

New Equation-based Method for Parameter and State Estimation

Luis Corona Mesa-Moles1 Erik Henningsson2 Daniel Bouskela1

Audrey Jardin1 Hans Olsson2

1R&D, Electricité de France, France, {luis.corona-mesa-moles,daniel.bouskela,
audrey.jardin}@edf.fr

2Dassault Systèmes, Sweden, {erik.henningsson,hans.olsson}@3ds.com

Abstract

To get reliable simulation results from a Modelica

model it is important to parametrize and initialize the

model using the best estimate of the state of the system.

Commonly, this state estimation is done by inverse

calculation on a square system of equations requiring as

many known values as states to be computed. In practice

this constraint is an important limitation and, in addition,

this method does not provide any information on the

uncertainties or confidence level associated to the

estimated state.

Taking advantage of the mathematical formulation of

Modelica equations, this paper presents a new method

to cope with the difficulties associated to the inverse

calculation method. This approach adapts and extends

the framework of data assimilation to provide a fully-

integrated Modelica tool, which efficiently can handle

every type of state estimation problem for static models.

This method has been successfully tested with simple

and complex Modelica models. Finally, the Modelica

implementation of this technique allows to easily extend

it to further applications.

Keywords: Modelica, parameter estimation, state

estimation, model, data assimilation

1 Introduction

The safe and economically efficient operation of power

plants and energy systems at large such as power grids

or district heating and cooling networks rely on data that

are used to assess the current state of the system and

make predictions on the future states of the system at

different timescales ranging from seconds to years.

Finding the best estimation of the system state is

important to diagnose functioning problems such as

energy or efficiency losses and make the right decisions

for predictive maintenance such as the best time to

change a pump before it breaks.

The best estimation depends on the quality and the

number of measurements. Unfortunately, raw data is

always subject to uncertainties, and in general the

number of states to be estimated far exceeds the number

of available measurements. When dealing with a

behavioral model (or digital twin) of the system, the
term “states” refers to the initial values of the dynamic

states and the values of the parameters, which are

quantities that are not constrained by the model’s

equations. Poor state estimation limits the predictive

power of the model.

Modelica models must be initialized by giving values

to all states. This is normally done by inverse calculation

on a square system of equations that requires to provide

as many known values as states to be computed.

Because the number of states most often far exceeds the

number of known variables, the user must make a choice

between the states to be computed and the states to be

manually initialized from assumptions. Therefore, there

is no guarantee on the accuracy of the estimation, and

therefore no guarantee on the accuracy of the

predictions. Static or dynamic checks on the model do

not provide any information on the consistency of the

initial conditions as initial conditions are not constrained

by the model’s equations (however, unphysical initial

conditions often, but not always, lead to numerical

divergence at simulation time). An answer to that

problem is data assimilation.

Data assimilation is a set of techniques that combines

statistical data on the measurements with a priori

knowledge from the expert (the so-called background)

and knowledge embedded in the model (the model’s

equations) to provide the best estimate of the system

initial state in the form of a mean value and confidence

range for each estimated state. The quality and the

accuracy of the estimated states will depend on the

quality of the input data considered. Data assimilation

uses all available information, that is, the more data that

is provided by the user (mainly background and

statistical data) the more accurate the result of the data

assimilation will be. In case that this detailed

information is not known by the user, uninformative

prior or weakly informative prior (such as guess values)

can be provided.

Data assimilation was initially developed for weather

forecasting and proved to be essential for the accuracy

of weather prediction, which is particularly difficult, the

atmosphere being a chaotic system. It is therefore

expected that this technique delivers good results on a

larger timescale for power plants which are stable

systems.

A previous work (Corona Mesa-Moles L. Argaud

J.P., Jardin A., Benssy A., Dong Y, 2019) has shown

that data assimilation can be used with a Modelica

model to estimate the state of the secondary loop of a

nuclear power plant. In this experiment, the data

DOI
10.3384/ecp21181129

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

129

assimilation algorithms were coded in Python1 and the

Modelica model used as a black box to provide

numerical values to the iterations of the Python code.

This method has some limitations such as lengthy

calculations and the impossibility of estimating the

values of boundary conditions when several operating

points are considered. One reason for the time-

consuming calculations is the need to compute

numerical Jacobian matrices by multiple calls to the full

model of the plant.

From Dymola’s perspective the calibration option has

already been considered. This option is primarily

designed for the case where there are more

measurements than states and parameters to estimate,

and normally that there are time-serie(s) of

measurements (Dassault Systèmes, 2021, Section 2).

The implementation, which is found in the Dymola

Design library, solves the non-linear least squares

problem, using Levenberg–Marquardt, which uses

Gauss–Newton internally (Fletcher, 1987, Sections 5.2

and 6.1).

This paper presents a solution that is better integrated

with Modelica: it takes advantage of the knowledge of

the mathematical form of the Modelica equations to

compute analytical Jacobians and allows the coding of

data assimilation algorithms directly in Modelica. It also

paves the way to extracting, from the original Modelica

model, the equations that are strictly necessary to

perform the state estimation, thus reducing the size of

the computations. These equations correspond to the

observation operator that binds the measured values (the

inputs of the calculation) to the states (the outputs of the

calculations): after all, no equation is needed if the

measured or observed variables are the same as the

estimated ones (the observation operator is then the

identity operator).

This paper is structured as follows. Section 2 presents

the new equation-based method for parameter and state

estimation. Section 3 describes how this method is

implemented in Modelica and finally Section 4 presents

the application of this new method on a complex

Modelica model developed with the open source library

ThermoSysPro.

2 The New Equation-based Method

2.1 Optimization problem

Data assimilation intends to combine different sources

of information in order to estimate at best the true state

of a system. The combination of different sources of

information such as a physical model and observations

can be understood as an optimization problem. There are

different mathematical approaches to handle data

assimilation problems, among which control theory

1 The Python codes were mainly based on the LGPL

free distributed tool ADAO (Salome, 2018)

(variational methods) and estimation theory (Kalman

filter or optimal interpolation) can be cited. Variational

methods define explicitly the optimization problem

considering a cost function in which terms associated to

the model and to the observations appear. Compared to

other methods, the variational approach enables to

handle easily non-linear models and combine different

types of observations while keeping a very efficient

computation time and accurate solution for the

optimization problem.

