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Abstr act in (Mattsson 2002), and supplemented by selectorg n
fixed start-values as described in section 8.6.2
This paper investigates steady-state initializatimth “Recommended selection of start-values” of Modelica
symbolically and numerically, and in particulafOlsson (editor), 2021).
demonstrates new ways of adapting the symbolicasth  The problems are often numerically challenging and
for finding steady-state solutions for Modelica ratsd homotopy methods can be useful for handling thee; s
extending ideas that were previously manualigielemann 2011), (Sielemann 2012), and (Caselld )20
implemented in libraries. The methods are compared pgte that the initialization is applied after theléx-

realistic Modelica models in Dymola. , reduction, and we will thus primarily consider ABE or

Keywords: initialization, fluid models, differential index-1 DAE-formulation of the model that due toléx-

algebraic equation, static simulation, steady state reduction may require additional conditions. Nohatt
historically the index reduction algorithm, (Paideb

1 Introduction 1988) was proposed specifically to find those ahiti
conditions.

Steady state behavior for models is an importamyst  Note that the difference between the ODE and irdex-
for several reasons. The steady state solutiorbeaie ¢, jation is important here as there might beiahi

goal of the particular study, when studying hoWngitions and/or start-values involving the algebr
parameters influence its characteristics, — an® als, o japies. Additionally, index reduction sometintead to
starting point for normal simulation studies, sistarting dynamic state selection, (Mattsson 2000) and the

from a steady-solution avoids uninteresting tramsie ., mhination with steady state initialization pospecific
The goal of this paper is to investigate stratedpes roblems that will be considered later.

finding steady states of Modelica models. We surve arious libraries have different mechanisms for

different approac_hes and discuss their bene_ﬂts r(%ditionally disabling initial equations and steaiues.
challenges. Additionally, we present strategies for

automatic treatment of structural and numerickil Symbolic steady stateinitialization
singularities arising due to the steady-state féatian. Steady state initialization changes this to instedd
Such problems are for example encountered in fldidlecting start-values we set derivatives to z&tus
models. To the best of our knowledge, such aut@matight be seen as simply changing from computing a
handling specifically for steady-state initializatihas not splutionx(t) from (this is most easily seen in the ODE
previously been discussed in the literature eveseveral case):
of the methods have been discussed. x = f(x(®),t)

In addition to true steady-state solutions whefe al x(0) = x, €y
derivatives are zero and the solution is unchangirgas
an outlook consider have quasi steady-state wheme st computing it from:
states are changing, but the solution is fundartignta x(t) = f(x(t),0)
time-invariant — e.g., a vehicle running at a canst (2

X . . ) 0 =x(0)
V.GIOC'ty' This creates unique challenges that W However, even if this works in some cases there are
discussed later. !

h bil ¢ th q uti " kr)number of issues in most cases:
e stability of the steady-state solution cou €. The Jacobiardf /0x might be singular, either
analyzed by a linearization at that point, but wi mot ; C S
structurally or just at the initial point; indicag

consider it in detail. that there are multiple acceptable steady-state

. e e . . solutions; this is discussed in (Casella 2012). It
2 Variantsof initialization can be difficult to give good numeric diagnostics
Normally Modelica models are initialized using thedel for this, and we will return to this in Section 3.
equations, initial equations, fixed start-valuedescribed
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Investigating Steady State Initialization for Modelica models

« Some initial conditions might be specified, either We start fromx = f(x(t), t) but instead of setting the
to handle the singularity above or in order to getire x(0) =0 we use the well-known maximum-

a specific quasi-steady-state solution. bipartite-matching; e.g., (Cormen 1990) for findimgich
These problems can be overcome using specdffiements ok that should be set to zero.
remedies as will be explained later. The matching is similar to the matching for transie
2.2 Dynamic steady state finding simulation where we require a perfect (one-to-one)

matching of derivatives to these equations. Thecheat

Qg(r;t?ﬁ; 2&?;’??;;1%allsctc?ncri]iltjignr?s“ﬁﬁltli)l/ ;ger?;md_ variables and equations are also sorted into dirong
y Y* connected components and each of them solved

state is reached (up to a certain precision). Entsiten separately; but we will not discuss that in detail.

