DLR Visualization 2 Library -
Real-Time Graphical Environments for Virtual Commissioning

Sebastian Kiimper!

Matthias Hellerer!

Tobias Bellmann!

Institute of System Dynamics and Control, German Aerospace Center (DLR),
{sebastian.kuemper, matthias.hellerer, tobias.bellmann}@dlr.de

Abstract

In this paper, the next generation of model-based visu-
alization is introduced, the DLR Visualization 2 Library.
This new real-time graphics environment for Modelica is
equipped with a state of the art engine for physics based
lighting calculation and high-definition render quality, si-
multaneous visualization of parallel running simulation
models, new features like a modern streaming interface
and a new, cleaner library structure. It enables the user to
create graphical real-time environments for virtual com-
missioning of complex systems of systems and imaging
based sensors. Some applications, as for example depth-
camera data generation or rendering of point clouds or
vectorized flow visualization are demonstrated in the use
cases section of this paper.

Keywords: Visualization, Virtual Commissioning, Systems
of Systems, Multi-Body

1 Introduction

The Modelica multi-body library allows for highly de-
tailed simulations of mechanical structures. However, the
integrated visualization for multi-body components avail-
able in all major Modelica tools contains only some simple
geometrical forms, surfaces or static CAD models (Otter,
Elmqvist, and Mattsson 2003). While this is sufficient for
many engineering tasks, where only the structure and be-
havior of a system is of interest for the engineer, for vir-
tual commissioning, a realistic graphical environment is
sometimes necessary, especially if optical sensors should
be used as part of an image processing pipeline (e. g. for
homing a robot using camera data). Furthermore, more
and more simulations, particularly those of "Systems of
Systems", have to run in parallel to increase performance,
creating the problem of asynchronous creation of model
animation data to be processed by the render engine of the
visualization tool.

To overcome these shortcomings, DLR developed the
new DLR Visualization 2 library, an evolution and succes-
sor to the long available and continuously refined DLR Vi-
sualization Library from 2009 (Bellmann 2009; Hellerer,
Bellmann, and Schlegel 2014).

Figure 1. Recumbent bike visualized in the DLR Visualization
2 Library. Material properties of the CAD models as metalness
or roughness are rendered in a physically meaningful way.

1.1 Modelica Visualization - State of the Art

A comprehensive review of alternative visualization meth-
ods for Modelica can be found in Hellerer, Bellmann, and
Schlegel (2014). Since then some new work has been pub-
lished, especially from Waurich and Weber (2017). Here,
FMUs of the model are generated and integrated in the
Unity engine within a newly developed Unity plugin. The
FMU serves as data source for the visualizer elements
(e. g. for their positioning) to enable high quality render-
ing with a state of the art engine. In Fuchs, Streblow, and
Miiller (2015), Python is used for the visualization of mass
flows of thermal-fluid networks.

1.2 Virtual Commissioning

Within the life cycle of a product or plant, commission-
ing refers to the phase, where a new technical system
is activated and used productively for the first time as
a whole. However, in complex multi-component sys-
tems, this step oftentimes ends with problems, error mes-
sages and incompatibilities between the different systems
and the desired task cannot be carried out as expected
because of unforeseen differences between specification
and reality. In order to avoid such problems and poten-
tial high costs caused by subsequent error solutions and
eventual hardware/software redesigns, virtual commis-

DOI
10.3384/ecp21181197

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

197

DLR Visualization 2 Library - Real-Time Graphical Environments for Virtual Commissioning

sioning strives to commission the single system compo-
nents before the completion/production of all other hard-
ware components, by coupling them with a virtual envi-
ronment, which simulates the yet unavailable components
(VDI/VDE-Fachbereich Engineering und Betrieb 2016).
Modelica is a useful tool here, as it enables the user to
simulate yet to be produced or to be designed hardware
components. One example would be the real-time con-
nection of simulated hardware with the real world con-
troller software/hardware of the system. However, if the
controller relies on optical sensory input, for example as
part of an image processing tool-chain, a real-time visual-
ization with virtual sensors and camera streams becomes
a necessity.

