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Abstract 

To get reliable simulation results from a Modelica 

model it is important to parametrize and initialize the 

model using the best estimate of the state of the system. 

Commonly, this state estimation is done by inverse 

calculation on a square system of equations requiring as 

many known values as states to be computed. In practice 

this constraint is an important limitation and, in addition, 

this method does not provide any information on the 

uncertainties or confidence level associated to the 

estimated state. 

Taking advantage of the mathematical formulation of 

Modelica equations, this paper presents a new method 

to cope with the difficulties associated to the inverse 

calculation method. This approach adapts and extends 

the framework of data assimilation to provide a fully-

integrated Modelica tool, which efficiently can handle 

every type of state estimation problem for static models. 

This method has been successfully tested with simple 

and complex Modelica models. Finally, the Modelica 

implementation of this technique allows to easily extend 

it to further applications. 

Keywords: Modelica, parameter estimation, state 

estimation, model, data assimilation 

1 Introduction 

The safe and economically efficient operation of power 

plants and energy systems at large such as power grids 

or district heating and cooling networks rely on data that 

are used to assess the current state of the system and 

make predictions on the future states of the system at 

different timescales ranging from seconds to years. 

Finding the best estimation of the system state is 

important to diagnose functioning problems such as 

energy or efficiency losses and make the right decisions 

for predictive maintenance such as the best time to 

change a pump before it breaks.  

The best estimation depends on the quality and the 

number of measurements. Unfortunately, raw data is 

always subject to uncertainties, and in general the 

number of states to be estimated far exceeds the number 

of available measurements. When dealing with a 

behavioral model (or digital twin) of the system, the 
term “states” refers to the initial values of the dynamic 

states and the values of the parameters, which are 

quantities that are not constrained by the model’s 

equations. Poor state estimation limits the predictive 

power of the model. 

Modelica models must be initialized by giving values 

to all states. This is normally done by inverse calculation 

on a square system of equations that requires to provide 

as many known values as states to be computed. 

Because the number of states most often far exceeds the 

number of known variables, the user must make a choice 

between the states to be computed and the states to be 

manually initialized from assumptions. Therefore, there 

is no guarantee on the accuracy of the estimation, and 

therefore no guarantee on the accuracy of the 

predictions. Static or dynamic checks on the model do 

not provide any information on the consistency of the 

initial conditions as initial conditions are not constrained 

by the model’s equations (however, unphysical initial 

conditions often, but not always, lead to numerical 

divergence at simulation time). An answer to that 

problem is data assimilation. 

Data assimilation is a set of techniques that combines 

statistical data on the measurements with a priori 

knowledge from the expert (the so-called background) 

and knowledge embedded in the model (the model’s 

equations) to provide the best estimate of the system 

initial state in the form of a mean value and confidence 

range for each estimated state. The quality and the 

accuracy of the estimated states will depend on the 

quality of the input data considered. Data assimilation 

uses all available information, that is, the more data that 

is provided by the user (mainly background and 

statistical data) the more accurate the result of the data 

assimilation will be. In case that this detailed 

information is not known by the user, uninformative 

prior or weakly informative prior (such as guess values) 

can be provided. 

Data assimilation was initially developed for weather 

forecasting and proved to be essential for the accuracy 

of weather prediction, which is particularly difficult, the 

atmosphere being a chaotic system. It is therefore 

expected that this technique delivers good results on a 

larger timescale for power plants which are stable 

systems. 

A previous work (Corona Mesa-Moles L. Argaud 

J.P., Jardin A., Benssy A., Dong Y, 2019) has shown 

that data assimilation can be used with a Modelica 

model to estimate the state of the secondary loop of a 

nuclear power plant. In this experiment, the data 
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assimilation algorithms were coded in Python1 and the 

Modelica model used as a black box to provide 

numerical values to the iterations of the Python code. 

This method has some limitations such as lengthy 

calculations and the impossibility of estimating the 

values of boundary conditions when several operating 

points are considered. One reason for the time-

consuming calculations is the need to compute 

numerical Jacobian matrices by multiple calls to the full 

model of the plant. 

From Dymola’s perspective the calibration option has 

already been considered. This option is primarily 

designed for the case where there are more 

measurements than states and parameters to estimate, 

and normally that there are time-serie(s) of 

measurements (Dassault Systèmes, 2021, Section 2). 

The implementation, which is found in the Dymola 

Design library, solves the non-linear least squares 

problem, using Levenberg–Marquardt, which uses 

Gauss–Newton internally (Fletcher, 1987, Sections 5.2 

and 6.1). 

This paper presents a solution that is better integrated 

with Modelica: it takes advantage of the knowledge of 

the mathematical form of the Modelica equations to 

compute analytical Jacobians and allows the coding of 

data assimilation algorithms directly in Modelica. It also 

paves the way to extracting, from the original Modelica 

model, the equations that are strictly necessary to 

perform the state estimation, thus reducing the size of 

the computations. These equations correspond to the 

observation operator that binds the measured values (the 

inputs of the calculation) to the states (the outputs of the 

calculations): after all, no equation is needed if the 

measured or observed variables are the same as the 

estimated ones (the observation operator is then the 

identity operator). 

This paper is structured as follows. Section 2 presents 

the new equation-based method for parameter and state 

estimation. Section 3 describes how this method is 

implemented in Modelica and finally Section 4 presents 

the application of this new method on a complex 

Modelica model developed with the open source library 

ThermoSysPro. 

2 The New Equation-based Method 

2.1 Optimization problem  

Data assimilation intends to combine different sources 

of information in order to estimate at best the true state 

of a system. The combination of different sources of 

information such as a physical model and observations 

can be understood as an optimization problem. There are 

different mathematical approaches to handle data 

assimilation problems, among which control theory 

                                                        
1 The Python codes were mainly based on the LGPL 

free distributed tool ADAO (Salome, 2018) 

(variational methods) and estimation theory (Kalman 

filter or optimal interpolation) can be cited. Variational 

methods define explicitly the optimization problem 

considering a cost function in which terms associated to 

the model and to the observations appear. Compared to 

other methods, the variational approach enables to 

handle easily non-linear models and combine different 

types of observations while keeping a very efficient 

computation time and accurate solution for the 

optimization problem. 

