
Towards a Modelica OPC UA Library for Industrial Automation

Bernhard Thiele1

1Institute of System Dynamics and Control, German Aerospace Center (DLR), Germany,
bernhard.thiele@dlr.de

Abstract
Open Platform Communications Unified Architecture
(OPC UA) is often named as a prospective enabler for fu-
ture automation systems integrations, as for example en-
visioned in the German Initiative Industrie 4.0. The DLR
OPC UA Modelica library connects OPC UA with the
Modelica world. There are two main goals: First, OPC
UA server capabilities for emulating the communication
interface of (physical) hardware components in order to
create component simulations, e.g., for virtual commis-
sioning. Second, OPC UA client capabilities for interact-
ing with real-world hardware components, e.g., for pro-
cess visualization and monitoring or interactive simulation
and control purposes. The library works on Windows and
Linux platforms. It is tested using the Modelica environ-
ments Dymola and OpenModelica.
Keywords: OPC UA, Industry 4.0, Robotics, Modelica

1 Introduction
Open Platform Communications Unified Architecture
(OPC UA) is often named as a prospective enabler for fu-
ture automation systems integrations. It is considered as
an existing technology which can cover various communi-
cation aspects for flexible production lines as envisioned
in the German Initiative Industrie 4.0 and is also promi-
nently mentioned in the Reference Architecture Model In-
dustrie 4.0 (ZVEI 2015).

The significance of OPC UA as a core communication
protocol for future automation systems has prompted the
development of a Modelica library with the goals of en-
abling:

• Component simulations: The simulated component
has an OPC UA server instance which mimics the
OPC UA server of an actual system component down
to some level of acceptable fidelity. Modelica is
used for modeling the component’s behavior in or-
der to provide realistic values for the simulated pro-
cess variables. Consumers of the data are OPC
UA clients, e.g., in supervisory control and data ac-
quisition (SCADA) sytems. Possible scenarios are
Hardware-in-the-Loop (HIL) simulation or virtual
commissioning.

• Interactive simulation and control: The application
has an OPC UA client instance which interacts with
physical hardware components. The Modelica-based

application uses actual hardware process variables
which it queries from an OPC UA server instance
on the real hardware component. Possible scenarios
include querying quantities from hardware compo-
nents for process visualization and monitoring and
(model-based) high-level control tasks.

The term component simulation is used in the sense as
defined in (Harrison and Proctor 2015), where emulation
is defined as “the production of artificially created signals
to represent the physical presence of some part of the man-
ufacturing process” and a simulation of one component
with emulation capabilities is termed as a component sim-
ulation.

The following paragraphs briefly describe existing ap-
proaches of supporting OPC UA connectivity in Modelica
environments.

The OpenModelica environment (Fritzson et al. 2020)
supports an option for starting an embedded OPC UA
server which maps the simulation variables into an address
space which can be monitored by OPC UA clients. In ad-
dition, a connected client can control the progress of the
simulation by setting specific simulation control variables
through the OPC UA interface. The feature was added
during the OpenCPS project and is briefly described in its
deliverable report (Sjölund and Asghar 2018). It is worth
noting that the server implementation is at the tool level,
i.e., OpenModelica specific. Additionaly, while the goal
of our library-based OPC UA server approach is to model
the communication interface of (physical) hardware com-
ponents (in order to create component simulations for HIL
simulation and virtual commissioning), the goal of the
OpenModelica tool-based OPC UA server is to facilitate
debugging and monitoring of (embedded) OpenModelica
real-time simulations.

The Modelica OPC UA libraries from Wolfram (Wol-
fram Research 2021) and ESI (ESI Group 2021) provide
OPC UA client functionality. Their goals regarding the
Modelica OPC UA client interface are similar to the goals
of our own library. The significant difference is that in
their present state OPC UA server capabilities are not in
the scope of these libraries.