2 New Features of the DLR Visualiza-
tion 2 Library

The DLR Visualization 2 Library is a completely new de-
velopment. We integrated most of the features from the
previous version and we also improved the interface and
added new features. This improves the quality of cre-
ated images and allows the library to be used for more
use cases which are also useful for virtual commissioning.
The structure of the new library can be seen in Figure 2.

2.1 Improved Rendering Quality

The DLR Visualization 2 Library uses a completely new
and modern rendering backend which is based on the real-
time 3D engine Unigine (Unigine 2021). This allows for
a greatly increased rendering quality. An example image
can be seen in Figure 1.

One core change is the material rendering. Previously,
the materials were parameterized by abstract values that
were not based on real world properties. In the new ver-
sion the parameters are based on the physical appearance
of real world objects and are consequently more intuitive
to the user (Greenberg et al. 1997). Every object has three
properties: color, metalness and roughness. The color
defines the dominant color of the object. Metalness is a
boolean value which defines whether the object is made of
metal or not. Roughness is a value between 0 and 1 which
defines how rough the rendered object should be. A value
of 0 indicates that the object is perfectly polished and light
gets perfectly reflected. A value of 1 indicates that the ob-
ject is very rough in a microscopic sense. An example
for varying material properties can be seen in Figure 3.
These properties can either be set for simple objects, over-
ridden for file objects or directly imported from a gltf file
(Khronos 2021). Other CAD-File types are supported but
the resulting material may not be the intended material.

Another big improvement is the scene lighting. The
light sources have a more realistic look and they produce
dynamic high quality shadows. The shadows can also be
disabled per light source or per object to give the user
more control over the result. The brightness is set via a
physical value in lux. The lighting also includes ambi-

v) Visualization2
© User's Guide
® VisualizationSetup
(» | Examples
v '] Shapes
Files
VJ Primitives
1/ Cube
10 Sphere
11 Cylinder
15 Cone
1J Capsule
v+ Plane
v Prism
1) Icosahedron
1 Dodecahedron
(P | parameterized
[E TextureTargets
¢ Terrains
Billboards
PointClouds
Internal
[] FlowVisualization
D Cameras
(¢] Lights
@ TextureSources
[] Environments
D Settings
Overlays
[] Intersectors
Visualizers
Utilities

Internal

Figure 2. The new Visualization 2 library structure with sepa-
rate primitives for better visibility on modeling level

ent occlusion which enhances cavities by simulating small
distance shadows.

2.2 Depth Rendering and Point Clouds

In the field of automation and robotics, sensor systems
that create depth information or spatial data are common.
Stereo cameras may create depth images, i.e. images
where each pixel represents the distance to the viewed ob-
ject. Laser scanners or sonars may create a list of points
that approximate the scanned objects. We added several
options to visualize this data and also added the virtual
camera DepthCamera, to create depth image data in a virtual
environment, so that these types of sensors can be simulated.
Itis possible to directly visualize the depth field created by the
DepthCamera within the visualization window. The distance
of the camera to the viewed object is then encoded in the color of
the camera image pixels. For an example, see the use case in sec-
tion subsection 3.1. For a better visualization of small distance

198

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181197

Session 3A: Libraries

Figure 3. Example of material properties of a sphere. Top row:
metalness set to true, Bottom row: metalness set to false. De-
creasing roughness from left to right.

differences, the user can enable Eye-Dome-Lighting (Ribes and
Boucheny 2011) by applying a dummy shading technique. The
data can also be sent to other applications as described in sub-
section 2.3.

Depth image data can also be visualized in 3D with
DepthMesh. This is a plane with a given resolution that is
deformed according to the depth image. Together with the po-
sition and orientation of the camera, the object viewed by the
camera can be accurately reconstructed in 3D.

A more versatile solution are point clouds. Here in-
dividual points are visualized via small squares. A point
cloud can also be generated from a DepthCamera with the
CameraPointCloud. This delivers nearly the same result as
the DepthMesh, but each pixel of the depth image will corre-
spond to an individual point instead of a closed mesh.

In addition to CameraPointCloud, there exists
StreamPointCloud where the points are received from a
network source, RawPointCloud where the points can be set
directly through Modelica and FilePointCloud where the
points are loaded from a .xyz-file. The data of multiple time
points of point clouds can be combined into a grid, so that the
complete scene can be viewed instead of a single time point.
The user also has the possibility to filter the data by the quality
data from the sensor and color the point clouds accordingly.