The most well-known variational method in data

assimilation is the so-called 3D-Var approach (see Asch

M. et al., 2016 for more details). This classical approach

can be extended to take into consideration the estimation

of boundary conditions as well, and this is one of the

main novelties presented in this article.

The objective of the method described in this article

is to give the best estimate of the tuners 𝑥 of a given

model 𝐻 considering a certain number of observations

𝑦obs,𝑘 (which can be measurements or design

assumptions for example) obtained for a set of different

boundary conditions 𝑝𝑘 . In practice, considering the

uncertainties related to the model 𝑃b, to the boundary

conditions 𝑃b,𝑘 and to the observations 𝑃R,𝑘 (all given in

the form of covariance matrices) it is possible to

compute the best estimate of the tuners 𝑥 and of the

boundary conditions 𝑝𝑘 on the basis of an initial value

𝑥b and 𝑝b,𝑘that correspond to the a priori knowledge of

the state (the so-called background). The difference

between the tuners and the boundary conditions is that

boundary conditions vary from one operating point to

another while tuners remain the same for all the

operating points considered.

The cost function described in the previous

paragraph, and corresponding to an extended version of

the 3D-Var approach, is defined as follows:

min
𝑥, 𝑝

𝐽(𝑥, 𝑝) 𝐰𝐢𝐭𝐡 𝐽(𝑥, 𝑝)

= 𝑛op ⋅ ‖𝑥 − 𝑥b‖
𝑃b

−1
2

+ ∑(‖𝑝𝑘 − 𝑝b,𝑘‖
𝑃b,𝑘

−1

2

𝑛op

𝑘=1

+ ‖𝑦𝑘 − 𝑦obs,𝑘‖
𝑃R,𝑘

−1

2
)

(1)

Where:

• 𝑛op are the total number of operating points;

• 𝑥 are the tuners to be estimated;

• 𝑥b are the tuners’ background (a priori

knowledge of the tuners to be estimated);

• 𝑝𝑘 are the boundary conditions for operating

point 𝑘;

• 𝑝b,𝑘 are the boundary conditions’

background (a priori knowledge of the

boundary conditions to be estimated);

New Equation-based Method for Parameter and State Estimation

130 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181129

• 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘) are the values computed by

the model for operating point 𝑘 and 𝐻 is the

Modelica model;

• 𝑦obs,𝑘 are the observations (corresponding to

the values computed by 𝐻);

• 𝑃b
−1 is the tuner background error

covariance matrix;

• 𝑃b,𝑘
−1 is the boundary condition background

error covariance matrix for operating point 𝑘

• 𝑃R,𝑘
−1 is the observation error covariance

matrix for operating point 𝑘.

It can be noted that weighted Euclidean norms have

been used in the definition of cost function 𝐽, i.e. for a

vector 𝑣 , ‖𝑣‖𝐴−1
2 = 𝑣𝑇𝐴−1𝑣, where 𝐴−1 is a positive

definite matrix.

Solving this optimization problem gives the best

estimate of tuner 𝑥 (which is denoted by 𝑥a) and of

boundary conditions 𝑝𝑘 (which is denoted by 𝑝a,𝑘),

these optimal solutions are referred to as the analysis.

The action of the model is captured by 𝐻, relating the

observed variables to the tuners and boundary

conditions (𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘)). However, for general

Modelica models 𝑦𝑘 is not explicitly given as a function

of 𝑥 and 𝑝𝑘. Instead, 𝑦𝑘 is implicitly given by

𝐺(𝑥, 𝑝𝑘 , 𝑦𝑘 , 𝑧𝑘) = 0 (2)

where 𝐺 is the mathematical representation of the entire

static Modelica model and 𝑧𝑘 are all of the computed

variables except 𝑦𝑘. Thus, in general we have 𝑛𝑧 ≫ 𝑛𝑦.

As discussed in Section 1, 𝐺 and 𝑧𝑘 may, for certain

applications, be substantially reduced in size by

extracting from 𝐺 only those equations that are

necessary to link 𝑥 and 𝑝𝑘 to 𝑦𝑘 . In this article we

consider models with large algebraic loops comprising

most of the model, where the connections between the

tuners and observed variables are traced through these

loops. Thus, a substantial reduction of 𝐺 is not possible,

see Section 3. Nonetheless, we consider such an

extraction algorithm an interesting topic for future work.

When generating simulation code, a Modelica tool

will perform a causalization, this means that the implicit

equation 𝐺(𝑥, 𝑝𝑘 , 𝑦𝑘 , 𝑧𝑘 ,) = 0 is transformed into the

explicit equation 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘), where 𝑧𝑘 are treated as

internal variables inside 𝐻. Thus, we may continue to

use the notation and formulae as presented earlier in this

section.

2.2 Computation of uncertainties

The data assimilation approach gives as well the

possibility to compute the uncertainties associated to the

parameters and boundary conditions that are estimated.

The uncertainty associated to the analysis is given in the

form of an error covariance matrix, the so-called

analysis-error covariance matrix: 𝑃aassociated to 𝑥a and

𝑃a,k associated to 𝑝a,𝑘 . They play the same role with

respect to the analysis as 𝑃b and 𝑃b,𝑘
−1 with respect to

the background.

In the case of the initial approach formulation of the

data assimilation problem, it can be shown that,

assuming that the model operator 𝐻 can be

approximated by a linear operator 𝑯 in a neighborhood

of the analysis, the analysis-error covariance matrix 𝑃𝑎

is equal to the Hessian ℋ of the cost function at 𝑥𝑎 (see

Tarantola A., 2005 and Bousserez N. et al., 2015). In

such case, the Hessian of the cost function is given by:

ℋ = 𝑃b
−1 + 𝑯𝑇𝑃R

−1𝑯 = 𝑃a
−1 (3)

For the final formulation of the data assimilation

problem presented in Section 2.1, the Hessian of the cost

function with respect to 𝑥 and all the 𝑝𝑘 can be

computed by differentiating the final form of the cost

function twice. The first differentiation of the cost

function gives its gradient:

∇𝑥𝐽 = 2 ∙ 𝑛op ∙ 𝑃b
−1(𝑥 − 𝑥b) +

2 ∙ ∑ (∇𝑥𝑦𝑘
𝑇 ∙ 𝑃R,𝑘

−1 ∙ (𝑦𝑘 − 𝑦obs,𝑘))

𝑛op

𝑘=1

(4)