One common trait of all the approaches for connecting
OPC UA to Modelica (including our own), is that they rely
on the open62541 open-source implementation of OPC
UA (open62541 2021) as underlying technology stack.
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2 OPC UA
Besides being a hardware-independent communication
protocol, the interesting capability of OPC UA is the
ability of semantic information modeling. This informa-
tion modeling allows an object-oriented style of modeling
devices including hierarchical composition, object types
(≈ classes), type hierarchies (≈ inheritance), instantiation,
and (customizable) relations between objects. Indeed, if
desired, there is the option of using the well-established
Unified Modeling Language (UML) as base for OPC UA
information model design as described by Pauker et al.
(2016).

The base elements of OPC UA’s meta model are nodes.
These nodes are connected by typed references result-
ing in an undirected graph forming the OPC UA Address
Space. Several node classes are predefined by the stan-
dard. Each node has a set of attributes which depend on
the node class. They can be mandatory or optional. An at-
tribute which is mandatory for any node is its NodeId for
uniquely identifying the node.

The information model can be extended by so-called
companion specifications. Simply speaking, one could
compare those to libraries in conventional programming
languages, e.g., they usually define new object types
which can be instantiated. Anyone, e.g., device manufac-
tures, can define own extensions. However, companion
specifications particularly facilitate domain specific stan-
dardization.

A lot of work in our group is centered around robotic
applications. Hence, integrating the OPC UA Companion
Specification for Robotics (OPC 40010-1 2019) is of par-
ticular interest. The corresponding specification work is
driven by the VDMA Robotics Initiative with the goal of
specifying an OPC UA information model for complete
motion device systems (including, but not limited to, con-
ventional industrial robots), split up into several parts (Part
1 to Part n). At the time of this writing, the group has
so far completed and released Part 1. It provides a ba-
sic description of a motion device system with the aim of
pushing condition data vertically into higher level man-
ufacturing systems. Future extension will cover further
use cases, e.g., to configure and control a robot. An ex-
ample exploring interesting possibilities is given by Pro-
fanter et al. (2019) who propose an extension which pro-
vides a standardized (hardware-agnostic) control interface
for robot manipulators.

3 Overview
Figure 1 gives an overview over the library structure and
shows a basic server example.

The package browser at the left side of Figure 1 shows
an OPCUAServer and OPCUAClient block which can
be dragged and dropped into the diagram layer. These
are the central blocks in the library for creating an OPC
UA server or client, respectively. The LeanLoggerInit
block ensures that messages within the external C code

opcuaserver

readDoublewriteDouble

sin(time)

realExpression

nodes
leanLoggerInit

Figure 1. Library structure (left) and basic OPC UA server ex-
ample (right).

are forwarded to the Modelica environment and also
registers the Modelica environment’s implementation of
the ModelicaAllocateStringWithErrorReturn()
to the interfaced dynamic link library (DLL, Windows), or
shared object library (SO, Linux). The Functions pack-
age contains the function interface to the external C code.

The right side of Figure 1 shows the diagram layer of
a basic server example. The opcuaserver component
is an instance of the OPCUAServer block. It is declared
as “inner”, hence it can be accessed in all deeper lev-
els of the model’s instance hierarchy as an “outer” ele-
ment. The nodes component is a configuration record. It
is passed to the opcuaserver component as a parameter.
It contains information about OPC UA nodes which shall
be created on the server during initialization.

At the bottom are instances of blocks for writing and
reading variables of type Double. These blocks contain
parameters which specify the NodeIds of the variable
nodes which are the target (source) of the write (read) op-
eration.

An OPC UA server is started by simply simulating the
model. Usually real-time synchronization is desired which
can be either provided by the capabilities of the simulation
environment or by external code, e.g., using the Model-
ica_DeviceDrivers library (Thiele et al. 2017). After start-
ing the simulation, the OPC UA server will listen on a
specified port for client connections (default port number
is 4840).

