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Abstract
This paper presents a tool to populate power flow results
for phasor time-domain simulations with the Open In-
stance Power System Library (OpenIPSL). Our proposal
takes advantage of the object-oriented philosophy of Mo-
delica and introduces a data structure based on records to
handle power flow data for a given network model. Such
records constitute a user-friendly interface to change the
guess values used to solve the initial condition of a dynam-
ical simulation straightforwardly. Power flow calculations
are carried out by the open-source Python library GridCal.
We demonstrate the tool capabilities by generating power
flow results for several grid models and comparing them
with those obtained via proprietary tools such as PSS/E.
Moreover, we provide tutorial materials to ease integrat-
ing the tool for a new/experienced OpenIPSL user.
Keywords: GridCal, OpenIPSL, Power Flow, Python,
Records

1 Introduction
The Open Instance Power System Library (OpenIPSL)
is an open-source library of power system component
models written entirely in Modelica (Baudette et al.
2018). Beyond the inherent advantages of the Modelica
language, OpenIPSL components are constantly cross-
validated against commercial packages such as PSS/E,
producing practically the same results (Laera 2016) and
exhibiting the same or even better simulation perfor-
mance (see Henningsson, Olsson, and Vanfretti (2019)
and Dorado-Rojas, Navarro Catalán, et al. (2020)).

Successful use cases of the library come from a broad
range of applications such as multi-domain simulation
(Gomez et al. 2018), damping (Boersma et al. 2020)
and parameter estimation (Podlaski et al. 2020) in power
systems, dynamic stability assessment (Nohac et al. 2019),
co-simulation for energy analysis (Gusain, Cvetkovic, and
Palensky 2019), stability analysis of hydro-power grids
(Winkler 2019), wind turbine control (Qin et al. 2019),
cyber-attack evaluation (Pan, Gusain, and Palensky 2019),
power system stability enhancement (Gonzalez-Torres et
al. 2019), extremum seeking control (Müller et al. 2020),
and data generation for machine learning applications
(Dorado-Rojas, de Castro Fernandes, and Vanfretti 2020).

Motivation
Despite the library’s usefulness, the main caveat is the
absence of a systematic approach to link phasor time-
domain simulations with static computations like power
flows. Power flow computations are ubiquitous in any
power system analysis. A power flow problem involves
determining the system’s voltage profiles and electrical
power transfer across a network given the generator power
injections and load consumption. Mathematically, it is a
nonlinear vector algebraic equation commonly solved us-
ing an iterative method such as a Newton-Raphson algo-
rithm. From the dynamical perspective, a power flow re-
sult represents an operating condition for which may con-
tain a potential equilibrium for the underlying dynamical
system. So, the power flow result represents the set of ini-
tial guesses to initialize a dynamic model and analyze an
electrical grid’s behavior subjected to a dynamical event.
Observe that because the simplified algebraic representa-
tion of the power grid in the power flow problem, many
of its solutions can result in operating conditions where an
equilibrium may not exist when the system’s dynamical
model is considered.

OpenIPSL models contain a myriad of nonlinearities
employed to represent dynamical behaviors more accu-
rately. So, varying the initial condition of a dynamical
simulation represents a critical step towards system as-
sessment. So far, users have proposed ad-hoc solutions
to generate power flow results (e.g., using Matpower1 or
PSS/E2 as in Vanfretti et al. (2017)). However, despite
valuable, these efforts do not completely fill the gap to
easily provide power flow solutions to OpenIPSL models.
The former approach replaces the power flow values in the
*.mo file of the model directly, which is inconvenient

from the user’s point of view. The latter depends on pro-
prietary software which might not be available to the base
users of OpenIPSL. The OpenIPSL community, and users
of other Modelica-based power system libraries (see Win-
kler (2017)), will more than welcome a systematic power
flow approach based on open-source tools to integrate into
their models quickly. Addressing this issue is the primary
purpose of this paper.

1See https://github.com/dgusain1/InitialiseModelica
2See https://github.com/ALSETLab/Raw2Record
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Contribution
This paper’s main contribution is to bridge the gap be-
tween phasor time-domain simulation and static com-
putations for OpenIPSL utilizing an open-source-based
pipeline.