∇𝑝𝑘
𝐽 = 2 ∙ 𝑛op ∙ 𝑃b,𝑘

−1 ∙ (𝑝𝑘 − 𝑝b,𝑘) +

2 ∙ ∇𝑝𝑘
𝑦𝑘

𝑇 ∙ 𝑃R,𝑘
−1 ∙ (𝑦𝑘 − 𝑦obs,𝑘), ∀ 𝑘

(5)

From these expressions and in a neighborhood of the

analysis (assuming that the model derivatives can be

approximated by a linear model (the so-called linear

tangent model), i.e. ∇𝑥𝑦𝑘 and ∇𝑝𝑘
𝑦𝑘 can be considered

as constant matrices) the second derivatives of the cost

function can be easily computed as follows:

ℋ𝑥 = 2 (𝑛op ∙ 𝑃b
−1 + ∑(∇𝑥𝑦𝑘

𝑇 ∙ 𝑃R,𝑘
−1 ∙ ∇𝑥𝑦𝑘)

𝑛op

𝑘=1

) (6)

ℋ𝑝,𝑘 = 2(𝑛op ∙ 𝑃b,𝑘
−1 + ∇𝑝𝑘

𝑦𝑘
𝑇 ∙ 𝑃R,𝑘

−1 ∙ ∇𝑝𝑘
𝑦𝑘), ∀ 𝑘 (7)

Considering the results presented in (Tarantola A.,

2005 and Bousserez N. et al., 2015), the analysis-error

covariance matrices for 𝑥 and all the 𝑝𝑘 can

straightforwardly be derived from the previous

expressions in order to compute the analysis

uncertainties: 𝑃a = ℋ𝑥
−1

 and 𝑃a,𝑘 = ℋ𝑝,𝑘
−1

.

2.3 Solving method 1: Gradient descent

The gradient descent method is a well-known method to

solve optimization problems. It is an iterative process

based on the computation of the cost function 𝐽. It can

be implemented in many different ways, and it can be

used in the context of data assimilation to solve the

optimization problem mentioned above.

When boundary conditions are considered in the

optimization problem, this method can be described by

the following algorithm:

- Initialization : 𝑥0 = 𝑥b and 𝑝0,𝑘 = 𝑝b,𝑘 , ∀ 𝑘

- While ‖∇𝑥𝐽‖ or ‖∇𝑝𝑘
𝐽‖, ∀ 𝑘 > 𝜀 or 𝑛 ≤ 𝑛max, do:

o Compute ∇𝑥𝐽 and ∇𝑝𝑘
𝐽, ∀ 𝑘

o Descent and update of 𝑥 and 𝑝𝑘

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181129

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

131

 𝑥𝑛+1 = 𝑥𝑛 − step ∙ ∇𝑥𝐽

 𝑝𝑛+1,𝑘 = 𝑝𝑛,𝑘 − step ∙ ∇𝑝𝑘
𝐽, ∀ 𝑘

o 𝑛 = 𝑛 + 1

The explicit expressions of the gradients can be found

in Section 2.2.

2.4 Solving method 2: Stationary point

The optimization problem presented in Section 2.1 can

be interpreted as a minimization of a cost function 𝐽

under the constraints that the model equations must be

satisfied. In this case, a necessary condition to find the

minimum of the cost function is that its gradient is equal

to zero.

This solution can be derived from the following

equations:

- ∇𝑥𝐽 = 0

- ∇𝑝𝑘
𝐽 = 0, ∀ 𝑘

where the model equations 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘) are used in

the computations of the above objective function

gradients. The stationary point equations are typically

solved using a Newton-type solver for optimization

(Fletcher, 1987, Chapter 3). However, we do not need to

take further steps here as writing the optimization

problem all in Modelica allows for stating equations, not

just algorithms. For details see Section 3.1.2.

2.5 Solving method 3: BFGS

As a third alternative, we consider the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm. It is

similar to gradient descent, but modifies the search

direction by a gradually improved approximation of the

Hessian of 𝐽, costing no additional function or gradient

evaluations. In our tests, we have used a golden-section

line search to find the minimum of 𝐽 in the descent

direction. For details, we refer to (Fletcher, 1987,

Sections 2.6 and 3.2).

3 Implementation

As discussed in Section 2.1, the data assimilation

procedure involves a model 𝐻, observation data 𝑦obs,𝑘,

background data 𝑥b, 𝑝b,𝑘, and the uncertainties for the

observation and background data 𝑃R , 𝑃b , 𝑃b,𝑘 .These

components are used to construct an optimization

problem, here the 3D-Var formulation (1).

The above model, considered for data assimilation, is

here referred to as original model. The observation,

background, and uncertainty data will be collectively

referred to as user input.

We identify the following requirements for a user-

friendly implementation.

1. The original model should be easy to use both

for data assimilation and normal simulation;

2. The optimization model should be separated

from the original model and use general

notation as in Section 2.1;

3. The Modelica extensions should be kept to a

minimum allowing for easy modification and

maintenance of the original and optimization

models.

We use the expression optimization model rather than

optimization algorithm since, defining the optimization

problem in Modelica, allows us to use equations-based

concepts, not just algorithms. The requirements suggest

a separation between the original model, the

optimization model, and the user input. Pending the

eventual combination of them all in symbolic and

numeric treatment.

In Sections 3.1 and 3.2 we describe the prototype

implementation included in Dymola 2022 and

3DEXPERIENCE 2022x. All described features are

enabled by:
Hidden.Assimilation.Enable = true.

The flag and other names described below may change

in future versions.

As a recurring example we consider the simple model

that computes the mass flow rate of a fluid through a

pipe. In Modelica, this example is described as follows:
model TSP_Pipe

 parameter Real K = 10;

 parameter Real delta_P = 2e5;

 parameter Real rho = 998.8404;
 Real Q;

 Real q;

 Real G[2];

equation

 G[1] = delta_P - K*rho*q*abs(q);

 G[2] = rho*q - Q;
 G = {0, 0};

end TSP_Pipe;

This model is equivalent to the one presented in (El

Hefni B. and Bouskela D., 2017) and developed with

ThermoSysPro (El Hefni B. and Bouskela D., 2019).