The most well-known variational method in data 

assimilation is the so-called 3D-Var approach (see Asch 

M. et al., 2016 for more details). This classical approach 

can be extended to take into consideration the estimation 

of boundary conditions as well, and this is one of the 

main novelties presented in this article. 

The objective of the method described in this article 

is to give the best estimate of the tuners 𝑥 of a given 

model 𝐻 considering a certain number of observations 

𝑦obs,𝑘 (which can be measurements or design 

assumptions for example) obtained for a set of different 

boundary conditions 𝑝𝑘 . In practice, considering the 

uncertainties related to the model 𝑃b, to the boundary 

conditions 𝑃b,𝑘 and to the observations 𝑃R,𝑘 (all given in 

the form of covariance matrices) it is possible to 

compute the best estimate of the tuners 𝑥  and of the 

boundary conditions 𝑝𝑘 on the basis of an initial value 

𝑥b and 𝑝b,𝑘that correspond to the a priori knowledge of 

the state (the so-called background). The difference 

between the tuners and the boundary conditions is that 

boundary conditions vary from one operating point to 

another while tuners remain the same for all the 

operating points considered. 

The cost function described in the previous 

paragraph, and corresponding to an extended version of 

the 3D-Var approach, is defined as follows: 

min
𝑥, 𝑝

𝐽(𝑥, 𝑝)  𝐰𝐢𝐭𝐡 𝐽(𝑥, 𝑝)

= 𝑛op ⋅ ‖𝑥 − 𝑥b‖
𝑃b

−1
2

+ ∑(‖𝑝𝑘 − 𝑝b,𝑘‖
𝑃b,𝑘

−1

2

𝑛op

𝑘=1

+ ‖𝑦𝑘 − 𝑦obs,𝑘‖
𝑃R,𝑘

−1

2
) 

(1) 

Where: 

• 𝑛op are the total number of operating points; 

• 𝑥 are the tuners to be estimated; 

• 𝑥b  are the tuners’ background (a priori 

knowledge of the tuners to be estimated); 

• 𝑝𝑘 are the boundary conditions for operating 

point 𝑘; 

• 𝑝b,𝑘  are the boundary conditions’ 

background (a priori knowledge of the 

boundary conditions  to be estimated); 
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• 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘) are the values computed by 

the model for operating point 𝑘 and 𝐻 is the 

Modelica model; 

• 𝑦obs,𝑘 are the observations (corresponding to 

the values computed by 𝐻); 

• 𝑃b
−1  is the tuner background error 

covariance matrix; 

• 𝑃b,𝑘
−1 is the boundary condition background 

error covariance matrix for operating point 𝑘 

• 𝑃R,𝑘
−1  is the observation error covariance 

matrix for operating point 𝑘. 

It can be noted that weighted Euclidean norms have 

been used in the definition of cost function 𝐽, i.e. for a 

vector 𝑣 , ‖𝑣‖𝐴−1
2 = 𝑣𝑇𝐴−1𝑣,  where 𝐴−1  is a positive 

definite matrix. 

Solving this optimization problem gives the best 

estimate of tuner 𝑥  (which is denoted by  𝑥a ) and of 

boundary conditions 𝑝𝑘  (which is denoted by 𝑝a,𝑘 ), 

these optimal solutions are referred to as the analysis. 

The action of the model is captured by 𝐻, relating the 

observed variables to the tuners and boundary 

conditions ( 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘) ). However, for general 

Modelica models 𝑦𝑘 is not explicitly given as a function 

of 𝑥 and 𝑝𝑘. Instead, 𝑦𝑘  is implicitly given by 

𝐺(𝑥, 𝑝𝑘 , 𝑦𝑘 , 𝑧𝑘  ) = 0 (2) 

where 𝐺 is the mathematical representation of the entire 

static Modelica model and 𝑧𝑘 are all of the computed 

variables except 𝑦𝑘. Thus, in general we have 𝑛𝑧 ≫ 𝑛𝑦. 

As discussed in Section 1, 𝐺  and 𝑧𝑘  may, for certain 

applications, be substantially reduced in size by 

extracting from 𝐺  only those equations that are 

necessary to link 𝑥  and  𝑝𝑘  to 𝑦𝑘 . In this article we 

consider models with large algebraic loops comprising 

most of the model, where the connections between the 

tuners and observed variables are traced through these 

loops. Thus, a substantial reduction of 𝐺 is not possible, 

see Section 3. Nonetheless, we consider such an 

extraction algorithm an interesting topic for future work. 

When generating simulation code, a Modelica tool 

will perform a causalization, this means that the implicit 

equation 𝐺(𝑥, 𝑝𝑘 , 𝑦𝑘 , 𝑧𝑘 , ) = 0  is transformed into the 

explicit equation 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘), where 𝑧𝑘 are treated as 

internal variables inside 𝐻. Thus, we may continue to 

use the notation and formulae as presented earlier in this 

section. 

2.2 Computation of uncertainties  

The data assimilation approach gives as well the 

possibility to compute the uncertainties associated to the 

parameters and boundary conditions that are estimated. 

The uncertainty associated to the analysis is given in the 

form of an error covariance matrix, the so-called 

analysis-error covariance matrix: 𝑃aassociated to 𝑥a and 

𝑃a,k  associated to 𝑝a,𝑘 . They play the same role with 

respect to the analysis as 𝑃b and 𝑃b,𝑘
−1  with respect to 

the background. 