A good general purpose OPC UA test client is the
freely available UaExpert from Unified Automation (Ua-
Expert 2021). It can provide a plethora of information
in different configurable views. Figure 2 shows a pos-
sible view on the connected basic server example. The
“Project” pane (upper left window) shows the connected
server(s) (“open62451-based OPC UA Application”). The
“Address Space” pane (lower left window) allows brows-
ing through the nodes of the server’s information model.
Nodes from the “Address Space” pane can be drag-and-
dropped into the “Data Access View” (DA View) pane
(right window). The DA View creates a subscription and
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Figure 2. Unified Automation’s test client UaExpert connected
to the basic OPC UA server example.

allows monitoring (configurable) aspects of the nodes. In
this example there are four monitored nodes. Only the
node with the display name “the double” changes its value
during the simulation. This is the node referenced in the
writeDouble block of Figure 1. The remaining nodes in
the DA View are defined in the nodes record (including
an initial value), but they are not written to during simula-
tion time.

The DA View also shows the pivotal NodeId attribute
in the “Node Id” column. NodeIds refer to a namespace
with an additional identifier value that can be an integer, a
string, a guid or a bytestring. In the example two nodes are
using an integer identifier (“Numeric”) and two are using
a string identifier (“String”). All shown nodes are in the
namespace index “1” (“NS1”), the namespace reserved for
the local server.

4 Server and Client
On the one hand the library provides OPC UA server func-
tionality with the goal of modeling the communication
interface of (physical) hardware components. The main
task is providing simulated process variables to external
devices, e.g., for HIL simulation or virtual commission-
ing. On the other hand the library provides OPC UA client
functionality with the goal of querying actual process vari-
ables from hardware components, e.g., for process visual-
ization and monitoring or (model-based) high-level con-
trol tasks. It is possible to use server and client blocks
within the same Modelica model.

4.1 Server
Figure 3 gives more details about some server related
blocks. The left-hand side robot denotes a placeholder for
an arbitrary physical model with process variables which
are published by an OPC UA server running on the phys-
ical device. The nodes record instance is an approach
for collecting nodes which shall be created on the server
in one central data structure. The opcuaserver has
two main parameters: portnumber, for specifying the
server’s listening port, and nodes, a configuration record
for defining own nodes and namespaces on the server.
Hence, the declaration in the model is:

opcuaserver

writeDouble

axis1.flange.phi

realExpression

nodes

Figure 3. OPC UA server: The node record specifies a list
of nodes which are created on the server. Other blocks, like
writeDouble, can use these NodeIds.

inner Blocks.OPCUAServer opcuaserver(
portNumber=4840, nodes=nodes);

The writeDouble block needs to specify a NodeId (us-
ing parameters nsIndex, nodeIdType, id) which iden-
tifies the node to which it periodically writes its input1. It
is an error if this node does not exist on the server or if it
is not compatible.

The record instance nodes is an instance of
OPCUA.Types.Nodes. Its structure is shown in List-
ing 1. The annotations are hints to editing tools for cre-
ating a convenient graphical user interfaces (GUI) for
filling the variable sized arrays, e.g., the dialog for the
VariableNode vars[:] array is the one displayed at
the bottom of Figure 3.

Listing 1. Nodes configuration record.

record Nodes
String nsUris[:] = fill("", 0) annotation

(Dialog(enable=true));
VariableNode vars[:] = fill(

OPCUA.Types.VariableNode(), 0)
annotation (Dialog(enable=true));

end Nodes;

There are limits and compromises in this approach. First
most, it cannot be used to create arbitrary OPC UA

1Parameter nsIndex identifies the namespace index (“1” denot-
ing the namespace reserved for the local server), nodeIdType the
NodeId type (here either “Numeric” or “String”), id the identifier
value, hence these parameters correspond to the attributes displayed in
the “Node Id” column of Figure 2.
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nodes. Instead, it aims at supporting a subset of vari-
able node types which have a rather straightforward map-
ping to primitive Modelica types (including arrays of these
types). Also notice, that it uses strings at places where
this seems not to fit in all cases (id, arrayDimension,
initValue). This is a compromise so that the columns
can encode values of different data types, e.g., Boolean,
Integer, or Real.