An example application can be seen in Figure 4. Here a re-
mote operated underwater vehicle (ROV) is simulated. It has
a panning depth camera attached to its front to view the sur-
roundings. On the top left image, the ROV with the landscape
is shown. The current view of the depth camera is shown with
a DepthMesh in red. On the top right is the colored depth im-
age of the camera with enabled eye-dome-lighting. On the bot-
tom left is a StreamPointCloud which receives the points
from the camera via network. On the bottom right is another
StreamPointCloud, which combines the information from
previous time steps to visualize the complete scanned path. It is
also possible to replace the DepthCamera source with a real
world sensor so that real sensor data is visualized instead.

2.3 Improved Streaming Support

Some simulations, particularly in virtual commissioning scenar-
ios, are controlled by external applications that rely on data from
processed camera images. In order to provide such synthetic
camera data for external image processing pipelines, we added
support to stream virtual camera images to arbitrary targets. An
example process can be seen in Figure 5 where the simulation
is controlled from the output of an image processing software.
The visualization of the simulation creates a depth image, which
is sent to an external image processing pipeline to create control

Figure 4. Example application for the use of depth informa-
tion. Top left: ROV with depth camera floats above terrain,
depth mesh in red is viewed area. Top right: current view with
wrong colors and shading. Bottom left: current reconstructed
landscape based on depth image. Bottom right: point cloud of
combined time steps.

inputs for the simulation.

Every virtual camera has the possibility to stream its current
view to a network target. The resolution of the stream is defined
by a parameter that is independent from the resolution of the
screen. The user can also set the target frame-rate of the stream
to either reduce the workload of the visualization or to simu-
late real world limitations. The supported network protocols are
UDP, TCP and RTSP.

The new DepthCamera can also stream their depth infor-
mation to network targets, to simulate the results of a stereo
vision pipeline. The depth information can be streamed us-
ing different options: Either the depth information is streamed
via an encoded video (Pece, Kautz, and Weyrich 2011) or the
data depth information of each pixel is packed into a FlatBuffers
(Google 2014) package (either as 2D image or as 3D data) and
subsequently streamed.

2.4 Testing Abilities

During testing of models, engineers want to change multiple pa-
rameters and compare the results of several simulations. In Mod-
elica, it is feasible to vary parameters automatically (e. g. using
Monte Carlo methods of the Optimization Library (Joos et al.
2002)), so the automated creation of comparison images should
also be possible. This is why we added support to control the
creation of screenshots and videos from Modelica.

To create screenshots automatically, the user specifies the
simulation time points at which a screenshot should be taken.
During simulation, the visualization will halt for a brief moment
at the requested time points and create a screenshot. This also
works for extremely fast simulations. The simulation time is
appended to the given path so that the user can make several
screenshots during one simulation. In Figure 6 (Pignede and

DOI
10.3384/ecp21181197

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

199

DLR Visualization 2 Library - Real-Time Graphical Environments for Virtual Commissioning

depthCamera
fixed
1w
%)
=000} 100 Animation Virtual
) . . o Image
Simulation Data Visualization | Camera Stream Processing

Control Information

Figure 5. The process for a simulation controlled by cameras. The simulation sends animation data to the visualization, which
renders a depth image and streams it to an external application. This application processes the depth image, calculates control

information and sends it back to the simulation.

Lichtenheldt 2022) several screenshots are automatically created
at different time steps for a short overview of the simulation.

[Fise: 003, oava:)

[Tine: os3 5o

Figure 6. Screenshots automatically created at different time
steps

Normally, a screenshot of all cameras that are displayed in
the main window is created. A screenshot from a single camera
can be triggered inside the individual cameras. Here, the screen-
shots can be taken at pre-defined times or when certain simula-
tion events are happening. This is not only useful for checking
results, but can also be used to mimic the functionality of a real
world camera that is only able to create still images instead of
videos.

Another option to compare results are auto-generated videos.
When this option is enabled, the visualization will automatically
create a video with the specified settings and save it to the spec-
ified path. This allows the user to run a multitude of simula-
tions with varying parameters and simply compare the resulting
videos.