In the case of the initial approach formulation of the 

data assimilation problem, it can be shown that, 

assuming that the model operator 𝐻  can be 

approximated by a linear operator 𝑯 in a neighborhood 

of the analysis, the analysis-error covariance matrix 𝑃𝑎 

is equal to the Hessian ℋ of the cost function at 𝑥𝑎 (see 

Tarantola A., 2005 and Bousserez N. et al., 2015). In 

such case, the Hessian of the cost function is given by: 

ℋ =  𝑃b
−1 + 𝑯𝑇𝑃R

−1𝑯 = 𝑃a
−1 (3) 

For the final formulation of the data assimilation 

problem presented in Section 2.1, the Hessian of the cost 

function with respect to 𝑥  and all the 𝑝𝑘  can be 

computed by differentiating the final form of the cost 

function twice. The first differentiation of the cost 

function gives its gradient: 

∇𝑥𝐽 =  2 ∙ 𝑛op ∙ 𝑃b
−1(𝑥 − 𝑥b) + 

2 ∙  ∑ (∇𝑥𝑦𝑘
𝑇 ∙ 𝑃R,𝑘

−1 ∙ (𝑦𝑘 − 𝑦obs,𝑘))

𝑛op

𝑘=1

 
(4) 

∇𝑝𝑘
𝐽 =  2 ∙ 𝑛op ∙ 𝑃b,𝑘

−1 ∙ (𝑝𝑘 − 𝑝b,𝑘) + 

2 ∙  ∇𝑝𝑘
𝑦𝑘

𝑇 ∙ 𝑃R,𝑘
−1 ∙ (𝑦𝑘 − 𝑦obs,𝑘), ∀ 𝑘 

(5) 

From these expressions and in a neighborhood of the 

analysis (assuming that the model derivatives can be 

approximated by a linear model (the so-called linear 

tangent model), i.e. ∇𝑥𝑦𝑘 and ∇𝑝𝑘
𝑦𝑘 can be considered 

as constant matrices) the second derivatives of the cost 

function can be easily computed as follows: 

ℋ𝑥 = 2 (𝑛op ∙ 𝑃b
−1 + ∑(∇𝑥𝑦𝑘

𝑇 ∙ 𝑃R,𝑘
−1 ∙ ∇𝑥𝑦𝑘)

𝑛op

𝑘=1

) (6) 

ℋ𝑝,𝑘 = 2(𝑛op ∙ 𝑃b,𝑘
−1 + ∇𝑝𝑘

𝑦𝑘
𝑇 ∙ 𝑃R,𝑘

−1 ∙ ∇𝑝𝑘
𝑦𝑘), ∀ 𝑘 (7) 

Considering the results presented in (Tarantola A., 

2005 and Bousserez N. et al., 2015), the analysis-error 

covariance matrices for 𝑥  and all the 𝑝𝑘  can 

straightforwardly be derived from the previous 

expressions in order to compute the analysis 

uncertainties: 𝑃a =  ℋ𝑥
−1

 and 𝑃a,𝑘 =  ℋ𝑝,𝑘
−1

. 

2.3 Solving method 1: Gradient descent 

The gradient descent method is a well-known method to 

solve optimization problems. It is an iterative process 

based on the computation of the cost function 𝐽. It can 

be implemented in many different ways, and it can be 

used in the context of data assimilation to solve the 

optimization problem mentioned above.  

When boundary conditions are considered in the 

optimization problem, this method can be described by 

the following algorithm: 

- Initialization : 𝑥0 = 𝑥b and 𝑝0,𝑘 = 𝑝b,𝑘 , ∀ 𝑘 

- While ‖∇𝑥𝐽‖ or ‖∇𝑝𝑘
𝐽‖, ∀ 𝑘 > 𝜀 or 𝑛 ≤ 𝑛max, do: 

o Compute ∇𝑥𝐽 and ∇𝑝𝑘
𝐽, ∀ 𝑘 

o Descent and update of 𝑥 and 𝑝𝑘 
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 𝑥𝑛+1 = 𝑥𝑛 − step ∙ ∇𝑥𝐽 

 𝑝𝑛+1,𝑘 = 𝑝𝑛,𝑘 − step ∙ ∇𝑝𝑘
𝐽, ∀ 𝑘 

o 𝑛 = 𝑛 + 1 

The explicit expressions of the gradients can be found 

in Section 2.2. 

2.4 Solving method 2: Stationary point 

The optimization problem presented in Section 2.1 can 

be interpreted as a minimization of a cost function 𝐽 

under the constraints that the model equations must be 

satisfied. In this case, a necessary condition to find the 

minimum of the cost function is that its gradient is equal 

to zero. 

This solution can be derived from the following 

equations: 

- ∇𝑥𝐽 = 0 

- ∇𝑝𝑘
𝐽 = 0, ∀ 𝑘 

where the model equations 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘) are used in 

the computations of the above objective function 

gradients. The stationary point equations are typically 

solved using a Newton-type solver for optimization 

(Fletcher, 1987, Chapter 3). However, we do not need to 

take further steps here as writing the optimization 

problem all in Modelica allows for stating equations, not 

just algorithms. For details see Section 3.1.2. 

2.5 Solving method 3: BFGS 

As a third alternative, we consider the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm. It is 

similar to gradient descent, but modifies the search 

direction by a gradually improved approximation of the 

Hessian of 𝐽, costing no additional function or gradient 

evaluations. In our tests, we have used a golden-section 

line search to find the minimum of 𝐽  in the descent 

direction. For details, we refer to (Fletcher, 1987, 

Sections 2.6 and 3.2). 

3 Implementation 

As discussed in Section 2.1, the data assimilation 

procedure involves a model 𝐻, observation data 𝑦obs,𝑘, 

background data 𝑥b, 𝑝b,𝑘, and the uncertainties for the 

observation and background data 𝑃R , 𝑃b , 𝑃b,𝑘 .These 

components are used to construct an optimization 

problem, here the 3D-Var formulation (1). 

The above model, considered for data assimilation, is 

here referred to as original model. The observation, 

background, and uncertainty data will be collectively 

referred to as user input. 

We identify the following requirements for a user-

friendly implementation. 

1. The original model should be easy to use both 

for data assimilation and normal simulation; 

2. The optimization model should be separated 

from the original model and use general 

notation as in Section 2.1; 

3. The Modelica extensions should be kept to a 

minimum allowing for easy modification and 

maintenance of the original and optimization 

models. 

We use the expression optimization model rather than 

optimization algorithm since, defining the optimization 

problem in Modelica, allows us to use equations-based 

concepts, not just algorithms. The requirements suggest 

a separation between the original model, the 

optimization model, and the user input. Pending the 

eventual combination of them all in symbolic and 

numeric treatment.  

In Sections 3.1 and 3.2 we describe the prototype 

implementation included in Dymola 2022 and 

3DEXPERIENCE 2022x. All described features are 

enabled by: 
Hidden.Assimilation.Enable = true. 

The flag and other names described below may change 

in future versions. 