simpler, and handles the issues above. Furthernbgre, for initializati . d wh
introducing pseudo dynamics, purely static modaislge ~ T1OWeVer, for initialization we instead attempt ta

transformed to dynamic models. The dynamics arfectaVariables tox = f(x.(t)'.t) , prioritized o first match
so that the solution tends to a steady state equtie states and then derivatives of states so thagatt®ns
static solution of the original model. This techmgis 2'© nr:agched to some variable — but not all vartae
often employed to break up algebraic loops for mdRgiched to an equation.
robust solving of static problems. For both of thes The states and derivatives of states that were iomed
application it is important to automatically detéat the in this initialization problem are then set to defaalues
steady state has been reached so that the sinmutatiobe (normally zero for derivatives) and start-value $tates.
terminated in a timely fashion. This matching is based on the variable incidenaesdch
However, there are other potential downsides wigation, but modified as will be explained later.
using the dynamic steady state initialization: This procedure is then amended for an index-1 DAE b
«  The dynamic simulation usually takes longer th@4ding algebraic equations (and initial equatiams) first
the static initialization. matching all auxiliary variables.
+ Double integrators — especially in combination AN important aspect is that when matching statése¢o
with “quasi-steady-state”, will tend to infinity. equations we prioritize them to get the result edtion

«  The model may not have a steady-state soluti§rf-2 _“Recommended _selectlon of start-values” of
but instead tend to a periodic solution, qua¥flodelica 3.5 (Olsson (editor) 2021).
periodic, or even have a strange attractor. Note that this is only used for solving the iniation
+ The solution may have state events during tPk#blem and we then use the equations in the wsapl
solution. There might also be time events f@r dynamic simulations.
integrating forward in time. This basic approach was implemented in Dymola in
Methods to detect periodic steady states ha@4 based on the similarity with the normal state-
previously been considered in the Modelica conteixitialization. There are multiple variants of thigte that
(Kuhn 2017) investigates techniques to automagicae symbolically manipulate the equations but doaiot
identify periodic steady states in Modelica modefs to symbolically solve them in contrast to (Ochel 2
electrical AC systems. An additional example is the . . .
Electrified Powertrains Library (EPTL), which feagu 3-2 Avoiding structural singularities
components that terminate a simulation when a girio For fluid models we have seen two specific cauges o
steady state is reached. singularities. The first issue for fluid modelsyesdy
It might be possible to avoid time events andgoic  handled in models in (Casella 2012), can be sineglifo
solutions by integrating from minus infinity towardero, two tanks connected in a cycle where the outflgvroim
and use implicit Euler with large step-sizes tdfiaially each tank depend on its mass, x, and some parafieter

dampen oscillations. fi = g(x,-, A]-)
. o n=f—h 3
3 Symbolic steady state initialization =f—1

We will nhow consider the specific issues related to_l_h. be int ted f din i but if
symbolic steady state initialization, and our gaher it |stctan € |ntegtrrz:1e togNart tm |r’|net_, ut 1 Wf
approach for solving it. Specifically we will dedas how aotlamg (t) com{?m? € steady-state solution weage
the changes to the basic approach handles varases c redundant equation: 0=Ff—f
—J27 )1
. . 4
3.1 Outline of symbolic approach 0=fi—1 _ ( )
Th | of th boli his t i The proposed solution for such cases is to consitier
€ goal of the symbolic approach Is 1o set up t!?R/ial equations when derivatives are set to zarm see
modified steady-state problem to ensure that it .

structurally non-singular, and numerically non-silag at ﬁhey form cycles (as in this case). Trivial etjoas are
ally gufar, . y equations that can be written on the form a=+/+isT
the desired steady state solution.

automates the procedure from (Casella 2012).
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Session 2A: Initialization & parametrization

As previously indicated the symbolic selectionratial masses. The chosen approach naturally handlesatidht,
conditions is based on matching variables to eqgoatithe initial equation can either be conditional deady-
based on their incidence. We thus modify the equoatstate initialization or always applied.
graph causing the cycle (in this case the two dérig- o ) ) )
equations) by adding an incidence to an extra ageb3-3 Avoiding singularity at the solution
variable in them and introducing a new equatiorhwithe second issue for fluid models can occur for any
incidence to the derivative-variables of these &qna (differentiated media such as the function for dgras a
(the variable is called below; the equation is left emptyfunction of the states:

Whigh gives the graph: p=d(T,p) )
h Which is differentiated to give:

p=dr(T,p)T + dp(T,p)P (6)
If we just solve the equations without symbolicqassing
as suggested in (Casella 2012) this is unproblemati

However, if we want to perform a structural anaytsi
fi=90a, A1) see which derivatives we can set to zero we getlalgm.
S Specifically we might attempt to match T or p tasth
fr K- equation during steady initialization and attempt t

AN _ compute them from it — because they influedg€T, p)
f2 = 9(x2, Az andd, (T, p).