3.1 Definition of the data assimilation

optimization problem in Modelica

3.1.1 Extended original model

To specify which variables in a Modelica model are to

be considered for data assimilation, a new variable

attribute is used. To this end, the Modelica built-in type

Real has been extended with the attribute

assimilation, which is a record of type
record Assimilation

 StringType iotype;

 RealType data[:];

 RealType uncertainty[:];

end Assimilation;

where StringType and RealType are the Modelica

primitives for strings and floating-point numbers,

respectively (MLSv35 (Modelica Association 2021),

Section 4.8). The string iotype designates a Real

variable as a tuner 𝑥 ("Tuner"), boundary condition

𝑝𝑘 ("BC"), or observed variable 𝑦𝑘 "Observed". In

the elements data and uncertainty, background or

New Equation-based Method for Parameter and State Estimation

132 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181129

observed data and their respective uncertainties can be

specified. For tuners these two elements are scalars, for

boundary conditions and observed variables they are

vectors of size 𝑛op, the number of operating points. Note

that, the elements data and uncertainty can also be

modified later, see the upcoming section.

Consider again the pipe model TSP_Pipe introduced

in Section 3. As to not modify the original model we

may extend from it and specify the assimilation

attributes as modifiers.
model TSP_Pipe_Assimilation

 extends TSP_Pipe(

 K(assimilation(

 iotype="Tuner",

 data=950.0,

 uncertainty=100000000)),

 delta_P(assimilation(

 iotype="Tuner",

 data=2.0e5,

 uncertainty=100000000)),

 rho(assimilation(

 iotype="BC",

 data={998.8, 995.0},

 uncertainty={1, 1})),

 Q(assimilation(

 iotype="Observed",

 data={447.0, 450.0},

 uncertainty={1, 1})));

end TSP_Pipe_Assimilation;

Two operating points are considered with relatively

high confidence in the observations and boundary

conditions. There are more parameters to estimate than

observations.

3.1.2 Interface for the optimization model

With the original model extended to include the relevant

user input, it remains to formulate the optimization

problem and equations to find an optimum. To allow for

general optimization models, Dymola automatically

generates a library AssimilationPrototype,

containing the wrapper model AssimilationModel.

The interface consists of
input Real x[nx] "Tuners";

input Real p[nop, np] "BCs";

output Real y[nop, ny] "Observed";

output Real dydx[nop, ny, nx] "Jacobians";

output Real dydp[nop, ny, np] "Jacobians";

in combination with parameters for all of the

measurement data, background data, and uncertainties.

The dependency 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘) imposed by the original

model (Section 2.1) is handled by the wrapper, cf.

Section 3.2.

To exemplify the usage of this interface we construct

a simple and equation-based optimization model for the

3D-Var optimization problem (1), with gradients as

derived in Section 2.2.
partial model DA_3DVar

 AssimilationPrototype.AssimilationModel

 mod(x=x, p=p);

 Real x[mod.nx];

 Real p[mod.nop, mod.np];

 Real dJdx[mod.nx] = 2*mod.nop*

 (x - mod.x_bg)*mod.P_b_inv +

 sum(2*(mod.y[k,:] - mod.y_obs[k,:])*

 mod.P_R_inv[k,:,:]*mod.dydx[k,:,:]

 for k in 1:mod.nop);

 Real dJdp[mod.nop, mod.np] =

 {2*(p[k,:] - mod.p_bg[k,:])*

 mod.P_bk_inv[k,:,:] +

 2*(mod.y[k,:] - mod.y_obs[k,:])*

 mod.P_R_inv[k,:,:]*mod.dydp[k,:,:]

 for k in 1:mod.nop};

end DA_3DVar;

The AssimilationModel component mod is used

to access the dimensions of the data assimilation

problem, the parameters containing all user input, and

the co-variance matrices. The inputs 𝑥 and 𝑝𝑘 are bound

to the local unknowns with the same name. The

observed variable 𝑦𝑘 together with the Jacobians ∇𝑥𝑦𝑘

and ∇𝑝𝑘
𝑦𝑘 are computed in the AssimilationModel.

Using the Jacobians, the objective gradients ∇𝑥𝐽 and

∇𝑝𝑘
𝐽 can also be computed, cf. Equations (4, 5). The

model is partial as there are 𝑛𝑥 + 𝑛op ⋅ 𝑛𝑝 more

variables than equations; an optimality condition has to

be enforced.
model StationaryPoint

 extends DA_3DVar;

equation

 dJdx = zeros(mod.nx);

 dJdp = zeros(mod.nop, mod.np);

 annotation(experiment(StopTime=0));

end StationaryPoint;

Here, we reap the full benefit of equation-based

modelling as we simply set the derivatives to zero to find

a stationary point, cf. Section 2.4. Dymola will do the

rest and employ its Newton-type nonlinear system

solver as a Newton method for optimization; there is no

need to write an optimization algorithm.

Finally, a special top-level annotation is provided to

point to the original model to assimilate.
model StationaryPoint_TSP_Pipe_Assimilation

 extends StationaryPoint;

 annotation(assimilationModel =

 "TSP_Pipe_Assimilation");

end StationaryPoint_TSP_Pipe_Assimilation;

When this model is translated, Dymola also translates

the original model TSP_Pipe_Assimilation and

then populates the wrapper model

AssimilationModel with the specifics of the original

model. The parameters containing the user input have

default values giving by the assimilation attributes

in the original model. These parameters can also be

modified from the optimization model, indeed even

after translation in Dymola’s Variable Browser.

Translating

StationaryPoint_TSP_Pipe_Assimilation we

get a single nonlinear system to be solved for the two

tuners and the two operating points of the single

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181129

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

133

boundary condition. When performing the static

simulation, the system is solved using 19 iterations and

one Jacobian computation. Note that the Jacobian of

simulation.nonlinear[1] is the Hessian of 𝐽. The

results are as follows: x[1] = K = 991.2 and x[2]

= delta_P = 199999.8. For the boundary condition

rho, we get for the respective operating points p[1,1]

= 998.4 and p[2,1] = 995.4. Note how the low

uncertainty for the boundary conditions results in values

close to their background data.

Other optimization models may use the time as an

iteration variable. That is, let all variables be discrete, in

particular the iterates 𝑥 and 𝑝𝑘 . Then, the sample

operator can be used to perform one iteration at each

sample. For example, a simple Gradient Descent

algorithm can be implemented as follows.
 when sample(1,1) then
 x = pre(x_new);
 p = pre(p_new);
 end when;
 x_new = x - dJdx;
 p_new = p - dJdp;

The iterations may be stopped at convergence using

the terminate operator. For more complex

optimization models the AssimilationModel

wrapper also offers auxiliary functions

ComputeOutput and ComputeGradient to be used in

algorithms. For example BFGS can use the former to

update 𝑦𝑘 and eventually 𝐽 when performing line-

search.