As a recurring example we consider the simple model 

that computes the mass flow rate of a fluid through a 

pipe. In Modelica, this example is described as follows: 
model TSP_Pipe  

  parameter Real K = 10;  

  parameter Real delta_P = 2e5; 

  parameter Real rho = 998.8404;  
  Real Q;  

  Real q; 

  Real G[2]; 

equation  

  G[1] = delta_P - K*rho*q*abs(q); 

  G[2] = rho*q - Q; 
  G = {0, 0}; 

end TSP_Pipe; 

This model is equivalent to the one presented in (El 

Hefni B. and Bouskela D., 2017) and developed with 

ThermoSysPro (El Hefni B. and Bouskela D., 2019). 

3.1 Definition of the data assimilation 

optimization problem in Modelica 

3.1.1 Extended original model 

To specify which variables in a Modelica model are to 

be considered for data assimilation, a new variable 

attribute is used. To this end, the Modelica built-in type 

Real has been extended with the attribute 

assimilation, which is a record of type 
record Assimilation 

  StringType iotype; 

  RealType data[:]; 

  RealType uncertainty[:]; 

end Assimilation; 

where StringType and RealType are the Modelica 

primitives for strings and floating-point numbers, 

respectively (MLSv35 (Modelica Association 2021), 

Section 4.8). The string iotype designates a Real 

variable as a tuner 𝑥  ("Tuner"), boundary condition 

𝑝𝑘  ("BC"), or observed variable 𝑦𝑘  "Observed". In 

the elements data and uncertainty, background or 
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observed data and their respective uncertainties can be 

specified. For tuners these two elements are scalars, for 

boundary conditions and observed variables they are 

vectors of size 𝑛op, the number of operating points. Note 

that, the elements data and uncertainty can also be 

modified later, see the upcoming section. 

Consider again the pipe model TSP_Pipe introduced 

in Section 3. As to not modify the original model we 

may extend from it and specify the assimilation 

attributes as modifiers. 
model TSP_Pipe_Assimilation 

  extends TSP_Pipe( 

    K(assimilation( 

      iotype="Tuner",  

      data=950.0,  

      uncertainty=100000000)), 

    delta_P(assimilation( 

      iotype="Tuner",  

      data=2.0e5,  

      uncertainty=100000000)), 

    rho(assimilation( 

      iotype="BC",  

      data={998.8, 995.0},  

      uncertainty={1, 1})), 

    Q(assimilation( 

      iotype="Observed",  

      data={447.0, 450.0},  

      uncertainty={1, 1}))); 

end TSP_Pipe_Assimilation; 

Two operating points are considered with relatively 

high confidence in the observations and boundary 

conditions. There are more parameters to estimate than 

observations. 

3.1.2 Interface for the optimization model 

With the original model extended to include the relevant 

user input, it remains to formulate the optimization 

problem and equations to find an optimum. To allow for 

general optimization models, Dymola automatically 

generates a library AssimilationPrototype, 

containing the wrapper model AssimilationModel. 

The interface consists of  
input Real x[nx] "Tuners"; 

input Real p[nop, np] "BCs"; 

output Real y[nop, ny] "Observed"; 

output Real dydx[nop, ny, nx] "Jacobians"; 

output Real dydp[nop, ny, np] "Jacobians"; 

in combination with parameters for all of the 

measurement data, background data, and uncertainties. 

The dependency 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘) imposed by the original 

model (Section 2.1) is handled by the wrapper, cf. 

Section 3.2. 

To exemplify the usage of this interface we construct 

a simple and equation-based optimization model for the 

3D-Var optimization problem (1), with gradients as 

derived in Section 2.2. 
partial model DA_3DVar 

  AssimilationPrototype.AssimilationModel  

    mod(x=x, p=p); 

  Real x[mod.nx]; 

  Real p[mod.nop, mod.np]; 

 

  Real dJdx[mod.nx] = 2*mod.nop* 

    (x - mod.x_bg)*mod.P_b_inv + 

    sum(2*(mod.y[k,:] - mod.y_obs[k,:])* 

      mod.P_R_inv[k,:,:]*mod.dydx[k,:,:] 

      for k in 1:mod.nop); 

 

  Real dJdp[mod.nop, mod.np] =  

    {2*(p[k,:] - mod.p_bg[k,:])* 

    mod.P_bk_inv[k,:,:] + 

    2*(mod.y[k,:] - mod.y_obs[k,:])* 

    mod.P_R_inv[k,:,:]*mod.dydp[k,:,:] 

    for k in 1:mod.nop}; 

end DA_3DVar; 

The AssimilationModel component mod is used 

to access the dimensions of the data assimilation 

problem, the parameters containing all user input, and 

the co-variance matrices. The inputs 𝑥 and 𝑝𝑘 are bound 

to the local unknowns with the same name. The 

observed variable 𝑦𝑘 together with the Jacobians ∇𝑥𝑦𝑘 

and ∇𝑝𝑘
𝑦𝑘 are computed in the AssimilationModel. 

Using the Jacobians, the objective gradients  ∇𝑥𝐽  and 

∇𝑝𝑘
𝐽 can also be computed, cf. Equations (4, 5). The 

model is partial as there are 𝑛𝑥 + 𝑛op ⋅ 𝑛𝑝  more 

variables than equations; an optimality condition has to 

be enforced. 
model StationaryPoint 

  extends DA_3DVar; 

equation  

  dJdx = zeros(mod.nx); 

  dJdp = zeros(mod.nop, mod.np); 

  annotation(experiment(StopTime=0)); 

end StationaryPoint; 

Here, we reap the full benefit of equation-based 

modelling as we simply set the derivatives to zero to find 

a stationary point, cf. Section 2.4. Dymola will do the 

rest and employ its Newton-type nonlinear system 

solver as a Newton method for optimization; there is no 

need to write an optimization algorithm. 

Finally, a special top-level annotation is provided to 

point to the original model to assimilate. 
model StationaryPoint_TSP_Pipe_Assimilation 

  extends StationaryPoint; 

  annotation(assimilationModel =  

    "TSP_Pipe_Assimilation"); 

end StationaryPoint_TSP_Pipe_Assimilation; 

When this model is translated, Dymola also translates 

the original model TSP_Pipe_Assimilation and 

then populates the wrapper model 

AssimilationModel with the specifics of the original 

model. The parameters containing the user input have 

default values giving by the assimilation attributes 

in the original model. These parameters can also be 

modified from the optimization model, indeed even 

after translation in Dymola’s Variable Browser. 