We propose a Modelica records structure to handle all
power flow variables. Such nested records data structure
enables a user to replace a power flow condition, typi-
cally composed of several algebraic variables, with a sin-
gle click or one line of code. These records are created
automatically from the model’s *.mo file.

GridCal3, and provides open-source Python library for
power system computations, such as solving the power
flow problem. A remarkable characteristic of GridCal is
its built-in PSS/E parser. Consequently, users can parse
*.raw files containing a grid static model’s information

to a GridCal internal grid representation. In our examples,
we will use PSS/E files to construct GridCal models. This
enables us to benchmark the GridCal power flow results
against PSS/E outputs. By doing so, we bring confidence
to Modelica tools in terms of the quality of results, show-
ing that Modelica-based power system models can be ini-
tialized and result in the same initial condition and provide
the same simulation results as proprietary tools.

So far, we summarize the main contributions of our
work as follows:

• we bridge the gap between Modelica-based tools and
conventional domain-specific power system tools;

• we automate the process of providing good ini-
tial guess values to solve the initialization process
of Modelica-based power system models with the
OpenIPSL library;

• we make Modelica-based tools more attractive for
dynamic power system simulation, making it easier
for users to use OpenIPSL models for analysis under
multiple operating conditions by a power flow record
structure;

• with the contributions above, we facilitate the po-
tential adoption of and transition to Modelica-based
tools by power system domain specialists.

Paper Structure
This paper is structured as follows: Section 2 gives a brief
introduction to the power flow problem in electrical net-
works. In Section 3, we introduce the records structure
proposed to handle power flow variables. We illustrate
how this data container can be linked to OpenIPSL mod-
els in Section 4, where we also benchmark the power flow
values against the results obtained with commercial tools.
Finally, Section 5 concludes the work.

3GridCal is able to import and parse model description and param-
eter files from proprietary software such as PSS/E and DigSilent, and
also widespread open-source libraries for power system analysis like
Matpower. In contrast to many proprietary electrical grid software tools,
GridCal runs on Windows, Linux, and macOS natively. It can be down-
loaded from https://github.com/SanPen/GridCal

2 The Power Flow Problem
The power flow (also incorrectly called load flow) prob-
lem is undoubtedly one of the most performed calculations
in power system applications (Stott 1974). For instance,
these calculations are carried out many times in Opera-
tion and Planning procedures for power grids. An appli-
cation of a particular interest to this paper is that power
flow solutions provide a potential starting guess to solve
the initialization problem at which a dynamic simulation
may start. Hence, a power flow can be considered one of
the most critical problems to be solved when studying a
power system (Milano 2009).

The problem, however, is not new, and nor are the tech-
niques used to solve it. The first practical solutions began
to appear in the mid-1950s with the aid of digital comput-
ers (Ward and Hale 1956) and a breakthrough came about
a decade later. The development of incredibly efficient
handling of sparse matrices (Tinney and Walker 1967) was
paramount to the wide adoption of Newton-Raphson (NR)
algorithm. As new issues to solve the power flow problem
have arisen, a myriad of new techniques and methods have
been proposed; however, NR-based techniques are still the
most preeminent methods (Stott 1974; Milano 2009).

From the mathematical perspective, a power flow
problem is posed as a set of nonlinear algebraic equations.
Its solution will determine an operational point for a speci-
fied loading and generation condition in the power system.
This operational point is defined by the voltage magnitude
and angle in each bus of the system, together with the ac-
tive and reactive powers generated and consumed in gen-
eration and load buses respectively. In the current paper,
we will give a brief introduction to its formulation.

In most power flow formulations, the power system is
assued to be perfectly balanced and operating at constant
frequency (i.e. 50/60 Hz) which would allow it to be rep-
resented in its positive sequence equivalent circuit (Stott
1974). If a system can be represented in its positive se-
quence equivalent, it is then possible to assemble its nodal
admittance matrix Y and to write the nodal equation as
follows:

Ī = YV̄, (1)

where Ī is the nodal injection current phasor vector, V̄ is
the nodal voltage phasor vector and Y is the admittance
matrix, which is square and sparse.