4.2 Client
Figure 4 gives more details about some client related
blocks. The left-hand side denotes the server side to which

opcuaclient readDouble

writeBooleanbooleanStep

2.5 s

               OUTPUT            

               POWER            

                 INPUT              

                   1                                   2                                   3                                   4                
                   5                                   6                                   7                                   8                
                   9                                   10                                   11                                   12                
                   13                                   14                                  15                                   16                

                 OUTPUT              

                   1                                   2                                   3                                  4                
                   5                                  6                                   7                                  8                
                   9                                   10                                   11                                   12                
                   13                                   14                                   15                                   16                

                 COMMUNICATION              

                     RX                                       TX                                       FLT                  

                 MENU                               ALARMS              

                 OVERVIEW              

               QUANTITY                        Brandon-Alvin                     ViewerPane K600        

Figure 4. OPC UA Client: The opcuaclient block connects
to an OPC UA server. Blocks like writeBoolean can access
nodes on the server by their NodeId.

the client connects, which typically provides hardware re-
lated process variables.

The opcuaclient needs to specify the endpoint URL
of the server instance. In the example a local server listen-
ing at port 4840 is expected. Variable serverRunning
is not a parameter, it has continuous-time variabil-
ity. Its main use is in Modelica models which combine
opcuaclient and opcuaserver blocks in one model.
In this case, it can be used to ensure that the server is ready,
before the client (in the same model) connects to it. Given
the respective access rights, it is also possible to create
new nodes on the server. For this purpose a configura-
tion record can be passed as parameter nodes (default: no
nodes are created). Identical to the server case the record
needs to be an instance of OPCUA.Types.Nodes.

Often the main interest is in reading process variables,
but it is also possible to write data to the server as indi-
cated by the writeBoolean block. Comparing Figure 4

with Figure 3 shows that the client and server blocks for
accessing variables have a similar interface.

Sometimes NodeIds used by the server are known a pri-
ori by the client. This is for example the case for standard-
ized information models, including the OPC UA specifi-
cation itself, as well as companion specifications, or ven-
dor specific information models. However, in practice
the client often has no a priori knowledge of the NodeIds
used by the server for variables of interest. Instead, the
client browses the address space of the server program-
matically in order to find NodeIds corresponding to ob-
jects and variables of interest. This is feasible since the
address space is represented hierarchically, allowing for
simple and complex structures to be discovered and uti-
lized by OPC clients (see the “Address Space” pane in
Figure 2).

In particular, nodes in the address space can be dis-
covered by browse paths, i.e., by following a sequence
of named references (browse names) from a start node to
hierarchically subordinated nodes. A basic starting node
for searching is the root objects folder. Its NodeId is
known, because it is defined by OPC UA specification.
The presented Modelica library browse paths delimited by
‘/’ can be used for discovering NodeIds, e.g., starting from
the root objects folder the browse path “Server/ServerSta-
tus/State” can be used for retrieving the NodeId assigned
to the status code variable of the server.

There are different types of references which can model
different types of hierarchical composition, e.g., for mod-
eling component composition, folder organization, or in-
stance hierarchies. This allows a fine-grained filtering
based on the type of reference. However, at present the
DLR OPCUA library does not discern between different
types of references when trying to resolve a browse path.

4.3 OPC UA for Robotics
Since a lot of work in our group is centered around robotic
applications, integrating the OPC UA for Robotics Com-
panion Specification (OPC 40010-1 2019) is of high in-
terest. The robotics companion specification itself de-
pends on a companion specification featuring an informa-
tion model for devices (OPC 10000-100 2020). Integrat-
ing these companion specifications is a considerable effort
and there are different possible approaches.

Accompanying to the textual specification documents
there exist XML-based information model definitions ac-
cording to the OPC UA Nodeset XML schema. These so
called nodeset files encode OPC UA information models
and are understood by respective tools. The open62451
distribution includes an XML Nodeset Compiler, a python-
based tool, which can generate C code (including C header
files) from such XML files. This C code needs to be in-
cluded in the build process for compiling working server
applications. Hence, for supporting the desired compan-
ion specifications it is required to modify the build process
so that code is generated from the respective nodeset files
and this code needs to be included in the compilation pro-
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cess.
The present prototype uses an approach in which a

C++ wrapper of the robotics information model encapsu-
lates required function calls to the “low-level” interface
of the underlying open62451 library. All code, including
dependencies to generated code from the XML Nodeset
Compiler and the open62541 library, is assembled in one
shared library (see section 5 for more details). The devel-
oped C++ classes themselves are encapsulated by a plain
external C interface which is compliant to the Modelica
external function interface. These C functions are called
from respective Modelica functions and are used for cre-
ating Modelica external objects.