2.5 Flow Visualization

In the previous version of the visualization library it was already
possible to visualize the flow of media inside a pipe. In the new
version the path is defined by a series of points. At each point,
the user can define the desired position, the speed and the color
of the visualized flow elements. The path in between the points
is either interpolated cubically or linearly. The flow elements
themselves can either be visualized with cones, rings, arrows or
even imported CAD-Files. When using CAD-Files, the user can
control the up-vector so that rotations along the flow axis are
possible. This can also be used to visualize objects that consist
of multiple small moving objects. In Figure 7 this is used to
visualize the chain of a bicycle.

Another new addition is the visualization of flows inside of
a three dimensional field. This can be used to visualize the

Figure 7. A moving chain is visualized with the

PathVectorFlow

airflow around objects, like cars or wings. The vector field
consists of a three dimensional array of points. At each point
the user can specify a vector and its color. There exist two
methods to visualize vector fields, GridVectorField and
GridVectorFlow. GridVectorField visualizes the in-
dividual vectors as arrows which have the specified direction,
length and color. GridVectorF low visualizes the flow inside
of this field. In order to do this, the user defines seeding points.
At these points particles are inserted that follow the flow inside
the field. The flow can also be visualized by lines that can either
follow a virtual particle over time through the field or they can
be simulated in a single time step. The lines are colored with the
colors defined in the grid. An example flow around a sphere can
be seen in Figure 8.

Figure 8. Visualized air flow around a sphere with the new
GridvectorFlow

200

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181197

Session 3A: Libraries

2.6 CAD Array

Figure 9. Use of the CAD array for the visualization of a distri-
bution of 1.7 million rocks on a simulated moon landscape

There are situations where one would need to visualize large
amounts of similar, static objects, e. g. rocks on a surface. Doing
this with the normal CADF i 1e leads to many equations in Mod-
elica and therefore slows down the initialization and simulation
significantly.

To counter this, CADArray allows the user to visualize a
large number of instances of the same CAD file. For each in-
stance the position, rotation and scale can be specified. This can
either be done directly in Modelica via arrays or a file can be
loaded that holds all of the information.

An example application can be seen in Figure 9. A lunar
landscape had to be enhanced with rocks to provide additional
detail and obstacles for a lunar landing simulation. The visu-
alized moon is fairly large, so in order to achieve the desired
obstacle density around 1.7 million rocks have to be placed and
visualized on the surface. This would neither be possible to sim-
ulate nor to visualize without CADArray.

2.7 Level of Detail

Visualizing large amounts of objects with many details can be
very challenging to render, so we introduced the possibility to
specify multiple levels of detail (LoD).

A version of the object with many details is chosen as the
main file. Additionally multiple LoDs can be added. Each of
these LoDs is defined by a CAD file and a minimum visibility
distance. At this distance the object will be visualized by the
LoD’s CAD file and the CAD file of the lower levels will be
hidden.

Distance 5-10:
Rock2.gltf

Distance <5:
Rock1.gltf

Distance >10:
Rock3.gltf

Figure 10. A rock displayed with varying polygon count at dif-
ferent distances. The user can specify what CAD files should be
shown at which distance to reduce the stress on the GPU, while
keeping visual quality high.

An example of a rock with multiple LoDs can be seen in Fig-
ure 10. When the viewer is less then five units away, the very
detailed Rock1.gltf is shown. When the viewer is farther away at

a distance of between 5 and 10 units, the less detailed Rock2.gltf
is shown. At a distance over 10, the even less detailed Rock3.gltf
is shown. This reduces the load on the GPU, while keeping vi-
sual quality high.