Translating 

StationaryPoint_TSP_Pipe_Assimilation we 

get a single nonlinear system to be solved for the two 

tuners and the two operating points of the single 
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boundary condition. When performing the static 

simulation, the system is solved using 19 iterations and 

one Jacobian computation. Note that the Jacobian of 

simulation.nonlinear[1] is the Hessian of 𝐽. The 

results are as follows: x[1] = K = 991.2 and x[2] 

= delta_P = 199999.8. For the boundary condition 

rho, we get for the respective operating points p[1,1] 

= 998.4 and p[2,1] = 995.4. Note how the low 

uncertainty for the boundary conditions results in values 

close to their background data. 

Other optimization models may use the time as an 

iteration variable. That is, let all variables be discrete, in 

particular the iterates 𝑥  and 𝑝𝑘 . Then, the sample 

operator can be used to perform one iteration at each 

sample. For example, a simple Gradient Descent 

algorithm can be implemented as follows. 
  when sample(1,1) then 
    x = pre(x_new); 
    p = pre(p_new); 
  end when; 
  x_new = x - dJdx; 
  p_new = p - dJdp; 

The iterations may be stopped at convergence using 

the terminate operator. For more complex 

optimization models the AssimilationModel 

wrapper also offers auxiliary functions 

ComputeOutput and ComputeGradient to be used in 

algorithms. For example BFGS can use the former to 

update 𝑦𝑘  and eventually 𝐽  when performing line-

search. 

3.1.3 Robustness of the optimization model 

When performing data assimilation under the 3D-Var 

formulation (1), an optimization algorithm can use the 

available background and observed data to improve 

robustness of the algorithm. For example, the solution is 

expected to be close to the background data, so this data 

can be used for starting guesses, nominals, and other 

scaling. The variables in the AssimilationModel 

wrapper are automatically assigned these attributes. 

To additionally improve the robustness of the 

StationaryPoint optimization model, homotopy can 

be used. Again, the 3D-Var formulation lends itself to a 

natural choice: When the uncertainties for the observed 

variables 𝑦𝑘  tends to infinity, the 3D-Var formulation 

breaks down to the simple assignments 𝑥 = 𝑥b  and 

𝑝𝑘 = 𝑝b,𝑘. Similarly, the higher the uncertainties are for 

𝑦𝑘 the easier the system simulation.nonlinear[1] 

is to solve as the influence of the model is limited. Based 

on this we propose the following homotopy variant of 
StationaryPoint. 

model StationaryPoint_Homotopy 

  extends StationaryPoint(mod( 

      y_obs_w = homotopy(mod.y_obs_w_const, 

           1.0e4 * tuner_bg_w_max * 

           ones(mod.nop, mod.ny)))); 

  constant Real tuner_bg_w_max =  

    max(max(mod.x_bg_w_const), 

        max(max(mod.p_bg_w_const))); 

end StationaryPoint_Homotopy; 

For the simple model, the uncertainties y_obs_w for 

𝑦𝑘  are set to 104  times the largest uncertainty of the 

tuners and background variables. During the homotopy 

process y_obs_w is successively decreased to attain its 

actual values. Here, the _const variables, also provided 

by the wrapper, are constant versions of the 

corresponding user input parameters. 

3.2 Dymola implementation, back-end 

The full optimization model consists of three parts: 

 The transformed original model;  

 The computation of the Jacobians ∇𝑥𝑦𝑘 and 

∇𝑝𝑘
𝑦𝑘; 

 The optimization model. 

In the following subsections we build up the 

optimization problem, item by item. 

3.2.1 Transformation of the original model 

The goal of data assimilation is to determine values for 

parameters (including initial values for states) in the 

original model. Thus, only Modelica parameters can be 

designated as assimilation tuners (iotype = ”Tuner”) 

or boundary conditions (iotype = ”BC”). To ease the 

presentation, we also enforce that all observed variables 

(iotype = ”Observed”) must be computed variables 

(non-parameters) in the original model. That is, we 

disregard cases where a parameter in the original model 

has both measurement data and background data. The 

generalization to these cases merely means including 

such parameters both in the 𝑥 (or 𝑝𝑘) vector and in the 

𝑦𝑘 vector. 

To prepare the original model for data assimilation, 

Dymola automatically removes the bindings on the 

parameters to be assimilated. These parameters are 

afterwards transformed to inputs and the observed 

variables are transformed to outputs, matching the 

interface of the AssimilationModel wrapper 

described in Section 3.1.2. As the original model is 

assumed to be a normal simulation model, we may 

assume that it is determined (square). These 

transformations keep this determinacy. 

3.2.2 Computation of the Jacobians 

In the previous section, we saw how the original model 

readily can be transformed to fit into the structure of the 

AssimilationModel wrapper. Assuming known 

values for the inputs, we get a square transformed 

original model, here considered in its implicit form 𝐺 =
0, cf. Section 3.1.1. After achieving a static simulation 

result for each operating point, it is straight-forward to 

formulate the adjoint equations for the Jacobians ∇𝑥𝑦𝑘 

and ∇𝑝𝑘
𝑦𝑘 around these solutions 

0 = ∇𝑥𝑖
𝐺 + ∇𝑦𝑘

𝐺 ⋅ ∇𝑥𝑖
𝑦𝑘 + ∇𝑧𝑘

𝐺 ⋅ ∇𝑥𝑖
𝑧𝑘 (8) 
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0 = ∇𝑝𝑘,𝑖
𝐺 + ∇𝑦𝑘

𝐺 ⋅ ∇𝑝𝑘,𝑖
𝑦𝑘 + ∇𝑧𝑘

𝐺 ⋅ ∇𝑝𝑘,𝑖
𝑧𝑘 (9) 

for 𝑘 = 1, … , 𝑛op  and 𝑖 = 1, … , 𝑛x  (or 𝑛p 

respectively). These are 𝑛𝑥 ⋅ 𝑛op + 𝑛𝑝 ⋅ 𝑛op  linear 

systems of equations of size 𝑛𝐺 = 𝑛𝑦 + 𝑛𝑧 . If we 

compute the partial derivatives of 𝐺  analytically once 

and for all, then it is quick work to set up the 

Equations (8, 9) at each pair (𝑖, 𝑘). However, note that 

𝐺 is the entire static model (or at least a major part of it, 

cf. Section 2.1). In consequence 𝑧𝑘  and 𝑦𝑘  are all (or 

most) of the computed variables. Thus, the size of each 

of the Equations (8, 9) quickly becomes large. 