We could use the nodal equation to compute the volt-
age at all nodes if all current injection measurements were
available. Unfortunately, this is not the case in an electric
grid where the known quantities differ from bus to bus.
For instance, in a load node, active and reactive power
consumption (P,Q) are assumed to be known. Likewise,
in a generation bus, active power injection and voltage
magnitude at the generator terminals are typically known
(P,V ). Then, the nodal equation has to be reformulated in
terms of P,Q, and V . Because the steady-state relation-
ship between power and voltage/current is nonlinear (and
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complex-valued), the linear nodal equation into a nonlin-
ear set of complex-valued equations on P,Q,V , and the
voltage phasor angle θ .

The exact formulation in the power system jargon is
the following. For the mth bus, four variables are either
specified or should be calculated in a power flow: active
power injected in the bus in per unit Pm, reactive power
injected in the bus in per unit Qm, node voltage phasor
magnitude in per unit Vm and node voltage phasor angle
in radians θm. In load buses (identified as PQ buses) the
variable that is known beforehand is the specified appar-
ent power (Ssp

m = Psp
m + jQsp

m ), while in generation buses
(called PV buses) the specified variables are the voltage
magnitude (V̄m) and active power (Psp

m ). In addition to
that, there should be one slack bus which should have a
specified voltage magnitude value and, most importantly,
it should be responsible for providing the angle reference
used for all other calculations (Stott 1974).

The power flow solution is achieved when the compu-
tation of active and reactive power via the nodal equation,
using the solution values from the most recent iteration,
matches the given data for active and reactive power. In
other words, the solution occurs when the mismatch be-
tween specified and calculated power values is less than
or equal to some given tolerance. We can write such a
mismatch as

∆Sm = Ssp
m −VmI∗m = Psp

m + jQsp
m −V̄m ∑

k∈Km

Y ∗
mkV̄

∗
k , (2)

where Km is the set of buses k which are directly con-
nected to bus m and the superscript (∗) denotes the com-
plex conjugate. By using the fact that Ymk = Gmk +
jBmk and expressing the phasor V̄m as V̄m = Vm(cosθm +
j sinθm), we can split Equation (2) into its real and imagi-
nary parts as:

{
∆Pm = Psp

m −Vm ∑k∈Km (Gmk cosθmk +Bmk sinθmk)Vk,

∆Qm = Qsp
m −Vm ∑k∈Km (Gmk sinθmk −Bmk cosθmk)Vk,

where θmk = θm − θk. Note that, in this polar formula-
tion, the unknown variables are the nodal voltage phasor
magnitudes (Vm) and angles (θm).

As said previously, a power flow problem is typically
solved using an NR algorithm. First, a nonlinear vector
function f :R2n 7→R2n is defined, where n is the total num-
ber of nodes (buses). This function could be expressed as:

f(x) =
[

∆P
∆Q

]
, (3)

where the ∆P and ∆Q are the n-row vectors [∆Pm] and
[∆Qm], respectively. In addition, x ∈ R2n is given by

x =
[
V1 · · · Vm · · · Vn θ1 · · · θm · · · θn

]T
, (4)

where the superscript T stands for transpose. To find the
power flow solution, we state the following equation (Mi-
lano 2009).

f(x) = 0 (5)

Due to the nonlinear nature of f, it is impossible to find
a closed-form solution for such a problem. Therefore, it is
necessary to use an iterative method such as a classical NR
algorithm. The i-th iteration of the NR method is written
as (Milano 2009)

{
∆xi = [J(xi)]

−1f(xi),

xi+1 = xi +∆xi,
(6)

where J(x) is the Jacobian matrix of function f. The iter-
ative method will stop when f(x) is sufficiently close to 0
or, in other words, when its norm is less than a tolerance
set by the user. Besides, there are many different ways
to find x0, which is used to start the process described in
(6). Generally, robust techniques usually allow to find a
solution when using a flat start, i.e., when all voltage mag-
nitudes are started as 1 per unit and all angles are started as
0 radians, or one could use a previous power flow solution
can be used for the same system.

