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Abstract 
In this paper, a Modelica library of electrified powertrain 

components is presented and its applications discussed. 

This library is used to construct digital twins of electrified 

powertrains during product development. These digital 

twins provide value by reducing development time and 

cost, while once the product is in-service, they enable 

improved condition monitoring. The library includes a 

multi-fidelity and multi-scale battery and power 

electronics sub-library, an Electrical Drive Unit (EDU) 

sub-library modelling different types of electrical 

machines, and an electrified propulsion system sub-library 

of template models that leverage the battery, power 

electronics and EDU components found in the other sub-

libraries. Finally, an example of applying the proposed 

library to electrified vehicle development is presented. 

 

Keywords: Modelica, Digital Twins, Electrified 

Powertrain 

1 Introduction 

Digitalisation is revolutionising the complete product 

lifecycle: from development and production to testing, in-

service maintenance and recycling. “Digital Twin” (DT) 

technology will bring a significant reduction in electric 

powertrain development time, cost and risk: through up-

front design analysis, optimisation and testing in a virtual 

environment, without the need for multiple prototypes. At 

its core, a DT is a representation of a physical product that 

can be used as a testing ground for monitoring, simulating 

and optimizing design and operational performance. 

This paper describes the work done in a project which had 

the key objective of assessing the impact of DT techniques 

on product development. In this project, the first focus was 

developing Digital Twins for each sub-system (Battery, 

Power Electronics and EDU) in the electrified powertrain. 
The second focus was the integration of each sub-system, 

to create an Electrified Powertrain Digital Twin. Such a 

system level Digital Twin can be used, as part of the 

virtual product development process, in the design and 

optimisation of the electrified powertrain.  

We have created an Electrified Powertrain Modelica 

library, called ePropulsionSystem, which incorporates 

necessary plant models to enable development of Digital 

Twins. The novelty of this developed library arises from 

the ability to seamlessly swap between model variants and 

fidelity levels, while offering an interface to couple with 

already existing libraries to streamline concept 

development, with the ultimate goal of effectively linking 

the developed virtual model to the physical model. 

 In this paper we will discuss the various models included 

in the different sub-libraries as well as an example of 

applying the ePropulsionSystem model to an Electric 

Vehicle (EV) use case.  

1.1 Literature Review  

The battery models describe not only the electrical 

behaviour of the battery but also the thermal response and 

aging characteristics  (Einhorn, et al., 2011; Gerl, Janczyk, 

Krüger, & Modrow, 2014; Surewaard, Karden, & Tiller, 

2003; Dao & Schmitke, 2015; Bao, Fotias, & McGahan, 

2021). The most common representations of battery 

electrical behaviour are electrochemical models and 

Equivalent Circuit Models (ECM) (Fan, Pan, Bartlett, 

Canova, & Rizzoni, 2014; Perez, 

Shahmohammadhamedani, & Moura, 2015; Guo, Jin, & 

White, 2017; He, Xiong, & Fan, 2011; Chen & Rincon-

Mora, 2006).  It is well known that the overall battery pack 

performance is influenced significantly by the battery 

temperature (McGahan, Rouaud, & Booker, 2019) which 

we model using a network of 1D lumped thermal 

components (Pesaran, 2002; Johnson, Pesaran, & Sack, 

2000; Park & Jaura, 2003; Nelson, Dees, Amine, & 

Henriksen, 2002). Investigation of battery aging 

mechanisms is currently a hot topic in both academia and 

industry. Calendric ageing and cyclic ageing are two 
commonly used ageing model. The cause and effect of 

various battery ageing mechanisms is discussed in detail 
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in (Vetter, et al., 2005). Estimating the battery parameters 

from measured data is also an important feature in several 

battery libraries (Gerl, Janczyk, Krüger, & Modrow, 

2014; Dao & Schmitke, 2015; Qin, Li, Wang, & Zhang, 

2019).  

To enable easy model parametrisation and development, 

while still ensuring high fidelity, behavioural modelling 

was used to develop the components of the power 

electronics library. The work was based on concepts 

presented in the literature (Denz, Schmitt, & Andres, 

2014; Cellier, Clauß, & Urquía, 2007; Lai, Hill, & 

Suchato, 2019; Urkizu, et al., 2019), where the response 

of the system is an amalgamation of the static response 

and an estimation of the losses, either using analytical 

solutions, measurement data or the dynamic model of the 

system. Given the dependence of the device response on 

the temperature, the developed models were enhanced to 

capture that behaviour and thermal models for the devices 

were developed in accordance with (AG, 2020). 

The five most common electric machine technologies 

among Hybrid Electric Vehicles (HEVs) and EVs are 

Induction Machines (IMs), Switched Reluctance Motors 

(SRMs), wound-rotor Synchronous Machines (SMs), 

Direct Current (DC) machines, and Synchronous 

Permanent Magnet Machines (SMPM) (Bazzi, 2013; 

Dorrell, Knight, Popescu, Evans, & Staton, 2010) each 

with their own advantages and disadvantages. In late 

2020, Tesla pioneered a hybrid motor type in the Tesla 

Model 3, combining characteristics of Interior Permanent 

Magnet (IPM) motors and Synchronous Reluctance 

Motors (SynRM) to form the hybrid IPM-SynRM motor. 