The Modelica functions can then be used for creating an
OPC UA for Robotics compliant information model on the
server. Figure 5 shows an example of such an information
model as seen by a connected client.

Figure 5. OPC UA for Robotics compliant server example as
seen by a connected test client (UaExpert).

5 Function Interface
Figure 6 shows an excerpt from the comprehensive
Functions package. This package contains definitions
for external objects and functions operating on these ob-
jects.

Table 1 lists several notable external objects and their
underlying (open62451) data structures. The open62451
data structures can be recognized by the library’s nam-
ing convention of using the prefix “UA_” for its exported
symbols. Modelica external objects are opaque pointers
to some address in memory, so (in principle) the underly-
ing C data structures can be changed or extended without
the need of changing the Modelica code. Possible changes
may even include to swap out the underlying OPC UA li-
brary (though there is at present no intention for such a
step).

While NodeId and OPCUAClient are directly mapped
to open62541 data structures, the OPCUAServer exter-

Figure 6. Excerpt of the Functions package. It contains ex-
ternal object classes and external functions (EF) operating on
these objects.

Table 1. Notable external objects and their opaque pointer map-
pings.

Modelica C/C++→ open62451 (UA_. . . )

NodeId → UA_NodeId
OPCUAClient → UA_Client
OPCUAServer → C++ struct with server related

settings:

struct uam_server {
std::thread threadID;
UA_Server *server;
UA_Boolean running;
uam_PubSub *pubSub;

};

Particularly, it includes a member
of type pointer to UA_Server.

nal object is mapped to a C++ wrapper structure which
contains additional information. After a configuration
phase, the server loop is started in a dedicated thread by
a function called OPCUAServer.run(...). The identi-
fier of the spawned thread is saved in the struct member
threadID and struct member running is set to “true”.

The struct member pubSub is a composite object
which aggregates data structures and logic related to the
OPC UA Publish/Subscribe (PubSub) extension. Pub-
Sub extends the OPC UA client/server architecture with
facilities which (among other things) can enable low-
latency communication. Results of an experimental low-
latency open62451 PubSub implementation are reported
in (Pfrommer et al. 2018). The PubSub extension is us-
able as an experimental feature within the DLR OPC UA
library, but it is not yet intended for real-world use-cases.

A view on the DLR OPC UA library’s layered archi-
tecture is shown in Figure 7. Only core components are
shown, components like the logging facilities or experi-
mental components are suppressed.
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DLR OPC UA Library

open62541
GoogleTest

Block Layer

Function Layer

opcua-mefi.h
Modelica External C Interface

opcua-mefi (DLL,SO) Library

*.cpp modules (client/server/...)

OPC UA NodeSets and supporting files

nodeset_compiler.py

CMake-based build and test environment

opcua-mefi

unit tests

Figure 7. DLR OPC UA library’s layered architecture.

The project build, test and packaging automation is
managed by the CMake cross-platform family of tools
(CMake 2021).

The top Modelica OPC UA library uses the Modelica
external C functions interface (MEFI) of the underlying
opcua-mefi library. The opcua-mefi library is a dynamic
link library (DLL) on Windows, or a shared object library
(SO) on Linux. Its Modelica external function interface
compliant application programming interface (API) is de-
clared in the header file opcua-mefi.h.

While the opcua-mefi library declares a Modelica com-
pliant external C function interface, the internal library
consists of C++ code. This code wraps and adapts
open62451 facilities into structures which can be conve-
niently used from Modelica. One may say it provides a
Modelica-oriented high-level interface to a subset of the
open62451 library. Although invisible to a Modelica li-
brary user, it is actually the most extensive part of the DLR
OPC UA library.