3 Power Flow Records Structure
One of the Modelica language’s main advantages is the
object-oriented paradigm that enables the user to create
dynamic system models hierarchically. Such a structure
allows the user to manage model parameters systemati-
cally.

A Modelica record is a data container used to store
a wide range of information about a model, such as pa-
rameter values, simulation settings, or values of specific
variables for several analysis conditions. Records per-
mit changing a significant number of variables of a given
model by modifying just one parameter that related hierar-
chically to many variables inside the data representation.

Records are a perfect structure for handling power flow
values in a dynamic simulation. Suppose power flow re-
sults are handled using a record-based data structure. In
that case, we could modify the power flow condition of
an OpenIPSL model by varying only one attribute of the
model, namely, the power flow record, rather than individ-
ually changing multiple variables.

The proposed power flow record structure is
presented in Figure 1. A Python script called
create_pf_records creates the Modelica files
containing the record structure and places them
inside the model’s root folder in a directory called
PF_Data . This function reads the .mo file of the

model ( <model_name>.mo ) as a plain text file and
uses several regular expressions to determine the number
of buses, generators, loads, and transformers in the
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network. Such a script becomes handy when a user has an
existing OpenIPSL model and would like to add a power
flow records structure automatically.

Figure 1. File structure of the power flow records inside the
OpenIPSL model directory.

We define our power flow record structure
in the class Power_Flow shown in Figure 2.
Power_Flow is a record having a single attribute:
a replaceable record PowerFlow . A
replaceable condition allows the user having many
power flow results for the same model (see Figure 4).

The main idea behind the proposed nested structure
is that, by setting the value of PowerFlow, the user
changes all the power flow variables at once. So, a model
has a unique Power_Flow record whose power flow at-
tribute is replaceable.

PowerFlow has four attributes, which are also
records themselves: a record for bus voltages and angles
(Bus_Data), another for transformer tap positions
(Trafos_Data), a third one for active and reactive
power consumption (Load_Data), and a fourth record
for machine power dispatch (Machines_Data). Nat-
urally, the number of variables inside each of these
internal records depends on each particular power
system model. For each record type, the variables
are specified by the partial record templates
called Bus_Template, Trafos_Template,
Machines_Template, and Loads_Template,
respectively.

Figure 2. Class diagram for the proposed power flow record
structure.

The numerical results are written by a parser func-
tion that translates the power flow result from a Grid-
Cal model computation into a format compatible with
the Modelica record structure. This function is called
gridcal2rec. gridcal2rec creates a PowerFlow
instance placed inside PF_Data , whose attributes are
four record instances: Bus_Data, Trafos_Data,
Machines_Data, and Loads_Data.

4 Computing and Linking PF Records
This section describes how the records structure, illus-
trated previously, can be successfully applied to grid mod-
els of different sizes.

4.1 Creation of Records Structure
A user can integrate our proposed power flow struc-
ture into any existing OpenIPSL model using the code
contained within the pf2rec library (available on
GitHub). The records structure is instantiated by the
create_pf_records function. Listing 1 presents a

minimal example of creating a power flow record for the
Single Machine Infinite Bus (SMIB) system.

Listing 1. Creation of the records structure
from pf2rec import *
import os

# Current working directory
_wd = os.getcwd()
_model_package = 'SMIB'

# Path to the model package directory
data_path = os.path.join(_wd, _model_package)
data_path = os.path.abspath(data_path)

path_mo = os.path.join(data_path,
'SMIB_Base_case.mo')

path_mo = os.path.abspath(path_mo)

# Creating records structure
create_pf_records(_model_package, path_mo,

data_path,
openipsl_version = '2.0.0')

Power Flow Record Structures to Initialize OpenIPSL Phasor Time-Domain Simulations with Python

150 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181147



Note that the content of the Modelica model is saved
within several *.mo files. This practice is encouraged
since it allows to increase the complexity of the data layer
of the model. As supplementary material to this paper,
we provide a tutorial4 showing the step-by-step construc-
tion of the SMIB system, the corresponding power flow
records integration, and computation using GridCal.