Additionally, the number of introduced variables 
𝑛op ⋅ (𝑛𝑦 + 𝑛𝑧) ⋅ (𝑛𝑥 + 𝑛𝑝)  becomes unfeasibly large 

even for medium-sized models. For these reasons we 

chose not to use the adjoint equations for the Jacobian 

computations, notwithstanding recognition of several 

additional optimization that could have been done to 

Equations (8, 9). 

Instead, we consider the built-in chain rule in Dymola 

that is used when computing analytic Jacobians for 

dynamic simulation and input-output-Jacobians for 

FMUs. Indeed, the transformed original model has 

already been endowed with inputs ( 𝑥  and 𝑝𝑘 ) and 

outputs (𝑦𝑘) preparing it for the application of the chain 

rule. 
The chain rule in Dymola internalizes all of the 

auxiliary variables 𝑧𝑘  (compare 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘) ) and 

caches all of the partial derivatives. As most equations 

in a typical Modelica model are simple, the partial 

derivatives in turn are also mostly simple. There are 

important exceptions to this rule. Most notably, we have 

assumed that the model has a large algebraic loop, 

cf. Section 2.1. Thus, for most partial derivatives of 𝑦𝑘 

with respect to most 𝑥 or 𝑝𝑘, the chain rule has to run 

through the algebraic loop. To this end, the inverse of 

the system Jacobian for the loop is needed. Computing 

it is costly but can be done quite efficiently in Dymola 

by the help of tearing and caching. 

Dymola’s chain rule gives us even more for free: The 

dependencies for the partial derivatives are traced 

between each 𝑦𝑘  and 𝑥  or 𝑝𝑘  (caching any new 

information). This means that only the equations that are 

actually needed for the partial derivative computations 

are extracted and used. 

3.2.3 Efficient treatment of several operating 

points 

The analytical expressions for the partial derivatives 

∇𝑝𝑘
𝑦𝑘 and ∇𝑝𝑙

𝑦𝑙  for 𝑘, ℓ = 1, … , 𝑛op  are identical. 

Therefore, the chain rule does not need to be applied to 

each operating point. This fact is reflected in the 

transformed original model, where each boundary 

conditions 𝑝𝑘  and observed variable 𝑦𝑘  only 

corresponds to a single input or output, respectively. 

Instead, we handle the different operating points in 

the AssimilationModel wrapper. Namely, in the 

array original[nop], where one copy of the original 

model is instantiated per operating point. The wrapper 

then takes care to broadcast the values of the input 

matrix p[nop,np] to the correct instances of the 

original model, cf. Section 3.1.2. Similarly, the wrapper 

collects the observed variables and Jacobians from the 

instances into the wrapper outputs. 

We conclude that the Jacobian computations 

proposed here only extend the original model with 

𝑛𝑦 ⋅ (𝑛𝑥 + 𝑛𝑝) additional scalar variables, constituting 

∇𝑥𝑦𝑘 and ∇𝑝𝑘
𝑦𝑘 . Noting that typically 𝑛𝑧 ≫ 𝑛𝑦, this is 

a crucial improvement over the straight-forward 

application of the adjoint equations (8, 9). 

3.2.4 Causality of the data assimilation 

optimization model 

Up to this point, the causality of the original model has 

been preserved; the transformed model is evaluated 

first, after which the Jacobians are computed. 

Optimization models using time and sample to iterate 

does not change this causality. With the proper choices 

x and p as iterates, their old values pre(x) and pre(p) 

are inputs at each iteration and can be sent to the 

transformed original model for computation of observed 

variables and Jacobians, eventually leading to an update 

of the iterates. 

However, recall that our aim is to allow for the full 

power of equation-based modelling when writing 

optimization models for data assimilation. For example, 

the stationary point models presented in Sections 3.1.2 

and 3.1.3 take advantage of this feature. The equations  
  dJdx = zeros(mod.nx); 
  dJdp = zeros(mod.nop, mod.np); 

involve all computed variables of the optimization 

problem. In particular, the unknowns are the tuners and 

boundary conditions, the computed variables of the 

original model, the Jacobians and the gradients. The 

equations are those of the original model, their 

derivatives with respect to the tuners and boundary 

conditions, and the stationary point equations. We return 

to the TSP_Pipe example for an illustration 
0 = 𝐺1 = Δ𝑃 − 𝜌𝐾𝑞|𝑞|,
0 = 𝐺2 = 𝜌𝑞 − 𝑄,

 

with 𝑥 = (𝐾, Δ𝑃) as tuners and 𝑦 = 𝑄 = 𝑄(𝐾, Δ𝑃) as 

observed variable, leaving 𝑧 = 𝑞 = 𝑞(𝐾, Δ𝑃)  as an 

auxiliary variable (and disregarding boundary 

conditions). The stationary point optimization model for 

TSP_Pipe has the following incidence. 
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𝐾 Δ𝑃 𝑄 𝑞
𝜕𝑄

𝜕𝐾

𝜕𝑞

𝜕𝐾

𝜕𝑄

𝜕Δ𝑃

𝜕𝑞

𝜕Δ𝑃
𝐺1 ∗ ∗ ∗

𝐺2 ∗ ∗

d𝐺1 d𝐾⁄ ∗ ∗ ∗

d𝐺2 d𝐾⁄ ∗ ∗

d𝐺1 dΔ𝑃⁄ ∗ ∗ ∗

d𝐺2 dΔ𝑃⁄ ∗ ∗

d𝐽 d𝐾⁄ ∗ ∗ ∗

d𝐽 dΔ𝑃⁄ ∗ ∗ ∗

 

As the example suggests, a partitioning can in general 

not be made to solve the stationary point optimization 

model in sequence. Rather, it must be considered at once 

as a (nonlinear) system of equation. The tuners and 

boundary conditions constitute a natural choice for 

iteration (tearing) variables as, when they are 

eliminated, the original model, the Jacobians, and the 

stationary point equations can be computed in sequence, 

where the latter are residual equations. 