An important part of the opcua-mefi library is its
unit tests. These tests use the GoogleTest framework
(GoogleTest 2021) and its CMake integration in order to
provide a convenient testing environment on the supported
platforms. It integrates nicely with various development
environments, e.g., JetBrain’s CLion or Microsoft Visual
Studio.

The base technology stack is provided by the
open62451 open-source library from the open62451
project (open62541 2021). It is an impressive open-source
C (C99) implementation of OPC UA, licensed under the
liberal Mozilla Public License v2.0. Despite its good
documentation and a large set of indispensable examples,
there is a considerable learning curve for using the library.
Though a good part of the learning curve can be attributed
to the inherently large and complex OPC UA standard it-
self.

6 Application Example
The Factory of the Future project (DLR 2021) is a cross-
sectoral research project within the German Aerospace

Center (DLR). The aim is to develop a wide range of digi-
tal production technologies, robotic systems and robotic
applications for flexible and networked manufacturing
processes, and to demonstrate them in ‘lead scenarios’.

One cross-sectoral scenario which is investigated is an
assembly process for a motor saw. The scenario includes
(physical) robot cells from the Institute of Robotics and
Mechatronics (DLR-RM) and the Center for Lightweight-
Production-Technology (DLR-ZLP). OPC UA is used as
interoperability standard between the different robot cells
and involved institutes. The task of our institute, the In-
stitute of System Dynamics and Control (DLR-SR), is
the modeling of the assembly process with appropriate fi-
delity. Our goal with this work is to explore digital twin
applications based on physically accurate models.

Modelica is used as modeling language for the physics-
based digital twin. There are several challenges for en-
abling the intended applications, among them:

• Modeling the assembly process requires efficient ob-
ject manipulation capabilities which can accommo-
date real-time data updates.

• The Modelica-based simulation model needs to con-
nect and synchronize with the real-world entities and
processes.

The first issue lead to the development of a new Modelica
library for manipulation tasks, which is outside the scope
of this work (Reiser 2021). The present work is concerned
with finding a solution to the second issue.

As a first step towards the complete assembly process,
one robot cell has been connected at the time of this writ-
ing. Figure 8 shows the considered robot cell which has
been set up in DLR-RM’s lab. The depicted robot is from

Figure 8. Robot cell from DLR-RM synchronized with
Modelica-based real-time simulation model (upper-right screen)
from DLR-SR using the DLR OPC UA library for connectivity.

the recent generation of DLR-RM’s light-weight robots
and bears the project name SARA (Safe Autonomous
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Robotic Assistant), (Iskandar et al. 2020). In the upper-
right corner a screen shows a visualization of DLR-SR’s
simulation model (i.e., the “digital twin”) which is syn-
chronized with real-time data from the SARA robot cell.

Figure 9 shows the OPC UA related excerpt of the
Modelica model used for the demonstration depicted in
Figure 8. There are two OPC UA client blocks which

visualizationSARA
robotiq2F140Gripper

fix
ed

R

r=
{0

,0
,0

}

opcuaclient

readArraySARA

readArrayRobotiq

60

greaterThreshold

dynamicsSARA

Figure 9. Excerpt of the OPC UA related parts of the Modelica
model used for the demonstration depicted in Figure 8.

read server variables stemming from the SARA robot cell:
readArraySARA reads the joint angles of the robot arm,
readArrayRobotiq reads the position of the gripper. At
present, a simple threshold is used for giving an indication
whether the gripper is closed or open. Besides the OPC
UA blocks, the figure also shows a composite block with
a (simple) dynamics model for the SARA robot, as well
as a block which is responsible for the 3D visualization of
the robot arm.

A rather complex block shown in this excerpt of the
complete model is the gripper block. It implements the
manipulation mechanics and interacts with the assembly
parts. The assembly parts, as well as the conveyors and
tables in the scene are not shown. All those parts are not
in the scope of this work, they are part of the aforemen-
tioned library for manipulation tasks. In addition, some
visualization related blocks are suppressed. The visual-
ization is provided by a prototype of the next generation
of the DLR Visualization library (Hellerer, Bellmann, and
Schlegel 2014; Kümper, Hellerer, and Bellmann 2021).