Numerically this will not be well-behaved when we
approach the steady-state solution since the infeef T
% =fo—fi and p prdT(T, p)T + d,(T,p)p gradually disappear as
: " the derivatives approach zero.

Xy A\ We handle that by modifying the incidence for all
- initialization equations by removing checking what
_ X =f—1f happens if the state-derivatives are set to zdrohd

: equation no longer contains a non-derivative vigiaie
remove the incidence from the equation to thatabdei
when finding the steady-state solution.

fi

X1

%, 3.4 Higher order derivatives

L The original description separated variables itdtes and
Figure 1 Matching for two tanks derivatives of states. For higher order derivatittest
naturally occur in mechanical systems that is hotgs

The variables are in three groups, since we filsithn strajghtforward -- consider a simple rotational miod

h, fi1, f>; then attempt to match,, x, and finally attempt inertia spring inertial
to match,, x,. The matchings are solid lines and otherOiDie—o—\/\/\—e—eiDio
incidences are dotted thinner lines. omc

The unmatched derivativg is set to zero, and the 3= 3=

unmatched state; becomes an arbitrary start-valufigure 2 Two inertias
(there is a priority depending on whether startigalare
set and at what level, such that the start-vala ih

“highest up” is prioritized). The other state istialized )
9 P P ) However, the state-variable w can be matched to the

based orf; = iving g(xq, A1) = g(x,, 4,). . . T .
We thrgq m{;zd?fy th%%lsevt mézchir?é o re?r)mve the exfiguation der(phi)=w; i.e. it will be treated ai dnly were

equation and extra variablg but keep the previouslya denvatwg-vanable. Thus suc_h higher order. aires
matched variables. (There might be other ways tinge cause no o!|rect problem,.ar}d since the statg |6hpdtt0
to this desired matching without temporarily addamy equations its start'-valqe is ignored (as;qmmgethuamo
extra variable and equation and then removing th&hi} fixed=true). W.e mlght in the futur(_e prioritize MIL.'GS
matchest, with %, = f, — f,: and the equations are theﬁ’rSUCh combinations of state/derivative instefgktting
as usual éorted ir11to stzrongll)’/ connected componediee erivatives to zero, but other related issues aceem
each component in this case is scalar; and onlytiee important.

involving x, require the solution of a non-linear equation. 5 Dynamic State Selection

From a modeling perspective another possibility kdou ) . . .
be to have an initial equation for the total masghie Consider the pendulum in Cartesian coordinates.

system, replacing the arbitrary start-value for oh¢he rmgel Pendul um
eal VX, Vvy;

The rotational speed, w, is both a state and aatere;
and it may even have a start-value.
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Real x(start=0.5),y(start=0.7); [Zx 2y 0 O 0 ]

Real f; [2x 0 2x 0 0|
equation [2¥ 0 4x 2x 0] (12)

XN 2+yNn2=1; 0 —f 0 0 -

- y

der (x) =vx; l J

der (y) =vy; -f 0 0 1 -x

der (vy)=-9. 81+f *y; Directly using the dummy derivatives

der (vx) =f *x; An alternative would then to be to attempt to betdctual
end Pendul um derivatives of the dynamic dummy derivative method

Note that the start-values are inconsistent guak®es. zero. But that seems underspecified, since it ira®l
In Modelica tools the pendulum is usually solvethgs projecting the original derivatives using an ungfext
the dynamic dummy derivative method, since themis projection matrix.
static selection of states that generate a goadicol This approach might work using an iterative scheme
Note that there are two dynamic dummy derivativdere the projection matrix is recomputed until
systems, each selecting one state among two plitgsibi convergence, but it seems needlessly complicaiedt &n
one for positions and one for velocities. not obvious that it will generate a unique solution
However, that is an implementation detail and framProposed solution
user perspective we prefer to hide those dummyblkas The proposed remedy here involves modifying theaini
and instead give start-values for the normal véemb equations in a consistent way.
Using high order derivatives all differentiated atjons  First we sefll derivatives in each dummy derivative

can be written as: system to zero as if we ignore the dummy derivatiaad
x24+y2=1 (7a) then we balance that by removing the corresponding
2x%x +2yy =0 (7b) differentiated constraint that becomes identicadlyo for
2%x + 2% 4 25y + 292 =0 (7¢) that choice (after verifying that it is in fact thase).
j =—9.81+ fy (7d) Additionally we propagate these zeros to other dymm
¥ =fx (7e) derivative systems, since normally the acceleration

