specific to Dymola, and not standard
Modelica.

The Modelica Language has no features for switching
between setting values for states and steady-state
initialization. However, many Modelica models have such
settings, locally and/or using an inner component to have
a “global” setting.

The examples show that such settings, when they exist,
work similarly as the tool-setting for symbolically solving
the steady-state problem. This means that any
standardization effort needs to ensure that the existing
models can seamlessly switch to the new formulation
which will be an additional effort.

One downside of having the steady-state setting in the
model is that although index-reduction automatically
handles algebraic couplings for the dynamic equations that
does not automatically remove initialization equations.
However, that is not a major issue as tools can detect such
redundant initial equations and automatically remove
them.

A specific issue with having steady-state settings
locally in components is that this can easily set up quasi
steady-state problems generating undesirable solutions as
indicated above.

7 Conclusions
This paper demonstrates that Modelica allows powerful
initialization techniques, both symbolic and numeric. The
methods have been implemented in Dymola 2022 and
3DEXPERIENCE 2022x.

However, to be standardized in Modelica this must be
integrated in models complementing the existing model

settings and it must be possible to detect and preferably
solve quasi steady state problems.

Acknowledgements
Some of this work has been part of the ModeliScale
research project, and we also acknowledge the customers
providing us with challenging models.

References
Dassault Systèmes. (2021) Dymola 2022: Dymola, Dynamic

Modeling Laboratory, User Manual 2A: Model Development
Tools. Dassault Systèmes AB, Lund, Sweden.

Casella, Francesco, and Michael Sielemann, and Luca
Savoldelli (2011) “Steady-state initialization of object-
oriented thermo-fluid models by homotopy methods” In
Proceedings of the 8h International Modelica Conference. 86-
96

Casella, Francesco (2012): On the Formulation of Steady-State
Initialization Problems in Object-Oriented Models of Closed
Thermo-Hydraulic System.

Cormen, Thomas H. and Charles E. Leiserson, and Ronald L.
Rivest (1990) Introduction to Algorithms. MIT Press. ISBN
0-07-013143-0

Höbinger, Mathias and Martin Otter (2008): “PlanarMultiBody
A Modelica Library for Planar Multi-Body Systems”. In:
Proceedings of 6th International Modelica Conference 549-
546

Ochel, Lennart, and Bernhard Bachmann and Francesco
Casella (2014): “Symbolic Initialization of Over-determined
Higher-index Models” In: Proceedings of the 10h
International Modelica Conference. 1179 – 1187.

Olsson, Hans (editor) (2021): Modelica A Unified Object-
Oriented Language for Systems Modeling Language
Specification Version 3.5.
URL: https://specification.modelica.org/maint/3.5/MLS.pdf

Kuhn, Martin Raphael (2017): “Periodic Steady State
Identification for use in Modelica based AC electrical system
simulation”. In: Proceedings of the 12th International
Modelica Conference. 493 – 505.

Mattsson, Sven Erik, and Hans Olsson and Hilding Elmqvist
(2000) “Dynamic Selection of States in Dymola”. In:
Modelica Workshop 2000. 61 –67.

Mattsson, Sven Erik, and Hilding Elmqvist, and Martin Otter,
and Hans Olsson (2002) “Initialization of hybrid differential-
algebraic equations in Modelica 2.0”. In: Proceedings of 2nd
International Modelica Conference. 9-15.

Pantelides, Constantinos (1988) “The Consistent Initialization
of Differential-Algebraic Systems” In SIAM Journal on
Scientific and Statistical Computing 9:2, pg 213-231.

Sielemann, Michael, and Francesco Casella, and Martin Otter,
and Christoph Clauß, and Jonas Eborn, and Sven Erik
Mattson, and Hans Olsson (2011) “Robust Initialization of
Differential-Algebraic Equations Using Homotopy” In
Proceedings of the 8h International Modelica Conference.

Sielemann, Michael (2012) “Probability-One Homotopy for
Robust Initialization of Differential-Algebraic Equations” In
Proceedings of the 9h International Modelica Conference.
223-236.

Investigating Steady State Initialization for Modelica models

126 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181119

Tay, Teng-Tiow, and Ivan Mareels, and John B. Moore (1998)
High Performance Control. Birkhäuser Basel.

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181119

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

127