Block readArrayRobotiq reads an array variable, but
the array has only one element (the gripper position, a
value in the dimensionless range [0,100]). Essential pa-
rameters of the readArraySARA block are shown at the
top. Notice, that a simple OPC UA approach is used
in which the seven joint angles are packed into one ar-
ray which is identified by a statically fixed string-based
NodeId. Therefore, neither the OPC UA Robotics exten-

sion described in subsection 4.3 is used, nor is there any
need for sophisticated node discovery mechanics on the
client side.

In summary, the described demonstration was a step to-
wards the envisioned Factory of the Future scenario. In
particular, it showed the feasibility of using OPC UA as
interoperability standard. Since the DLR OPC UA library
also supports OPC UA server functionality (see subsec-
tion 4.1), it was possible during development to model
the SARA robot cell including its OPC UA server inter-
face and connect it with the client application of Figure 9
within the same model. This simplifies application devel-
opment, because there is no need that the actual robotic
hardware is available. Further work, extending the pre-
sented base functionality for exploring more complete dig-
ital twin related scenarios is ongoing.

7 Discussion
At the beginning of this library development effort there
was the long-term vision of (automagically) generating
Modelica models from devices described in established
or future automation standards. Since OPC UA is an im-
portant standard for the communication aspect, the idea
was to explore the generation of Modelica models from
OPC UA information models, encoded in nodeset files
(i.e., NodeSet2.xml files), from automation devices and
machinery.

After short initial research into available third party li-
brary and tools the idea emerged of developing a simple
Modelica-oriented C interface on top of the open62451
API. This interface should particularly support the fun-
damental data types from Modelica (Boolean, Integer,
Real, String scalars and arrays) and translate between
these Modelica types and OPC UA types.

7.1 First Steps
The first steps with the open62451 library were very
smooth thanks to good documentation (including work-
ing examples) and a polished CMake-based build system.
However, striving for more general OPC UA support, in-
cluding some more advanced constructions, quickly be-
comes more intricate.

OPC UA defines low-level aspects, like Int16, UInt32,
Int64, which cannot always be mapped satisfactorily to
Modelica (e.g., the Modelica external function interface
defines that Integer are mapped to C int, hence signed
32-bit integers on common Linux and Windows plat-
forms). For not being overly restrictive on the allowed
OPC UA variable types (potentially unsafe) conversions
are used at respective places in the opcua-mefi library. For
mitigation, safe variable value ranges can be checked dy-
namically in the C code and runtime errors can be risen
when violations are detected.

Besides OPC UA built-in types which have a rather
straightforward mapping2, where also exist built-in types

2Modelica Boolean: OPC UA Boolean; Modelica Integer:
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with no such mapping, e.g., NodeId to Modelica. These
types require additional design decisions, e.g., NodeId is
mapped to a Modelica external object. Other OPC UA
built-in types, e.g., XmlElement, are simply not supported
at this state.

7.2 Refactoring
Furthermore, there is a huge flexibility how respective
variable nodes can be defined or discovered in OPC UA
and often very similar (but not identical) functions and
patterns are used for achieving a certain task on either the
server or the client. This lead to quite a lot of repetitive
code in the opcua-mefi library which at some point was
addressed by using C++ templates and its code generation
facilities for achieving more generic and succinct code.

On top of this first interface an experimental Modelica
code generator was written which takes a NodeSet2.xml
file as input and generates a skeleton of Modelica code
with the intent of simplifying and accelerating the devel-
opment of component simulations and physics-based dig-
ital twins. While this worked for the very limited number
of elements considered for the experiment, it also became
apparent that a more complete (industry-relevant) Model-
ica code generator could hardly be based on the facilities
of the present opcua-mefi library.