Simply ignore the dummy derivatives? constraints also involve velocities.
Hiding the dummies causes two problems: the firghat  For the pendulum this means that we want to solve:

it looks as if we need two steady-state conditams have x> +yt=1 (13a)
four free derivatives (two velocities and two x=0 (13b)
accelerations) that we could set to zero for stesate y=0 (13¢)
initialization, but in reality there are only twaeé y=-981+fy (13d)
derivatives in total (one velocity and one acceier. X =fx (13e)
If we ignore that and set the two velocities toozérat =0 (13/)
directly collapses one existing equation: y=0 (139)
2%x + 29y = 0 yields 0=0 (8) and verify that the'differgntiated constraints zge0:
2xx +2yy =0 (14a)

Similarly setting the two accelerations to zerogdifies
another existing equation:

. . N . yields _ .
2%x + 242 + 2y +2y2 =0—>2x2 + 292 =0 (9)
Which have the following Jacobian with respecthe t

2%x 4+ 2%% + 2y + 292 =0 (14b)

4 Futurework: Quas Steady State

velocities: Quasi steady state, where some derivatives haveeron
2x 2y (10) values is important in practice. The goal would tbe
4x 4y directly study the model in operation without unessary

When the velocities goes to zero the second rodstém transients. A realistic example would be a moded ofr
zero. running at 60 km/h.

Solving that problem leads to the second probléat, t The goal of this section is two-fold; both to inalie
some choices of velocity and acceleration-varialides how a tool in the future could automatically findese
steady state lead to singular systems, which istlgxtine solutions, and also to demonstrate the problemdaadhe
reason we used dynamic dummy-derivatives in thet filnintended solutions shown here.
place. It is not certain that a dummy-derivativeteyn is ] ) ]
singular at exactly the steady state solution,ibseems 4.1 Why quasi steady stateis complicated
likely and will occur in this case if we set Let us start by a simple example of two conneatedias.

y=y=0 (11)
which gives the following Jacobian with respect to
x,y,x,%, f (where the second and third rows are zero at
the solution):

122 Proceedings of the 14*" International Modelica Conference DOI
September 20-24, 2021, Linkoping, Sweden 10.3384/ecp21181119



Session 2A: Initialization & parametrization

inertia spring inertial x = f(x) (15a)
OEDEO &D&O and we want to generalize the notion steady statades
=1 Nmrad T T where the der|\_/at|ve is non-zero put the systerp;dm
J=1 kg m? J=2 kg m? change. The simplest possibility is that the dereais
Figure 3 Two Inertias, Quasi Steady State constant which gives that the following should béd/for
all points in time:
Assuming we want quasi steady-state and set x = f(x+xt) (15b)

inertia.w(start=5, fixed=true), something odd happé This implies that the derivative is in the non-aivnull-
this example. Just setting all other derivativeszéno space
makes the other inertia starts stationary and Weeget a af
periodic solution for the angular velocities. ker a) (16)
If we use a damper (or spring-damper) the statkssvi and such null-spaces exist if the model is traiwsiatly
default be in the damper and thus as default thepda invariant, such that y=T(x,p) behaves the same, astix
will have derivative zero, but if we set optionsaeoid the restriction that the transformation has deteami 1
states in the damper there is a risk of a simitar quasi- (and is differentiable in p). In general quasi dieatate
steady-state solution. meaning that all points on the trajectory are “eglgnt”
Note that it is not necessarily that we give atiotml Seems like a good definition for quasi steady statel
velocity — a more realistic case is that we at@tlengine Smooth transformations allow that, and for a gerfered
(can even be a simple constant torque) to oneianend transformation we have
some losses such as bearing-friction to the offibe i= (6T

-1
result is the same, we can set one acceleratipertp but a) f(TGp) a7

not the other; and the solution will then startwétsimilar  £q; transiational invarian(%) — I and we can select

transient until reaching a quasi steady state. . . . ..
gaq y a trajectory as a varying transformation of onep¢since