Commonly, and here by assumption (Section 2.1), the 

original model contains algebraic loops. Either these 

loops can be handled in the same nonlinear system as 

the optimization system, or they can be nested inside the 

optimization system. In the former case, the tuner and 

boundary condition iteration variables are mixed with 

the iteration variables for the loops in the original model. 

In the latter case, the loops of the original model are 

considered as blocks inside the optimization loop, and 

are solved in full each outer iteration. Compare DAE 

mode versus ODE mode for dynamic simulation (Braun, 

Casella and Bachmann, 2017; Henningsson, Olsson and 

Vanfretti, 2019). To keep the system of equations as 

small as possible we here choose the latter alternative. 

Additionally, it is more in line with the default choice of 

ODE mode for dynamic simulations in Dymola. A 

deeper investigation of these two alternatives may be an 

interesting topic for future work. 

3.2.5 Synthesis 

We summarize with a flowchart of the steps taken by 

Dymola when translating the full data assimilation 

problem to generate simulation code. To wrap the 

original model with Jacobian computations we chose to 

use (an extension of) FMI 2.0 for Model Exchange, 

which comes ready with an input-output interface and 

analytic Jacobian computations in Dymola. 

 
In the last step, the causality of the optimization 

model is established and an (outer) nonlinear system is 

constructed if so needed. All the steps are done 

automatically by Dymola and the user does not need to 

be concerned about casualization questions. That is, the 

assimilation prototype uses the equation-based 

paradigm, as any other Modelica model. 

In conclusion, the analytic Jacobian only need to be 

constructed once, which is done when translating the 

extended original model. This Jacobian can then be 

cheaply evaluated several times throughout the 

optimization procedure. In contrast, consider the 

traditional gradient-based approaches, e.g., those 

discussed in the Introduction, there a numeric Jacobian 

has to be constructed for each operating point during 

each optimization iteration. 

4 Experimentation results on a more 

complex example 

A complex ThermoSysPro model of the secondary loop 

of a pressurized water reactor is retained for this 

experimentation. It is the same model as the one 

presented in (Corona Mesa-Moles L. Argaud J.P., Jardin 

A., Benssy A., Dong Y, 2019). This model, presented in 

Figure 1, has over 12000 equations and it is used to 

compute the nominal operation point of the secondary 

loop. It is mainly composed of the following 

subsystems: 

 A turbogenerator set made of high-pressure and 

low-pressure turbines and one generator; 

 Two sets of moisture separator reheaters; 

 One condenser; 

 One feedwater tank and gas stripper system; 

 Two turbine-driven feedwater pumps; 

 Low and high pressure feedwater headers. 

Optimization model and original 
model with assimilation attributes

Original model extended by Dymola, 
resulting in new inputs and outputs

Analytic Jacobian constructed, and 
original model translated to FMU

FMU imported with extended 
FMU features

Optimization model translated 
with wrapper and FMU

New Equation-based Method for Parameter and State Estimation

136 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181129



 

 

Figure 1. Model of the secondary loop of a 1300MW 

pressurized water reactor 

In order to assess the correct implementation of the 

data assimilation method in Modelica, a twin 

experiment is considered. In such type of experiments, 

the observed variables used to perform data assimilation 

come from the simulation itself for a given state (the so-

called reference state and obtained with a given value of 

tuners and boundary conditions) and the goal is to 

evaluate how close to this state the optimal state 

estimated through data assimilation is. The BFGS 

implementation is the method used for this 

experimentation. 

In this twin experimentation, a state defined by three 

tuners and two boundary conditions for two different 

operating points is considered. This information, 

including the observed variables related to this state are 

given in Table 1. 

It can be noted that in this experimentation the 

number of observed variables (3) is not be enough to 

correctly calibrate both tuners (3) and boundary 

conditions (2) using the usual method using square 

system. Data assimilation offers a general approach to 

deal efficiently with this type of calibration scenarios. 

Table 1. Generation of the reference state 

Quantity 
Value 

Op. Point 1 Op. Point 2 

Tuners2 𝑥 

1 2373.13 - 

2 2373.13 - 

3 405.762 - 

Boundary 

conditions3 𝑝  

1 3802.63 3820 

2 51.42 48 

Observed 

variables4 𝑦 

1 22753.38 223814.23 

2 22753.38 223814.23 

3 382447.47 383190.88 

                                                        
2 Tuners considered in this example correspond to heat 

transfer coefficients of different heat exchangers. 
3 Boundary conditions considered in this example are 

the total thermal power extracted from the steam 

generators and the mass flow rate of the cooling water.  

4.1 Scenarios considered 

Two scenarios are considered to assess the correct 

implementation of the data assimilation technique in 

Modelica. Since one of the main novelties of this 

implementation is to take into consideration boundary 

conditions (BCs) in the state estimation problem, the 

two scenarios differ only on the a priori uncertainties 

associated to these boundary conditions. 

The data assimilation inputs for Scenario 1 are given 

in Table 2. For observed variables and as a twin 

experimentation is performed, the values provided in 

Table 1 are kept with a low uncertainty associated (10-1 

for each of them). 

Table 2. Data assimilation inputs for Scenario 1 

Quantity Background Uncertainty5  

Tuners 𝑥 
1 2450 107 

2 2320 107 

3 500 107 

BCs 𝑝 

1 

Op. 

Point 1 
3802.63 10-2 

Op. 

Point 2 
3820 10-2 

2 

Op. 

Point 1 
51.42 10-4 

Op. 

Point 2 
48 10-4 

For Scenario 1, the uncertainties related to the tuners 

are much larger than the ones considered for the 

boundary conditions, the goal is that data assimilation 

will mainly adjust the values of the tuners. Therefore, it 

is expected for the adjusted value of the boundary 

conditions to be very close to the background values. 

Scenario 2 is identical to Scenario 1 excepted for the 

uncertainty related to boundary conditions. In this 

scenario, an uncertainty of 101 is considered for all 

boundary conditions. Compared to Scenario 1, it is 

expected to obtain different values for the optimal state 

and in particular for the boundary conditions.  

4.2 Results 

The results obtained for Scenario 1 are given in Table 3. 

In Table 3 the optimal values for tuners and boundary 

conditions within their associated uncertainties are 

detailed. 