3.1.3 Robustness of the optimization model

When performing data assimilation under the 3D-Var

formulation (1), an optimization algorithm can use the

available background and observed data to improve

robustness of the algorithm. For example, the solution is

expected to be close to the background data, so this data

can be used for starting guesses, nominals, and other

scaling. The variables in the AssimilationModel

wrapper are automatically assigned these attributes.

To additionally improve the robustness of the

StationaryPoint optimization model, homotopy can

be used. Again, the 3D-Var formulation lends itself to a

natural choice: When the uncertainties for the observed

variables 𝑦𝑘 tends to infinity, the 3D-Var formulation

breaks down to the simple assignments 𝑥 = 𝑥b and

𝑝𝑘 = 𝑝b,𝑘. Similarly, the higher the uncertainties are for

𝑦𝑘 the easier the system simulation.nonlinear[1]

is to solve as the influence of the model is limited. Based

on this we propose the following homotopy variant of
StationaryPoint.

model StationaryPoint_Homotopy

 extends StationaryPoint(mod(

 y_obs_w = homotopy(mod.y_obs_w_const,

 1.0e4 * tuner_bg_w_max *

 ones(mod.nop, mod.ny))));

 constant Real tuner_bg_w_max =

 max(max(mod.x_bg_w_const),

 max(max(mod.p_bg_w_const)));

end StationaryPoint_Homotopy;

For the simple model, the uncertainties y_obs_w for

𝑦𝑘 are set to 104 times the largest uncertainty of the

tuners and background variables. During the homotopy

process y_obs_w is successively decreased to attain its

actual values. Here, the _const variables, also provided

by the wrapper, are constant versions of the

corresponding user input parameters.

3.2 Dymola implementation, back-end

The full optimization model consists of three parts:

 The transformed original model;

 The computation of the Jacobians ∇𝑥𝑦𝑘 and

∇𝑝𝑘
𝑦𝑘;

 The optimization model.

In the following subsections we build up the

optimization problem, item by item.

3.2.1 Transformation of the original model

The goal of data assimilation is to determine values for

parameters (including initial values for states) in the

original model. Thus, only Modelica parameters can be

designated as assimilation tuners (iotype = ”Tuner”)

or boundary conditions (iotype = ”BC”). To ease the

presentation, we also enforce that all observed variables

(iotype = ”Observed”) must be computed variables

(non-parameters) in the original model. That is, we

disregard cases where a parameter in the original model

has both measurement data and background data. The

generalization to these cases merely means including

such parameters both in the 𝑥 (or 𝑝𝑘) vector and in the

𝑦𝑘 vector.

To prepare the original model for data assimilation,

Dymola automatically removes the bindings on the

parameters to be assimilated. These parameters are

afterwards transformed to inputs and the observed

variables are transformed to outputs, matching the

interface of the AssimilationModel wrapper

described in Section 3.1.2. As the original model is

assumed to be a normal simulation model, we may

assume that it is determined (square). These

transformations keep this determinacy.

3.2.2 Computation of the Jacobians

In the previous section, we saw how the original model

readily can be transformed to fit into the structure of the

AssimilationModel wrapper. Assuming known

values for the inputs, we get a square transformed

original model, here considered in its implicit form 𝐺 =
0, cf. Section 3.1.1. After achieving a static simulation

result for each operating point, it is straight-forward to

formulate the adjoint equations for the Jacobians ∇𝑥𝑦𝑘

and ∇𝑝𝑘
𝑦𝑘 around these solutions

0 = ∇𝑥𝑖
𝐺 + ∇𝑦𝑘

𝐺 ⋅ ∇𝑥𝑖
𝑦𝑘 + ∇𝑧𝑘

𝐺 ⋅ ∇𝑥𝑖
𝑧𝑘 (8)

New Equation-based Method for Parameter and State Estimation

134 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181129

0 = ∇𝑝𝑘,𝑖
𝐺 + ∇𝑦𝑘

𝐺 ⋅ ∇𝑝𝑘,𝑖
𝑦𝑘 + ∇𝑧𝑘

𝐺 ⋅ ∇𝑝𝑘,𝑖
𝑧𝑘 (9)

for 𝑘 = 1, … , 𝑛op and 𝑖 = 1, … , 𝑛x (or 𝑛p

respectively). These are 𝑛𝑥 ⋅ 𝑛op + 𝑛𝑝 ⋅ 𝑛op linear

systems of equations of size 𝑛𝐺 = 𝑛𝑦 + 𝑛𝑧 . If we

compute the partial derivatives of 𝐺 analytically once

and for all, then it is quick work to set up the

Equations (8, 9) at each pair (𝑖, 𝑘). However, note that

𝐺 is the entire static model (or at least a major part of it,

cf. Section 2.1). In consequence 𝑧𝑘 and 𝑦𝑘 are all (or

most) of the computed variables. Thus, the size of each

of the Equations (8, 9) quickly becomes large.

Additionally, the number of introduced variables
𝑛op ⋅ (𝑛𝑦 + 𝑛𝑧) ⋅ (𝑛𝑥 + 𝑛𝑝) becomes unfeasibly large

even for medium-sized models. For these reasons we

chose not to use the adjoint equations for the Jacobian

computations, notwithstanding recognition of several

additional optimization that could have been done to

Equations (8, 9).

Instead, we consider the built-in chain rule in Dymola

that is used when computing analytic Jacobians for

dynamic simulation and input-output-Jacobians for

FMUs. Indeed, the transformed original model has

already been endowed with inputs (𝑥 and 𝑝𝑘) and

outputs (𝑦𝑘) preparing it for the application of the chain

rule.
The chain rule in Dymola internalizes all of the

auxiliary variables 𝑧𝑘 (compare 𝑦𝑘 = 𝐻(𝑥, 𝑝𝑘)) and

caches all of the partial derivatives. As most equations

in a typical Modelica model are simple, the partial

derivatives in turn are also mostly simple. There are

important exceptions to this rule. Most notably, we have

assumed that the model has a large algebraic loop,

cf. Section 2.1. Thus, for most partial derivatives of 𝑦𝑘

with respect to most 𝑥 or 𝑝𝑘, the chain rule has to run

through the algebraic loop. To this end, the inverse of

the system Jacobian for the loop is needed. Computing

it is costly but can be done quite efficiently in Dymola

by the help of tearing and caching.