7.3 Another Approach Needed?
The open62541 library itself uses code generation at vari-
ous places for providing an API which can encompass the
comprehensive OPC UA standard. The key here is that
OPC UA standard information is not only English text, but
partly already encoded in machine processable files, most
notable, NodeSet2.xml files. One could compare these to
a “standard library” in programming which itself is based
on more fundamental principles (syntax and semantics of
the underlying programming language). Hence, using an
appropriate mechanization, C code can be generated from
relevant machine processable files.

This could also be key for enabling a more generic and
complete Modelica interface. Instead of the high-level ori-
ented API of the opcua-mefi library, one could try to inter-
face the lower-level open62451 more directly and use code
generation techniques for gaining a Modelica function in-
terface which is closer to the open62451 API.

Although it seems unrealistic to expect that this would
magically solve all problems, a clever approach in this di-
rection could push the limits.

7.4 Domain-Specific Extensions
Instead of striving for a level of generality which would al-
low taking a NodeSet2.xml file and generate suitable Mod-
elica code, another option is to manually develop library
support for selected (standardized) domain-specific infor-
mation models of interest. Although it might be a sig-

OPC UA SByte, Byte, Int16, UInt16, Int32, UInt32, Int64, UInt64; Mod-
elica Double: OPC UA Float, Double; Modelica String: OPC UA
String.

nificant initial development effort for supporting a new
domain, it can result in well-thought-out reusable library
blocks for quickly modeling devices which adhere to the
standardized domain-specific interface.

This is the approach used for the integration of the
Robotics Companion Specification as described in subsec-
tion 4.3. Compared to the generic approach, it is easier to
achieve and can be a good alternative if the expected use-
cases adhere to such domain-specific information models.

7.5 Outside of Modelica
Another approach with a different angle is using dedicated
automation-oriented simulation platforms and rather im-
port Modelica models. Using the Functional Mock-up In-
terface (FMI) standard for such a purpose suggests itself.
For example, Hensel et al. (2016) explore an approach of
integrating FMI-based co-simulation with the SIMIT sim-
ulation platform from Siemens using OPC UA as a generic
middleware technology.

Using a dedicated integration platform can be a practi-
cal and flexible alternative if a such a platform is available.
The discussed Modelica library approach might be more
appealing in Modelica-centric development processes, or
if using an additional platform seems too costly or com-
plicated3.

8 Conclusions and Outlook
Work on the presented Modelica library was started with
no prior experience with OPC UA technology. Thanks
to available resources, like the open-source open62451
project, or the freely available OPC UA test client from
Unified Automation GmbH, the first steps were rather
smooth and quick.

However, moving to slightly more advanced concepts it
quickly became apparent that the OPC UA standard and
related tooling has an intimidating complexity, and it took
longer towards the current state of the Modelica library
with a more moderate progress than expected.

Indeed, there are plenty of more OPC UA features and
aspects which are not yet explored or implemented within
the library, or simply not covered for not exceeding the
scope of this paper. Among them, supporting the Pub-
Sub extension, which has been briefly mentioned in sec-
tion 5. OPC UA PubSub extends the applicability of OPC
UA beyond a strict client/server model and also sketches
a direction towards low-latency communication schemes
(Pfrommer et al. 2018). These are hot topics with no fi-
nal conclusion and ongoing discussions within standard-
ization bodies (Bruckner et al. 2019).

A good amount of the motivation for this work is based
on the anticipation that OPC UA will play a crucial role
for future automation systems. In this respect, exploration
of the underlying concepts and technology has been an im-

3Notice that it is still possible to export a Modelica model with OPC
UA interface blocks as Functional Mock-up Unit (FMU) and import it
into a co-simulation environment.
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portant driving factor in the development. Consequently,
the library has the status of an experimental in-house tech-
nology prototype. So far, its runtime stability has been
pleasantly reliable (credits to the open62451 project), but
the interface, structure, naming, documentation, and the
supported feature set is not fixed, yet. Nevertheless, the
library can be made available to interested partners.

Future plans with the library include further exploration
of more advanced concepts, as well as following (and po-
tentially integrating results of) ongoing standardization ef-
forts with a particular interest for robotic applications and
real-time industrial communication.
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