Obviously this is not the desired quasi-steadyt&Emiy . d o Y
and the idea with investigating a small exampl® iind it always gives the same derivative). The resbitis then

an approach that can be applied to a large sysiterg that the derivatives are g'Ve”gaZS
car. The benefit of this formulation can be seen folosec
One approach is that instead of selecting init@der 1D-mechanical systems where we directly bae t
conditions among the existing derivatives we ade thelocities should be in this null-space. Compai® with
initial equationsi = 0 andw = 0, and that is similar tosettingw = 0 (i.e., setting the third order derivative of the
treating w=5 as a normal non-initial equation dgrimngle to zero) that require differentiating the wlod
index-reduction. However, if we had another sprfog equations an additional time. Both formulationsueas
spring-damper) followed by an inertia we would néedquasi steady state behavior.
setw = 0 andw = 0 for this new inertia, etc. The null-space can be fairly simple, e.g. all abtol
Partially this is just prioritizing setting high der positions (with equal weight), and without relative
derivatives to zero, i.ev = 0 instead oiv = 0, butw positions. If we have a rotational motion with gedris
does not even exist in the model, and even corisigs@ less trivial, but still straightforward.
in the first inertia does not create the next dinels further o ) ) )
investigations are needed. We can also considertehc 4.3 Multi-dimensional fixed speed rotations
instead of a spring-damper, and a solution can tle@eHowever, if we want to consider a car turning veitfixed
two inertias rotating with different (steady-stasgpeds. steering angle (i.e. with a constant yaw) it become

— o iy ez complicated. In general we propose the equation:
i Q%@H%" T (x0, D)\ .
— = cluch 3= T p= f(T(xO’ p)) (18)

Figure 4 Advanced Quasi Steady State The desired solution for rotation can be seen & pur
An additional complication occurs if there are ripi¢ rotation — but around an unknown point in space, fan
disconnected mechanical systems — the initialinatie positions the second derivatives are thus eoo{zand
procedure outlined here will allow them to mowroportional to the distance from the rotation eerfor
independently of each other. absolute coordinates). If we use={r,n,0} as
This also indicates that the original name we used invariant position and angle of the main object #meh
the approach ”Defau|tSteadyState” is m|s|ead|ngcs| relative Coordinates, X, we have the invariants:
using steady state as “default’ for a few variabless not  # = f(7,6,0,x,%) = e®9 (e ’97,0,0,x,%) (19a)
guarantee a meaningful result. g = g(g',x, x) (19b)

% =h(8,x,%) (19¢)

4.2 Simple quasi steady state theory
Assume we have a system:
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with the solution = 0, x = 0,6 = 0,# = 7R6. For a
rocket in space all positions and angles can bariant,
but for more earthly applications, such as a typiaa(on
a tarmac that is big, flat, and even), the pos#tionthe
plane are the invariant positions, and the yaw eartigg
invariant angle (the yaw velocity &.

This seems straightforward, but it is not clear How
perform this when only using the equations - withamy
additional knowledge. Additionally if the road sack
depends on the position or is slanted, there aselutions l i i
that rotate with a fixed speed.

However, this is the desired solution if we wansé&b x
the speed for the car (or have the engine runniugy,
have the steering wheel off-center (or in genemgittang
that makes the car non-symmetric) — i.e. it isrtheural
extension of the simple translational case for gstasdy
state to 3-dimensions and also the special cas2- of
dimensions (Hobinger and Otter, 2008).

Note that this is mostly restricted to mechanicabure 5 Damped Furuta Pendulum
systems, due to lack of invariants in other casksxtrical
systems are invariant with respect to the potestiadven 5.2 Threetanks

damper2

damperl r={05,0,0}

n={10,0}

R2

damper3

{0'50-0)=1
cd

more generally than mechanical systems (the pateath Ts is a simple model in the Fluid package instesdard

be any time-varying function), but grounding thecait library.
eliminates that — and grounding is used for nornm ‘anki tank2
simulation as well.

level =

level =

5 Evaluating the methods

There are three factors we want to consider foseh
methods:
« Doesis find the desired steady-state solution?
¢« How easy is it to set up the problem?
* How quickly do we compute the solution?