Dymola’s chain rule gives us even more for free: The

dependencies for the partial derivatives are traced

between each 𝑦𝑘 and 𝑥 or 𝑝𝑘 (caching any new

information). This means that only the equations that are

actually needed for the partial derivative computations

are extracted and used.

3.2.3 Efficient treatment of several operating

points

The analytical expressions for the partial derivatives

∇𝑝𝑘
𝑦𝑘 and ∇𝑝𝑙

𝑦𝑙 for 𝑘, ℓ = 1, … , 𝑛op are identical.

Therefore, the chain rule does not need to be applied to

each operating point. This fact is reflected in the

transformed original model, where each boundary

conditions 𝑝𝑘 and observed variable 𝑦𝑘 only

corresponds to a single input or output, respectively.

Instead, we handle the different operating points in

the AssimilationModel wrapper. Namely, in the

array original[nop], where one copy of the original

model is instantiated per operating point. The wrapper

then takes care to broadcast the values of the input

matrix p[nop,np] to the correct instances of the

original model, cf. Section 3.1.2. Similarly, the wrapper

collects the observed variables and Jacobians from the

instances into the wrapper outputs.

We conclude that the Jacobian computations

proposed here only extend the original model with

𝑛𝑦 ⋅ (𝑛𝑥 + 𝑛𝑝) additional scalar variables, constituting

∇𝑥𝑦𝑘 and ∇𝑝𝑘
𝑦𝑘 . Noting that typically 𝑛𝑧 ≫ 𝑛𝑦, this is

a crucial improvement over the straight-forward

application of the adjoint equations (8, 9).

3.2.4 Causality of the data assimilation

optimization model

Up to this point, the causality of the original model has

been preserved; the transformed model is evaluated

first, after which the Jacobians are computed.

Optimization models using time and sample to iterate

does not change this causality. With the proper choices

x and p as iterates, their old values pre(x) and pre(p)

are inputs at each iteration and can be sent to the

transformed original model for computation of observed

variables and Jacobians, eventually leading to an update

of the iterates.

However, recall that our aim is to allow for the full

power of equation-based modelling when writing

optimization models for data assimilation. For example,

the stationary point models presented in Sections 3.1.2

and 3.1.3 take advantage of this feature. The equations
 dJdx = zeros(mod.nx);
 dJdp = zeros(mod.nop, mod.np);

involve all computed variables of the optimization

problem. In particular, the unknowns are the tuners and

boundary conditions, the computed variables of the

original model, the Jacobians and the gradients. The

equations are those of the original model, their

derivatives with respect to the tuners and boundary

conditions, and the stationary point equations. We return

to the TSP_Pipe example for an illustration
0 = 𝐺1 = Δ𝑃 − 𝜌𝐾𝑞|𝑞|,
0 = 𝐺2 = 𝜌𝑞 − 𝑄,

with 𝑥 = (𝐾, Δ𝑃) as tuners and 𝑦 = 𝑄 = 𝑄(𝐾, Δ𝑃) as

observed variable, leaving 𝑧 = 𝑞 = 𝑞(𝐾, Δ𝑃) as an

auxiliary variable (and disregarding boundary

conditions). The stationary point optimization model for

TSP_Pipe has the following incidence.

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181129

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

135

𝐾 Δ𝑃 𝑄 𝑞
𝜕𝑄

𝜕𝐾

𝜕𝑞

𝜕𝐾

𝜕𝑄

𝜕Δ𝑃

𝜕𝑞

𝜕Δ𝑃
𝐺1 ∗ ∗ ∗

𝐺2 ∗ ∗

d𝐺1 d𝐾⁄ ∗ ∗ ∗

d𝐺2 d𝐾⁄ ∗ ∗

d𝐺1 dΔ𝑃⁄ ∗ ∗ ∗

d𝐺2 dΔ𝑃⁄ ∗ ∗

d𝐽 d𝐾⁄ ∗ ∗ ∗

d𝐽 dΔ𝑃⁄ ∗ ∗ ∗

As the example suggests, a partitioning can in general

not be made to solve the stationary point optimization

model in sequence. Rather, it must be considered at once

as a (nonlinear) system of equation. The tuners and

boundary conditions constitute a natural choice for

iteration (tearing) variables as, when they are

eliminated, the original model, the Jacobians, and the

stationary point equations can be computed in sequence,

where the latter are residual equations.

Commonly, and here by assumption (Section 2.1), the

original model contains algebraic loops. Either these

loops can be handled in the same nonlinear system as

the optimization system, or they can be nested inside the

optimization system. In the former case, the tuner and

boundary condition iteration variables are mixed with

the iteration variables for the loops in the original model.

In the latter case, the loops of the original model are

considered as blocks inside the optimization loop, and

are solved in full each outer iteration. Compare DAE

mode versus ODE mode for dynamic simulation (Braun,

Casella and Bachmann, 2017; Henningsson, Olsson and

Vanfretti, 2019). To keep the system of equations as

small as possible we here choose the latter alternative.

Additionally, it is more in line with the default choice of

ODE mode for dynamic simulations in Dymola. A

deeper investigation of these two alternatives may be an

interesting topic for future work.

3.2.5 Synthesis

We summarize with a flowchart of the steps taken by

Dymola when translating the full data assimilation

problem to generate simulation code. To wrap the

original model with Jacobian computations we chose to

use (an extension of) FMI 2.0 for Model Exchange,

which comes ready with an input-output interface and

analytic Jacobian computations in Dymola.

In the last step, the causality of the optimization

model is established and an (outer) nonlinear system is

constructed if so needed. All the steps are done

automatically by Dymola and the user does not need to

be concerned about casualization questions. That is, the

assimilation prototype uses the equation-based

paradigm, as any other Modelica model.

In conclusion, the analytic Jacobian only need to be

constructed once, which is done when translating the

extended original model. This Jacobian can then be

cheaply evaluated several times throughout the

optimization procedure. In contrast, consider the

traditional gradient-based approaches, e.g., those

discussed in the Introduction, there a numeric Jacobian

has to be constructed for each operating point during

each optimization iteration.