The four arguments that we pass to
create_pf_records are the name of the con-
taining package ( _model_package ), the path to the

*.mo file where the model is declared ( path_mo ),
the path to the containing folder of the model package
( data_path ), and the OpenIPSL library version on
which the model has been developed ( _version ).
Here, the paths are constructed as absolute references
thanks to the os library. Such a workaround is recom-
mended to avoid any path problems since the records
instantiation involves file/folder creation. The script
places all the power flow record *.mo files inside a new
directory called PF_Data . PF_Data is also added to
the package.order file of the root package. In this
way, the record structure is loaded with the model
automatically. Once the power flow is created, the data
structure in Figure 1 is shown as a nested subpackage,
illustrated in Figure 3.

Figure 3. Power flow record structure as a nested subpackage in
the model structure.

4.2 Power Flow Computation with GridCal
GridCal is a Python-based object-oriented software for the
computation of power flow results. An example of using
GridCal to compute power flow and Python to write the
power flow solution into record is shown in Listing 2. In
this case, a PSS/E *.raw file containing the static model
information is translated into a GridCal object using the
built-in parser class FileOpen. The *.raw contains
the static model of the network, which is required for any
power flow formulation. The *.raw parser allows us
to benchmark the performance of GridCal against PSS/E
in terms of power flow result accuracy. Furthermore, this
feature reduces the cost of migrating a model from PSS/E
to OpenIPSL since the user could initialize both models

4https://github.com/ALSETLab/SMIB_Tutorial/
and https://youtu.be/4qfKw9SAXFY

from the same *.raw file. However, the user can define
their own grid models from scratch. The reader is referred
to the GridCal documentation for network implementation
examples.

After creating the grid object via the parser class, an in-
stance of the PowerFlowDriver is declared: pf. pf
is responsible for carrying out the power flow computa-
tion following user-specified settings (options). Recall
from Equation (6) that the method for a power flow com-
putation is constrained by the grid topology (i.e., the ma-
trix J(x)). Therefore, the grid object must be passed
to the PowerFlowDriver constructor method for any
power flow computation. The PSS/E *.raw file can
store up to one power flow result. We take advantage of
this fact and use that power flow as an initialization value
for a base-case power flow computation in GridCal. The
result of this base case should be the same power flow
(within the solver’s tolerance) as the one included in the
PSS/E file. The power flow calculation is commanded by
invoking the function pf.run(). The results are stored
as an attribute of the PowerFlowDriver class.

Listing 2. Generation of power flow result using GridCal
(PSS/E file input)

_wd = os.getcwd() # working directory
_model_package = 'SMIB'

# Path to the model package directory
data_path = os.path.join(_wd, _model_package)
data_path = os.path.abspath(data_path)

# Path to the PSSE `.raw` file
psse_raw_path = os.path.join(data_path, "

PSSE_Files", "SMIB_Base_Case.raw")
psse_raw_path = os.path.abspath(psse_raw_path)

# Grid model in GridCal
file_handler = FileOpen(psse_raw_path)

# Creating grid object and setting options
grid = file_handler.open()
options = PowerFlowOptions(SolverType.NR,

verbose = True,
initialize_with_existing_solution = False,
multi_core = False,
tolerance = 1e-6,
max_iter = 99,
control_q = ReactivePowerControlMode.Direct)

pf = PowerFlowDriver(grid, options)
pf.run()

# Writing power flow results in records
gridcal2rec(grid = grid, pf = pf, model_name = '

SMIB',
data_path = data_path,
pf_num = 0,
export_pf_results = False)

Finally, the function gridcal2rec takes the grid
information and the power flow driver information and
writes the results as Modelica records, following the struc-
ture described in Section 3. The new files are placed
within the PF_Data subfolder, housing the power flow
record structure. They are also written automatically in-
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side the corresponding package.order file to be-
come available to the user right after the computation is
completed. The function gridcal2rec can be included
in automation loops to perform a time series power flow.
The resulting output is shown in Figure 4.

In Figure 5 one can notice how the power flow condi-
tion, defining several variables in a model, can be set ei-
ther from the graphical interface or by redeclaring a single
parameter in the text layer. To the authors’ best knowl-
edge, such a feature is not typically available in commer-
cial power system software for dynamics. However, we
can easily incorporate it into OpenIPSL models by ex-
ploiting the flexibility of object-oriented structure of the
Modelica language.