2.8 Additional Improvements

Interface

We completely reworked the Modelica interface in the DLR Vi-
sualization 2 Library to improve the overall usability of the li-
brary. We separated the primitives into individual objects so that
at a glance, the user can see what kind of objects are displayed.
Additionally, primitives and other objects with a main color are
displayed in that color in the Modelica interface. A comparison
can be seen in Figure 11.

shape2 cube
neat fmeas

‘ N

cylinder

cylinder
thea?
{1001 |III
sphere capsule
\mcm oeds
+— it
:::: {l‘:lll’ fff?ii““‘DAAH \..;;]
w0 e

Figure 11. Comparison of the Modelica blocks for Primitives
from the old library (left) to the new library (right). In the new
library the primitives are split into different objects and the color
is shown in the model

shape1

shape3

TR 4

sphere e capsule

Rigged CAD File

We added the possibility to manipulate objects with bones that
are defined in the CAD file. Manipulating objects with virtual
bones is a standard in computer graphics. The most prominent
use case is the creation of animated humans or animals, as it al-
lows for the deformation of the skin. However, bones can also
be used for mechanical structures like robots or rovers. Here, the
advantage over individual subobjects is that the relative position
of the objects is given in the CAD file and the user does not have
to manually position them in the simulation model. For easier
use, we added a Modelica function which extracts the bone in-
formation from the specified CAD file to create a model where
the bones can be identified by their given names.

VR camera

We improved the usage of VR-Headsets. Now, every headset
that uses the OpenVR standard is supported. Optionally, overlay
items displayed for the VR user on a plane, which floats in front
of the user, are now possible.

Another feature is the addition of green screen support
(chroma keying). Here, a camera is mounted on the VR head-
set. The camera image will be displayed in the VR image and
combined with the virtual image, which will be displayed at the
masked green areas. This can be used to merge a real environ-
ment with a virtual environment, e. g. a real cockpit with a vir-
tual landscape.

Window setup from within Modelica

The visualization window arrangement can now be controlled
from within Modelica. This may be used for the automatic setup
of a multi screen simulation. This includes the position, size and
style. The position and size is specified relative to the screen

DOI
10.3384/ecp21181197

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

201

DLR Visualization 2 Library - Real-Time Graphical Environments for Virtual Commissioning

size, so that the appearance is independent from the screen res-
olution. The window can be a normal window with title bar and
border, without any borders and title or fullscreen. It is also pos-
sible to create additional windows with the same properties.

Camera Position Back-Channel

The user can retrieve the position and orientation of every cam-
era in Modelica. The cameras have an optional output for the
position vector and the orientation matrix. These can be used to
construct a frame and thereby objects can be attached to a user
controlled camera. This also works for the VRCamera. This
means that objects can be placed relative in the view of the VR
user to, e. g. to create some additional interface.

Textures

In the previous version of the Visualization Library, textures
(i. e. images or videos) were treated differently depending on the
source. In the DLR Visualization 2 Library there is a common
interface: the texture buffer. All individual sources (virtual cam-
era, network stream, webcam, file) are treated the same and are
interchangeable. This allows the user to iteratively test the simu-
lation by simply exchanging the source of a texture and nothing
else.

Overlay Positioning

8
E=]
(0,1 (L1
0,1y Overlay (1,1)
anchor:(0.5,0.5)
g@i,f" “angle
. $00 T
Aot oy L0
905
) \':{0'1.-\0 rixel equivalent coordinate system 1000
ot R
o
(0,0 . (1,00
Viewport

Figure 12. Possibilities of the overlay positioning mechanism.
The origin is given relative to the viewport. The overlay position
is relative to the origin and is given in pixel equivalents to allow
for exact positioning of multiple interacting items. Finally the
anchor can be used to change the handle position of the item.

We added more possibilities for the positioning of overlay
items (formerly HUDs). In the previous version, the positioning
was rather limited. The origin was always on the bottom left
of the viewport. In Figure 12 the new possibilities can be seen.
This is controlled by three positioning parameters:

* origin: relative position in the viewport

e position: relative to origin in pixel equivalents (equals
1/1000th of a defined side of the viewport)

¢ anchor: handle position of item relative to item size

This allows the user to position the overlay items to be aligned
to any part of the viewport and also position it by any part of the
item while still keeping the possibility for items to be positioned
exactly for them to interact with each other.

Environments

Environments define the overall look of the simulation. They
provide options for the sun light, the ambient light and the back-
ground. For the background, either a skybox can be defined or
the sky color is calculated based on the position of the sun. Haze
can be added to provide a more realistic visualization of large
scale earth-based simulations.

3 Use Cases

While still under development, the DLR Visualization 2 Library
is already used for many internal projects. A few practical ap-
plications will be introduced here.