4 Experimentation results on a more

complex example

A complex ThermoSysPro model of the secondary loop

of a pressurized water reactor is retained for this

experimentation. It is the same model as the one

presented in (Corona Mesa-Moles L. Argaud J.P., Jardin

A., Benssy A., Dong Y, 2019). This model, presented in

Figure 1, has over 12000 equations and it is used to

compute the nominal operation point of the secondary

loop. It is mainly composed of the following

subsystems:

 A turbogenerator set made of high-pressure and

low-pressure turbines and one generator;

 Two sets of moisture separator reheaters;

 One condenser;

 One feedwater tank and gas stripper system;

 Two turbine-driven feedwater pumps;

 Low and high pressure feedwater headers.

Optimization model and original
model with assimilation attributes

Original model extended by Dymola,
resulting in new inputs and outputs

Analytic Jacobian constructed, and
original model translated to FMU

FMU imported with extended
FMU features

Optimization model translated
with wrapper and FMU

New Equation-based Method for Parameter and State Estimation

136 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181129

Figure 1. Model of the secondary loop of a 1300MW

pressurized water reactor

In order to assess the correct implementation of the

data assimilation method in Modelica, a twin

experiment is considered. In such type of experiments,

the observed variables used to perform data assimilation

come from the simulation itself for a given state (the so-

called reference state and obtained with a given value of

tuners and boundary conditions) and the goal is to

evaluate how close to this state the optimal state

estimated through data assimilation is. The BFGS

implementation is the method used for this

experimentation.

In this twin experimentation, a state defined by three

tuners and two boundary conditions for two different

operating points is considered. This information,

including the observed variables related to this state are

given in Table 1.

It can be noted that in this experimentation the

number of observed variables (3) is not be enough to

correctly calibrate both tuners (3) and boundary

conditions (2) using the usual method using square

system. Data assimilation offers a general approach to

deal efficiently with this type of calibration scenarios.

Table 1. Generation of the reference state

Quantity
Value

Op. Point 1 Op. Point 2

Tuners2 𝑥

1 2373.13 -

2 2373.13 -

3 405.762 -

Boundary

conditions3 𝑝

1 3802.63 3820

2 51.42 48

Observed

variables4 𝑦

1 22753.38 223814.23

2 22753.38 223814.23

3 382447.47 383190.88

2 Tuners considered in this example correspond to heat

transfer coefficients of different heat exchangers.
3 Boundary conditions considered in this example are

the total thermal power extracted from the steam

generators and the mass flow rate of the cooling water.

4.1 Scenarios considered

Two scenarios are considered to assess the correct

implementation of the data assimilation technique in

Modelica. Since one of the main novelties of this

implementation is to take into consideration boundary

conditions (BCs) in the state estimation problem, the

two scenarios differ only on the a priori uncertainties

associated to these boundary conditions.

The data assimilation inputs for Scenario 1 are given

in Table 2. For observed variables and as a twin

experimentation is performed, the values provided in

Table 1 are kept with a low uncertainty associated (10-1

for each of them).

Table 2. Data assimilation inputs for Scenario 1

Quantity Background Uncertainty5

Tuners 𝑥
1 2450 107

2 2320 107

3 500 107

BCs 𝑝

1

Op.

Point 1
3802.63 10-2

Op.

Point 2
3820 10-2

2

Op.

Point 1
51.42 10-4

Op.

Point 2
48 10-4

For Scenario 1, the uncertainties related to the tuners

are much larger than the ones considered for the

boundary conditions, the goal is that data assimilation

will mainly adjust the values of the tuners. Therefore, it

is expected for the adjusted value of the boundary

conditions to be very close to the background values.

Scenario 2 is identical to Scenario 1 excepted for the

uncertainty related to boundary conditions. In this

scenario, an uncertainty of 101 is considered for all

boundary conditions. Compared to Scenario 1, it is

expected to obtain different values for the optimal state

and in particular for the boundary conditions.

4.2 Results

The results obtained for Scenario 1 are given in Table 3.

In Table 3 the optimal values for tuners and boundary

conditions within their associated uncertainties are

detailed.

4 Observed variables considered in this example

correspond to enthalpies taken at different locations of the

secondary loop.
5 Diagonal values of the background error covariance

matrices (𝑃b and 𝑃b,𝑘, ∀ 𝑘)

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181129

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

137

Table 3. Optimal state estimation for Scenarios 1

and 2

Quantity
Analysis

Scenario 1

Analysis

Scenario 2

Tuners 𝑥

1 2373.1304 2386.46

2 2373.1306 2386.46

3 405.76154 417.57

BCs 𝑝

1

Op.

Point 1
3802.6245 3828.46

Op.

Point 2
3819.9993 3846.12

2

Op.

Point 1
51.425 54.10

Op.

Point 2
47.99998 50.29

For Scenario 1, as expected due to their low

background uncertainty, the values of the analysis for

boundary conditions are very similar to the ones given

as background (see Table 2). This is not the case for

tuners for which the background uncertainty was much

larger. As a consequence, the associated analysis values

differ from the background ones and as expected the

optimal values of the tuners correspond to the ones used

to generate the reference state (see Table 2). This result

shows that the data assimilation procedure is correctly

implemented.

For Scenario 2, the analysis values for both tuners and

boundary conditions are different from the initial

background value. The higher uncertainty given to the

boundary conditions is responsible for this result. For

the tuners it is not surprising to find a different value

from the one used to generate the reference state: this is

an adjustment made as a consequence of the new

analysis values for boundary conditions.

The computed uncertainties6 for the analysis values

of tuners and boundary conditions are low and they are

very similar for both scenarios. For tuners 1 and 2 the

uncertainty is around 10-4, for tuner 3 the corresponding

uncertainty is even lower, around 10-6. For boundary

conditions, the uncertainty is around 10-5 for the first one

and around 10-7 for the second one.

With respect to the observed variables, the results are

as well satisfactory. For both scenarios the observed

variables corresponding to the optimal state (optimal

values for tuners and boundary conditions) are

extremely close to the observed variables computed

from the reference state. In order to evaluate the quality

of this adjustment, one can examine the evolution of the

cost function (as defined in Section 2.1): from 6.60x108

to 0.006 for Scenario 1 and from 6.60x108 to 136.9 for

Scenario 2. These results confirm the good

implementation of the data assimilation procedure in

Modelica.