Figure 4. Multiple power flows within an OpenIPSL model.

A possible difficulty of our power flow generation tool
is that the user must connect the power flow parameters in
each device to the record manually. After several attempts,
we noticed that it depended on how the user constructed
a particular model, which is unpredictable. However, we
included informative annotations in the record attributes
to link the initialization values (see Figure 5) correctly.

Figure 5. Informative annotations to assist the user link the
record attributes to the model correctly.

Despite this caveat, referencing of the power flow vari-
ables to the record must be done only once. Afterwards,
the user must change the Powerflow attribute, not the
record itself. Since the references point to the record on
the top layer, they remain unchanged. A detailed example
of this process in the tutorial5 accompanying this paper.

5https://youtu.be/RMD8WEOi6r4

4.3 Scalability for Larger Models
We validated our approach in several systems of different
number of buses (that defines the scale of the power flow
problem) and of state variables (that defines the size of
the complexity of dynamic simulation problem). Table 1
and Figure 6 summarize the characteristics of the bench-
marked systems and illustrate the tool’s performance in
terms of execution time for record generation and power
flow computation. The results correspond to the best
scenario over 100 repetitions with 100 loops each. All
models are available within the Application Examples of
OpenIPSL.

Table 1. Scalability results on different systems

System
(Buses)

Number of Variables
Avg. Execution Time

(over 100 loops)

Algebraic State
Record

Creation
Power Flow
Computation

SMIB
(4) 99 9 4.08 ms

± 255 µs
31.6 ms
± 1 ms

IEEE 9
(9) 241 29 7.29 ms

± 287 µs
35.5 ms

± 1.55 ms
Kundur

Two Areas
(11)

244 20 5.07 ms
± 194 µs

37.4 ms
± 1.01 ms

AVRI
(14) 16 233 5.77 ms

± 144 µs
35.9 ms

± 1.17 ms
Nordic 44

(44) 1294 6315 55.2ms
± 874 µs

349 ms
± 12.8 ms

Figure 6. Execution time for record creation (top) and power
flow computation (bottom). Observe that the results for the N44
are presented on a different scale.
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Table 2. Power Flow Comparison between PSS/E and GridCal

System Bus
Voltage Power

Magnitude [pu] Absolute
Error

Angle [deg] Absolute
Error

P [MW] Absolute
Error

Q [Mvar] Absolute
ErrorPSS/E GridCal PSS/E GridCal PSS/E GridCal PSS/E GridCal

SMIB 1 1.0000 1.0000 -9.99×10−16 4.04628 4.04627 -2.24×10−6 40.000 40.000 0.00000 5.417 5.417 3.66×10−8

2 1.0000 1.0000 0.00000 0.00000 0.00000 0.00000 10.017 10.017 5.63×10−6 8.007 8.007 3.83×10−8

IEEE9
1 1.0400 1.0400 0.00000 0.00000 0.00000 0.00000 71.613 71.613 1.11×10−5 25.592 25.592 4.12×10−6

2 1.0300 1.0300 0.00000 9.18220 9.18219 -4.36×10−6 163.000 163.000 0.00000 8.925 8.925 -3.69×10−6

3 1.0250 1.0250 0.00000 4.64766 4.64766 -2.20×10−6 85.000 85.000 0.00000 -12.503 -12.503 -1.23×10−5

Two
Areas

1 1.0300 1.0300 0.00000 27.07087 27.07086 -7.19×10−6 700.000 700.000 0.00000 185.035 185.035 -2.56×10−5

2 1.0100 1.0100 0.00000 17.30648 17.30647 -7.33×10−6 700.000 700.000 0.00000 234.624 234.624 -2.10×10−5

3 1.0300 1.0300 0.00000 0.00000 0.00000 0.00000 719.095 719.095 -2.58×10−5 176.040 176.040 2.24×10−5

4 1.0100 1.0100 -9.99×10−15 -10.19216 -10.19215 1.09×10−5 700.000 700.000 0.00000 202.114 202.114 -4.49×10−5