3.1 Virtual Commissioning of a Robot Cell

Visualizing the overall assembly of a system early in the de-
velopment process and during virtual commissioning has many
benefits. Engineers can, for example, immediately asses the size
of complex work-spaces with many moving parts to avoid colli-
sions. Further, it is often times necessary to present a machine or
plant to stakeholders long before it is physically built. However,
if real components rely on optical sensor values, e. g. an imaging
pipeline to control a pick and place task, this can be addressed
in the simulation visualization as well.

Such an application is shown in Figure 13: Two interacting
robots assemble housings for network components (Bellmann,
Seefried, and Thiele 2020; Reiser 2021). For this task they are
equipped with depth cameras on the side of their tools to de-
tect the exact position of a workpiece. In this complex applica-
tion the visualization is part of virtual commissioning. It creates
depth images as shown in Figure 14 and streams them to an im-
age processing algorithm. Its results then provide positioning
input to the robot controllers and thereby close the control loop
over visualization and image processing.

: ‘_7

\

Figure 13. Example for virtual commissioning of a robot cell.
Two cooperative robots assemble housings for network compo-
nents.

3.2 Visualization of Parallel Running Simula-
tions
The Helmholtz Future Project ARCHES develops teams of het-

erogeneous robotic agents for deep-sea and extraterrestrial ex-
ploration with the goal of improving efficiency and robustness

202

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181197

Session 3A: Libraries

Figure 14. Depth image produced by a stereo camera, mounted
on one of the robots tool. Color denotes distance from camera.

under extreme conditions (Schuster et al. 2020). During the de-
velopment of such a team, only a limited number of robots is
actually available and using those for regular software tests or
during development is complex and laborious. So simulations
play an important role during development of robot teams. Yet
the simulation of a large number of agents is again difficult, es-
pecially in an efficient manner. Almost all available Modelica
implementations are very limited when it comes to paralleliza-
tion. Typically the whole simulation is run in one monolithic
block on a single CPU core (Gebremedhin 2019). So to sim-
ulate a whole team of robots, each agent is split into a single
simulation. The simulations are then only loosely coupled, but
they all have to be visible in one common visualization. The
DLR Visualization 2 library supports the rendering of multiple
simulations in one visualization container.

In this use case a multi-agent simulation has been created to
simulate multiple rovers on a virtual but realistic landscape. It
provides a network API which allows the developers of control
algorithms for the rovers to send commands to the robots and
to receive status data from them. Among this data are video
streams of the simulated robots cameras e.g. for a navigation
pipeline. Figure 15 shows a common visualization of multiple

Figure 15. Multiple rovers, each from a separate simulation,
rendered in one visualization

largely independent, simulations in one visualization container.

The virtual camera images should be as close to real ones as
possible to give operators a realistic impression during devel-
opment and training. The video streams might even be used as
input for image processing algorithms for tests and during de-
velopment as presented in Wedler et al. (2017).

3.3 Automated Testing of Rover Operations

The Martian Moon eXploration mission (MMX) is a cooperative
effort by the Japanese space agency JAXA, the French space
agency CNES, and the German space agency DLR. Together
they plan to explore the martian moons Phobos and Deimos
(Ulamec et al. 2019). An important part of this project is the
deployment of a mobile rover on Phobos (Bertrand et al. 2019;
Buse et al. 2021). Designing the first wheeled rover for use on
Phobos is a highly complex task. Little is known about many
environmental factors such as the surface structure and what is
known, like the micro gravity, poses a number of new prob-
lems that no previous wheeled exploration rover has ever faced
(Bertrand et al. 2019; JAXA 2017; Lange 2020).

An environment like this cannot be recreated anywhere on
earth, therefore simulations and their visualization play a cen-
tral role during the development. One of the most challenging
tasks is the simulation of the wheel-ground contact under low-g
conditions. Without a visualization it is very hard to get a real
insight into the complex interaction of multiple contact points in
a non-intuitive environment.

Such visualizations are also directly involved in the develop-
ment of the locomotion planning tool for the rover. A simulated
navigation and wheel cameras will be used to determine the fea-
sibility of a planned locomotion trajectory.