4 Observed variables considered in this example 

correspond to enthalpies taken at different locations of the 

secondary loop. 
5 Diagonal values of the background error covariance 

matrices (𝑃b and 𝑃b,𝑘, ∀ 𝑘 ) 
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Table 3. Optimal state estimation for Scenarios 1 

and 2 

Quantity 
Analysis 

Scenario 1 

Analysis 

Scenario 2 

Tuners 𝑥 

1 2373.1304 2386.46 

2 2373.1306 2386.46 

3 405.76154 417.57 

BCs 𝑝 

1 

Op. 

Point 1 
3802.6245 3828.46 

Op. 

Point 2 
3819.9993 3846.12 

2 

Op. 

Point 1 
51.425 54.10 

Op. 

Point 2 
47.99998 50.29 

For Scenario 1, as expected due to their low 

background uncertainty, the values of the analysis for 

boundary conditions are very similar to the ones given 

as background (see Table 2). This is not the case for 

tuners for which the background uncertainty was much 

larger. As a consequence, the associated analysis values 

differ from the background ones and as expected the 

optimal values of the tuners correspond to the ones used 

to generate the reference state (see Table 2). This result 

shows that the data assimilation procedure is correctly 

implemented. 

For Scenario 2, the analysis values for both tuners and 

boundary conditions are different from the initial 

background value. The higher uncertainty given to the 

boundary conditions is responsible for this result. For 

the tuners it is not surprising to find a different value 

from the one used to generate the reference state: this is 

an adjustment made as a consequence of the new 

analysis values for boundary conditions.  

The computed uncertainties6 for the analysis values 

of tuners and boundary conditions are low and they are 

very similar for both scenarios. For tuners 1 and 2 the 

uncertainty is around 10-4, for tuner 3 the corresponding 

uncertainty is even lower, around 10-6. For boundary 

conditions, the uncertainty is around 10-5 for the first one 

and around 10-7 for the second one. 

With respect to the observed variables, the results are 

as well satisfactory. For both scenarios the observed 

variables corresponding to the optimal state (optimal 

values for tuners and boundary conditions) are 

extremely close to the observed variables computed 

from the reference state. In order to evaluate the quality 

of this adjustment, one can examine the evolution of the 

cost function (as defined in Section 2.1): from 6.60x108 

to 0.006 for Scenario 1 and from 6.60x108 to 136.9 for 

Scenario 2. These results confirm the good 

implementation of the data assimilation procedure in 

Modelica.  

                                                        
6  Diagonal values of the analysis error covariance 

matrices (𝑃a and 𝑃a,𝑘, ∀ 𝑘 ) 

In addition to the numerical results, it is interesting to 

point out some results with respect to the computation 

time. With the current non-optimized implementation of 

the BFGS algorithm and on a standard machine, Dymola 

requires 15.1 seconds per iteration in average. This time 

should be compared to the 26.6 seconds per iteration on 

average for the ADAO implementation of data 

assimilation. The time reduction per iteration obtained 

with this new equation based approach is therefore 

already considerable. Practically all the time required 

for the simulation is spent on model evaluations; 

reducing the time required for this task appears therefore 

as a good solution to reduce the time required to perform 

the data assimilation procedure (for example extracting 

only the model equations that are necessary to complete 

the calculations). In addition, the stopping criteria 

retained for the optimization algorithm may have an 

important impact on the total number of iterations (and 

therefore on the total time) required to solve the 

optimization problem. 

5 Conclusion and perspectives  

5.1 Conclusion 

Based on the mathematical form of the Modelica 

equations, this paper presents a new method for 

parameter and state estimation of Modelica models. 

This method considers the problem of state estimation 

as an optimization problem and it has been adapted from 

the data assimilation framework. 

Traditionally, this task is performed in Modelica by 

inverse calculation on a square system of equations 

which requires that the user provides as many known 

values as states to be computed. In practice this is an 

important limitation to state estimation since it is very 

rare to have the same number of known values as states 

to be estimated. The new method presented in this paper 

enables to efficiently handle non-square problems 

which are the most frequent ones. 

Integrating this approach directly in a Modelica tool 

allows to use the analytic expressions of the Jacobians 

that are necessary to solve the optimization problem. 

The time necessary for computation can therefore be 

reduced compared to other methods in which numerical 

Jacobians have to be computed. In addition, with this 

approach it is possible to compute the uncertainties of 

the final estimated state (making it possible to specify 

the uncertainties related to tuners and/or boundary 

conditions for example). This information is an 

important tool for the user to evaluate the adequacy of 

the estimated state. 

The prototype implementation in Dymola 2022 and 

3DEXPERIENCE 2022x of this new method has been 

tested successfully with different simple and complex 
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Modelica models such as the model of a secondary loop 

of a pressurized water reactor. 

5.2 Future work 

As we saw in Section 3.2.2, when computing the 

Jacobians, we only use those equations in the original 

model that are actually needed. However, for the 

function evaluations, i.e., the computations of 𝑦𝑘 , we 

still consider the full model. The data assimilation 

procedure therefore needs to assume that the model 

simulates successfully around the solution of the 

optimization problem. This is a reasonable assumption 

when the solution is close to the background data, where 

it, in turn, is reasonable to expect that the model is well 

behaved. On the other hand, data assimilation 

techniques may also help in the initialization of failing 

models. For example, by starting with a small amount of 

assimilation variables, constituting only a part of the 

model, and then successively adding more variables. 

Such a procedure requires that only the relevant 

equations are extracted also for function evaluations. 

Additionally, the model topology must allow it, i.e., the 

model must not entirely be made up by an algebraic 

loop. We consider this an interesting topic for future 

work, as the challenging problem of robust initialization 

is one of the major obstacles in contemporary Modelica 

applications. 

To ease the presentation, we have only discussed 

optimization with no lower or upper bounds on the 

tuners and boundary conditions. However, the presented 

optimization models can easily be extended to take into 

account such constraints. To better support this the 

assimilation attribute may be extended in future 

Dymola releases to allow specification of bounds 

directly in the original model.  

Finally, we have limited our presentation and 

implementation to focus on the data assimilation 

problem. However, as the objective function and 

optimization models are written all in Modelica the 

techniques can be extended to more general 

optimization problems. 
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