AVRI
1 1.0500 1.0500 0.00000 0.00000 0.00000 0.00000 -100.000 -100.000 0.00000 41.391 41.391 -4.25×10−6

8 1.0500 1.0500 0.00000 47.01978 47.01976 -1.89×10−5 50.000 50.000 0.00000 19.795 19.795 -7.89×10−7

12 1.0500 1.0500 0.00000 43.26172 43.26170 -2.11×10−5 50.000 50.000 0.00000 21.916 21.916 -4.04×10−6

N44
3115 1.0000 1.0000 0.00000 -13.59220 -13.59220 1.12×10−6 1114.875 1114.875 0.00000 -395.702 -395.702 1.37×10−5

6000 1.0050 1.0050 0.00000 -18.37864 -18.37864 -2.86×10−6 1010.808 1010.808 0.00000 -400.800 -400.780 1.97×10−2

6500 1.0000 1.0000 0.00000 -25.88593 -25.88593 -3.62×10−6 1093.284 1093.284 0.00000 882.375 882.375 -1.36×10−4

8500 1.0200 1.0200 -9.99×10−15 -5.72443 -5.72443 5.95×10−7 1952.664 1952.664 0.00000 596.683 596.683 2.58×10−4

The Record Creation (RC) process is 5–7x faster than
the power flow computation, as expected6. Both pro-
cedures scale up with the number of algebraic vari-
ables, directly related to the dimensionality of the power
flow problem. Notice that increase in execution time to
generate the records shows an exponential trend with re-
spect to the size of the power flow problem (Figure 7), as
expected.

Figure 7. Exponential increase in execution time as a function
of the number of algebraic variables in the model.

4.4 Result Validation with PSS/E
The validation against PSS/E of the power flow results ob-
tained using GridCal has been performed on several test
systems. In Table 2, a list of the tested networks is given.
For each of the networks some buses have been selected
indicating their voltage magnitude and angle, the inject-
ed/absorbed active and reactive powers of the generating
units connected to the corresponding node. Those power
flow results are compared with the corresponding calcu-
lations obtained from PSS/E including evaluation of an

6The experiments were performed on an Intel Core i5 Quad-Core
(2.0 GHz) processor, with 16 GB RAM DDR4 memory.

absolute error between the evaluated power flow and ref-
erence PSS/E power flow. The power flow values match
with low tolerance errors that in some cases hit the ma-
chine precision. This shows the validity of the proposed
approach of power flow calculation using the open-source
Python library GridCal.

5 Conclusions
This article presents an approach to form a record-based
data structure to handle power flow starting guesses for a
dynamic simulation using the phasor-domain OpenIPSL
library. A power flow computation, performed before
running a phasor-domain simulation, specifies the start-
ing equilibrium of the nonlinear system simulation. The
record class architecture benefits directly from the object-
oriented paradigm of the Modelica language, allowing
management of all power flow variables from a single at-
tribute in the model, a feature not common in specialized
proprietary power system tools. Such structure can be
extrapolated to other open-source Modelica-based power
system libraries.

We provide a Python script to create the structure for
any existing OpenIPSL model built on versions 1.5.0 or
2.0.0, in this way, naturally expanding capabilities of
the library to perform dynamic simulations for different
power flow initial conditions. The power flow record in-
stances can be populated by an open-source Python li-
brary called GridCal, capable of producing numerically
the same results as PSS/E for power flow computations.
We also introduce a script to convert the GridCal power
flow results to records directly.

From our perspective, the proposed methodology can
be useful for users of existing OpenIPSL models, espe-
cially for those who study the behavior of the models un-
der different power flow conditions. However, for large
scale models the user would have to spend significant
time linking the power flow variables to the record. To
avoid the aforementioned issue, a model translation tool
that translates the information from PSS/E *.dyr and
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*.raw files into OpenIPSL *.mo models is currently
under development. The tool will include the proposed
record structure in this paper by default. In that case, the
power flow variables will point to the record automati-
cally. This will be a key advantage in helping power sys-
tem analysts with the potential adoption and transition to
Modelica-based tools.
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