Finally, space missions also have to present their work and
their results to the general public in an interesting and engaging
fashion. For this, nowadays, high quality render images of the
mission are generally expected. Figure 16 shows such an im-
age, presented, for example, on JAXAs MMX mission website
(JAXA 2020).

Figure 16. Visualization of the simulated MMX Rover on Pho-
bos. The rover moves on soft soil with large rocks in a micro
gravity environment.

4 Conclusion and Outlook

Whilst the possibility to export FMU of Modelica models en-
ables virtual commissioning of the physical system behavior,
the usage of visually rendered environments for virtual com-
missioning is not standardized yet. Especially the integration of
real imaging pipelines requires a high-definition real-time ren-
dering engine with video stream capabilities, not available in
most Modelica tools. In this work we presented the commer-
cially available DLR Visualization 2 Library and its new features
aiming at integrating such pipelines. Another big step in usabil-
ity is the possibility to visualize the results of multiple, parallel
running simulations.

DOI
10.3384/ecp21181197

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

203

DLR Visualization 2 Library - Real-Time Graphical Environments for Virtual Commissioning

For future developments, it is planned to extend the DLR
Visualization 2 Library with a generic C++ API, a Mat-
lab/Simulink interface and a JULIA library. The library, inter-
faces and the render tool itself will be provided in a free commu-
nity edition limited to real-time multi-body visualizations and a
commercial version containing all features.

Acknowledgments

The authors would like to thank all colleagues at DLR help-
ing during the implementation and testing of the library, espe-
cially Robert Reiser, Fabian Buse, Antoine Pignede and Miguel
Neves, who also provided some of the examples and use cases.
Additionally, the authors would like to thank GEOMAR for the
model of the ROV. This work was partially funded by the HVF
68 Project Lighthouse.

References

Bellmann, Tobias (2009). “Interactive simulations and advanced
visualization with modelica”. In: Proceedings of the 7th in-
ternational Modelica conference. Linkoping University Elec-
tronic Press.

Bellmann, Tobias, Andreas Seefried, and Bernhard Thiele
(2020-10). “The DLR Robots library — Using replaceable
packages to simulate various serial robots”. In: Proceed-
ings of Asian Modelica Conference 2020 (Tokyo, Japan).
Linkoping University Electronic Press. DOI: 10 . 3384 /
ecp2020174153.

Bertrand, Jean et al. (2019-05). “Roving on Phobos: Challenges
of the MMX Rover for Space Robotics”. In: 15th Symposium
on Advanced Space Technologies in Robotics and Automation
(ASTRA) (Noordwijk, Netherlands). ESA/ESTEC.

Buse, Fabian et al. (2021-10). “Wheeled locomotion in milli-
gravity: A technology experiment for the MMX Rover”. In:
72th International Astronautical Congress (Dubai, UAE).
The International Astronautical Federation.

Fuchs, Marcus, Rita Streblow, and Dirk Miiller (2015). “Visu-
alizing simulation results from modelica fluid models using
graph drawing in python”. In: Proceedings of the 11th Inter-
national Modelica Conference, Versailles, France, Septem-
ber 21-23, 2015. 118. Linkoping University Electronic Press,
pp. 737-745.

Gebremedhin, Mahder (2019-01). Automatic and Explicit Par-
allelization Approaches for Equation Based Mathematical
Modeling and Simulation. Linkoping University Electronic
Press. DOI: 10.3384/diss.diva-152789.

Google (2014). FlatBuffers. URL: https:// google . github.io/
flatbuffers (visited on 2021-04-22).

Greenberg, Donald P. et al. (1997). “A Framework for Realistic
Image Synthesis”. In: Proceedings of the 24th Annual Confer-
ence on Computer Graphics and Interactive Techniques. S1G-
GRAPH °97. USA: ACM Press/Addison-Wesley Publishing
Co., pp. 477-494. 1SBN: 0897918967. DoTI: 10.1145/258734.
258914. URL: https://doi.org/10.1145/258734.258914.

Hellerer, Matthias, Tobias Bellmann, and Florian Schlegel
(2014). “The DLR Visualization Library-recent development
and applications”. In: Proceedings of the 10 th International
Modelica Conference; March 10-12; 2014; Lund; Sweden.
096. Linkoping University Electronic Press, pp. 899-911.