6 Diagonal values of the analysis error covariance

matrices (𝑃a and 𝑃a,𝑘, ∀ 𝑘)

In addition to the numerical results, it is interesting to

point out some results with respect to the computation

time. With the current non-optimized implementation of

the BFGS algorithm and on a standard machine, Dymola

requires 15.1 seconds per iteration in average. This time

should be compared to the 26.6 seconds per iteration on

average for the ADAO implementation of data

assimilation. The time reduction per iteration obtained

with this new equation based approach is therefore

already considerable. Practically all the time required

for the simulation is spent on model evaluations;

reducing the time required for this task appears therefore

as a good solution to reduce the time required to perform

the data assimilation procedure (for example extracting

only the model equations that are necessary to complete

the calculations). In addition, the stopping criteria

retained for the optimization algorithm may have an

important impact on the total number of iterations (and

therefore on the total time) required to solve the

optimization problem.

5 Conclusion and perspectives

5.1 Conclusion

Based on the mathematical form of the Modelica

equations, this paper presents a new method for

parameter and state estimation of Modelica models.

This method considers the problem of state estimation

as an optimization problem and it has been adapted from

the data assimilation framework.

Traditionally, this task is performed in Modelica by

inverse calculation on a square system of equations

which requires that the user provides as many known

values as states to be computed. In practice this is an

important limitation to state estimation since it is very

rare to have the same number of known values as states

to be estimated. The new method presented in this paper

enables to efficiently handle non-square problems

which are the most frequent ones.

Integrating this approach directly in a Modelica tool

allows to use the analytic expressions of the Jacobians

that are necessary to solve the optimization problem.

The time necessary for computation can therefore be

reduced compared to other methods in which numerical

Jacobians have to be computed. In addition, with this

approach it is possible to compute the uncertainties of

the final estimated state (making it possible to specify

the uncertainties related to tuners and/or boundary

conditions for example). This information is an

important tool for the user to evaluate the adequacy of

the estimated state.

The prototype implementation in Dymola 2022 and

3DEXPERIENCE 2022x of this new method has been

tested successfully with different simple and complex

New Equation-based Method for Parameter and State Estimation

138 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181129

Modelica models such as the model of a secondary loop

of a pressurized water reactor.

5.2 Future work

As we saw in Section 3.2.2, when computing the

Jacobians, we only use those equations in the original

model that are actually needed. However, for the

function evaluations, i.e., the computations of 𝑦𝑘 , we

still consider the full model. The data assimilation

procedure therefore needs to assume that the model

simulates successfully around the solution of the

optimization problem. This is a reasonable assumption

when the solution is close to the background data, where

it, in turn, is reasonable to expect that the model is well

behaved. On the other hand, data assimilation

techniques may also help in the initialization of failing

models. For example, by starting with a small amount of

assimilation variables, constituting only a part of the

model, and then successively adding more variables.

Such a procedure requires that only the relevant

equations are extracted also for function evaluations.

Additionally, the model topology must allow it, i.e., the

model must not entirely be made up by an algebraic

loop. We consider this an interesting topic for future

work, as the challenging problem of robust initialization

is one of the major obstacles in contemporary Modelica

applications.

To ease the presentation, we have only discussed

optimization with no lower or upper bounds on the

tuners and boundary conditions. However, the presented

optimization models can easily be extended to take into

account such constraints. To better support this the

assimilation attribute may be extended in future

Dymola releases to allow specification of bounds

directly in the original model.

Finally, we have limited our presentation and

implementation to focus on the data assimilation

problem. However, as the objective function and

optimization models are written all in Modelica the

techniques can be extended to more general

optimization problems.

Acknowledgements
This work was funded and supported by BPI France

through the French FUI ModeliScale research project.

References
Asch M., M. Bocquet, M. Nodet (2016), Data Assimilation -

Methods, Algorithms and Applications, SIAM.

Bousserez, N., D.K. Henze, A. Perkins, K.W. Bowman, M.

Lee, J. Liu, F. Deng and D.B.A. Jones (2015). “Improved

analysis‐error covariance matrix for high‐dimensional

variational inversions: application to source estimation

using a 3D atmospheric transport model”. In: Q.J.R.

Meteorol. Soc., 141: 1906-1921.

https://doi.org/10.1002/qj.2495

Braun W., F. Casella and F. Bachmann (2017). “Solving

large-scale Modelica models: New approaches and

experimental results using OpenModelica”. In Proceedings

of the 12th International Modelica Conference, pages 557–

563. Linköping University Electronic Press,.

Corona Mesa-Moles L. J.P. Argaud, A. Jardin, A. Benssy, Y.

Dong (2019). “Robust Calibration of Complex

ThermosysPro Models using Data Assimilation

Techniques: Application on the Secondary Loop of a

Pressurized Water Reactor”. In: Proceedings of the 13th

International Modelica Conference, pages 553-560.

Linköping University Electronic Press.

Dassault Systèmes (2021). Dymola 2022: Dymola, Dynamic

Modeling Laboratory, User Manual 2A: Model

Development Tools. Dassault Systèmes AB, Lund, Sweden.

El Hefni B. and D. Bouskela (2017). “Modeling and

simulation of a complex ThermoSysPro model with

OpenModelica – Dynamic Modeling of a combined power

plant”. In: Proceedings of the 12th International Modelica

Conference, May 15-17, Prague, Czech Republic.

El Hefni, B. and D. Bouskela (2019). Modeling and

Simulation of ThermalPower Plants with ThermoSysPro -

A Theoretical Introduction and a Practical Guide. Springer.

Fletcher, R. (1987). Practical methods of optimization. 2nd

edn. New York: John Wiley & Sons.

Henningsson E., H. Olsson and L. Vanfretti (2019). “DAE

Solvers for Large-Scale Hybrid Models”. In: Proceedings

of the 13th International Modelica Conference, pages 491–

502. Linköping University Electronic Press.

Modelica Association (2021-02). Modelica – A Unified

ObjectOriented Language for Systems Modeling. Language

Specification Version 3.5. Tech. rep. Linköping: Modelica

Association. URL:

https://specification.modelica.org/maint/3.5/MLS.html.

SALOME The Open Source Integration Platform for

Numerical Simulation, accessed 2021-08-19,

http://www.salome-platform.org/

Tarantola A. (2005). Inverse Problem Theory and Methods for

Model Parameter Estimation. SIAM: Philadelphia, PA.

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181129

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

139