5.1 Furuta pendulum

In order to dynamically find a steady state solutige Figure 6 Three Tanks Steady State

currently have to add dampers to all joints to emshat Merely simulating the model
the steady state solution is asymptotically stafehel then (converging to a steady state):
set flag to find dynamic steady-state.

gives the following plo

— tankllevel — tank2.level — tank3.level
To generate the symbolic steady state solution the ¢
dampers in Figure 5 are not necessary (althouggtilgey o
just setting the symbolic steady-state flags seffic
However, unless we set the guess-value for R2lpbec s
to zero this generates an unstable steady-stattosol 6
The symbolic handling automatically detects that _|
R1.phiis a free variable, since the rotation &iligned
with gravity. It is thus selected as a fixed statue in 41
accordance with Section 3.2. o
v T v T v T v T
0 40 80 120 160 200

Figure 7 Solution for Three Tanks Steady State

There is a global setting for initialization in theodel
which has three relevant possibilities:

« FixedInitial — the default giving the plot

« Steady-state initial
e Initial guess-value
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The initial guess-value in combination with steatigte = The dynamic steady-state does not quickly find thet
flags finds a desired solution, and reports tha tamk solution has converged, since there is a hiddewlslo
level and all tank temperatures are free initidligs. damped oscillation.

The built-in steady-state initial setting also find . .

steady-state solution and reports the same fremlinP-4 Quasi-steady state vehicle

values, but additionally generate a diagnostictthere are Using constant torque for a simple translationdiicle

four redundant consistent initial conditions amgith a non-rigidly attached trailer:

automatically removed: oot orquet
Renoved the foll owi ng equati ons whi ch )

are redundant and cons?st gnt: taui Qf

der (tank3.U) = der(tank3.m*tank3. mediumu

springDamper

vV

vehicle
v

k=100 ©=100 Nim

+ tank3. ntder (tank3. medi um u); crioosim
der(tankl.U) = der(tankl. m*tankl. mediumu

+ tankl. mtder (tankl. medi umu); wailer
der (tank2.U) = der(tank2.m *tank2. mediumu st

+ tank2. ntder (tank2. medi um u); &Qj

pi pel. port _a. m fl owtpi pe2. port _a. mfl ow ) . . . e
+pi pe3. port_a.mflow = 0.0; Figure 10 Quasi Steady-State for Simple Vehicle

5.3 HeatLossesin MultiBody Using dynamic steady state automatically finds the

. o . . _ steady-state velocity (after 1 minute).
This example model is interesting because it mixes

. . X i — trailer.v// 3 — trailer.v// 2
different domains and has dynamic state selection. 100
Y e barl bar2 bar3
W
={0.3.0.0} 1={030,0p r={03,00
X 60—

]

T6uLds
sadureqButid:
n T

Tkm/h]
N
o
1

wsNe=p
win 0g=
wiN0g=>
=

| seuesseduregbuids

g
g
g

<
Y

oyT=w

2Apoq

-20 —— — T — T
0 25 50
Figure 11 Solution to Quasi Steady-State for Simple Vehicle

T

VTAmblem
7 Since the quasi-steady symbolic solution is not yet
. 7 implemented we would have to manually add the
o J corresponding initial equations based on Secti@n(he
first two give that the derivatives are in the raplace and
P the final one is setting a second order derivativeero):
Figure 8 Multiple Springs with Heatlosses vehicle.v=trailer.v;

L vehicle.a=trailer.a;
The heat-losses are due to friction in the dam@ard, yehicle.a = 0

should be zero in steady-state (confirmed by exaingdirectly giving the solid line above.
the solution at steady-state). .
The symbolic steady-state settings directly finds t5.5 Implementation notes

steady-state solution (the straight lines in thegthm) The symbolic steady state initialization with the

convection

matching the dynamic solution. improvements listed in section 3 were implemented
already in Dymola 2020, but Dymola 2022 and
g omipeere Y spampene 2 s e e "* 3DExperience 2022x adds the possibility of ignoring
ol some state initializations in the model which makes
051 \( o~ easier to perform the tests. The flags used are:
SRR oy Advanced. Transl ati on.
R A P——] Def aul t St eadySt at el ni tial i zati on=f al se;
os| // Advanced. Transl ati on.
v Def aul t St eadyStatel nitializationLevel =1;
PR e Finding the dynamic steady-state initializatioas

0 1 2 3
Figure 9 Solution for Multiple Springs with Heatlosses

implemented in Dymola 2022, and is enabled by g f
Advanced. Si nul ati on.
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St eadySt at eTer i nati on=t r ue; settings and it must be possible to detect ancemably
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