JAXA (2017-08). Gravity both too strong and too weak: landing
on the Martian moons. URL: https://mmx-news.isas.jaxa.jp/
7p=331&lang=en (visited on 2021-04-22).

JAXA (2020-10). The MMX Rover is undergoing tests for land-
ing. URL: https://mmx-news.isas.jaxa.jp/?p=1271&lang=en
(visited on 2021-04-22).

Joos, Hans-Dieter et al. (2002). “A multi-objective optimisation-
based software environment for control systems design”. In:
IEEE International Conference on Control Applications and
International Symposium on Computer Aided Control Sys-
tems Design, 2002-09-18 - 2002-09-20, Glasgow, Scotland
(UK). IEEE, pp. 7-14.

Khronos (2021). gITF Specification Webpage. URL: https ://
www.khronos.org/gltf (visited on 2021-04-22).

Lange, Michael (2020-09). First tests for landing the Martian
Moons eXploration Rover. URL: https://www.dlr.de/content/
en/articles/news/2020/03/20200930_in - free- fall - to- the -
martian-moon-phobos.html (visited on 2021-04-22).

Otter, Martin, Hilding Elmqvist, and Sven Mattsson (2003-11).
“The New Modelica MultiBody Library”. In: pp. 311-330.
Pece, Fabrizio, Jan Kautz, and Tim Weyrich (2011). “Adapting
Standard Video Codecs for Depth Streaming”. In: Joint Vir-
tual Reality Conference of EGVE - EuroVR. Ed. by Sabine
Coquillart, Anthony Steed, and Greg Welch. The Eurograph-
ics Association. ISBN: 978-3-905674-33-0. por: 10.2312/

EGVE/JVRC11/059-066.

Pignede, Antoine and Roy Lichtenheldt (2022). “Modeling,
Simulation and Optimization of the DLR Scout Rover to
Enable Extraterrestrial Cave Exploration”. In: The 6th Joint
International Conference on Multibody System Dynamics
(IMSD) and The 10th Asian Conference on Multibody Dy-
namics (ACMD), New Delhi, India: October 16-20, 2022. Ac-
cepted for publication.

Reiser, Robert (2021). “Object Manipulation and assembly in
Modelica”. In: Proceedings of the 14th international Model-
ica conference. Linkoping University Electronic Press.

Ribes, Alejandro and Christian Boucheny (2011-04). “Eye-
Dome Lighting: a non-photorealistic shading technique”. In:
URL: https://blog.kitware.com/eye-dome-lighting-a-non-
photorealistic-shading-technique (visited on 2021-04-22).

Schuster, Martin J. et al. (2020-10). “The ARCHES Space-
Analogue Demonstration Mission: Towards Heterogeneous
Teams of Autonomous Robots for Collaborative Scientific
Sampling in Planetary Exploration”. In: IEEE Robotics and
Automation Letters 5.4, pp. 5315-5322. por: 10.1109/1Ira.
2020.3007468.

Ulamec, S. et al. (2019-10). “A rover for the JAXA MMX
Mission to Phobos”. In: 70th International Astronautical
Congress (Washington DC, USA). The International Astro-
nautical Federation. Chap. A3.

Unigine (2021). URL: https://unigine.com/ (visited on 2021-04-
22).

VDI/VDE-Fachbereich Engineering und Betrieb (2016-08). Vir-
tual commissioning - Model types and glossary. Tech. rep.
VDI/VDE 3693. Verein Deutscher Ingenieure e.V., p. 35.

Waurich, Volker and Jiirgen Weber (2017). “Interactive FMU-
based visualization for an early design experience”. In: Pro-
ceedings of the 12th International Modelica Conference,
Prague, Czech Republic, May 15-17, 2017. 132. Linkoping
University Electronic Press, pp. 879-885.

Wedler, Armin et al. (2017-09). “First Results of the ROBEX
Analogue Mission Campaign: Robotic Deployment of Seis-
mic Networks for Future Lunar Missions”. In: 68th Interna-
tional Astronautical Congress (Adelaide, Australia). The In-
ternational Astronautical Federation.

204

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181197