 

While an IPM machine demonstrates high efficiency at 

high speed, this comes at the cost of output torque 

(Hwang, Han, Kim, & Cha, 2018). By comparison, IPM-

SynRM devices possess better efficiency at low speed and 

better thermal efficiency than traditional SynRMs subject 

to temperature limits (Ramakrishnan, Stipetic, Gobbi, & 

Mastinu, 2018; Xing, Sun, & Lei, 2014; Lee, Kim, Jung, 

Hong, & Kim, 2012; Haumer & Kral, Motor Management 

of Permagnent Magnet Synchronous Machines, 2012). 

Since the IPM is a type of SMPM, this project focused on 

the development of SMPM and SynRM (abbreviated as 

SMR in Modelica nomenclature) motors.  

There are several software packages available for the 

mathematical modelling and simulation of EVs and 

EDUs, including MATLAB/Simulink, Simpower, Python 

based models and Modelica (Mohd, Hassan, & Aziz, 2015; 

McDonald, 2012). Because the Modelica Standard 

Library (MSL) is open source and provides a library of 

multi-domain physical models found in automotive 

components, the MSL can be an excellent starting point 

for the development of EDU digital twins (Einhorn, et al., 

2111). The MSL has a basic electric machine library 

which includes the traditional asynchronous Induction 

Machines and Synchronous Machines (Ceraolo, 2015). 

The MSL and other Modelica libraries also have extended 

models that consider friction losses and include thermal 

effects, e.g., the Fundamental Wave library (Kral & 

Haumer, 2011), Advanced library (Haumer, Kral, 

Kapeller, Bäuml, & Gragger, 2009) and SmartDrive 

library (Gragger, Kral, Hansjörg, & Pirker, 2006). 

2 Library Structure 

Figure 1 shows the typical architecture of the digital twin 

models created using our ePropulsionSystem library. 

As shown in Figure 1, the Battery, Power Electronics and 

EDU are the key components being modeled. This library 

does not include models of the controllers for these 

devices as we have chosen to focus exclusively on plant 

models in this library. The ePropulsionSystem library 

is structured as shown in Figure 2. 

 

2.1 Battery 

The key models in the Battery sub-library are the cell 

level Electrical and Ageing models.  These cell level 

models are then leveraged in the BatteryPack models. 

These models are fully developed and will be discussed in 

detail later in this paper. The Battery sub-library also 

includes Thermal, Cooling, Ancillaries and 

BatteryManagementSystem component libraries 

which will be developed in the future and will not be 

discussed in this paper. 

 

Figure 1. Architecture of a typical ePropulsionSystem 

digital twin model 

 

 

Figure 2. ePropulsionSystem library structure 
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Figure 3. The structure of the Battery sub-library in 

ePropulsionSystem library 

 
2.1.1 Electrical 

At present, there are three different electrical cell models 

included in the Battery sub-library. These are the Ideal 

Voltage Source Model, Internal Resistance Model, and 

RC Element Model.  Schematics for each of these models 

are shown in Figure 4. Each of these electrical cell models 

can be characterized by how their Open Circuit Voltage 

(OCV) and internal resistance are modeled. For this 

reason, a template model for electrical cells was created 

and is shown in Figure 5.  

 

Figure 4. Different electrical cell models included in the 

Battery sub-library 

 

Figure 5. ElectricalCellTemplate model 

The Electrical Cell Model Template includes a positive 

connector (p), a negative connector (n), a thermal 

connector (thermal) as well as the OCV and internal 

resistance component models. To use one template to 

represent three different cell electrical models, the OCV 

and internal resistance component models are made 

replaceable. So, a Modelica package, called 

ElectricalInterfaces, was created which includes 

the interfaces for the OCV and internal resistance 

components. Different OCV and internal resistance 

models, which extend from the partial models in the 

ElectricalInterfaces package, were built and 

included in a package called ElectricalComponents. 

The structure of an electrical cell model in the Battery 

package is shown in Figure 6. 

In ElectricalComponents, two different OCV models 

were developed. The first model, IdealOCV, uses a 

constant voltage source for the open circuit voltage. The 

other model, TzTableOCV, computes the OCV based on 

the cell temperature and State-of-Charge (SOC). The cell 

SOC is also calculated in the TzTableOCV model by 

integrating the current flow in and out of the cell. 

Three different models of the internal resistance of the cell 

were developed. These are the IdealShort model, the 

TzTableR, and the TzTableRCR model. All of these 

models are found in the 

Battery.ElectricalComponents sub-library. The 

IdealShort model assumes there is no internal 

resistance in the cell. The TzTableR and TzTableRCR 

models compute the internal resistance of the cell based 

on cell temperature and SOC. The topology of the 

TzTableR features only a single (temperature and SOC 

dependent) resistance while the topology of the 

TzTableRCR includes two resistors and a capacitor (all of 

which depend on temperature and SOC).  

As shown in Figure 4, by starting with the 

ElectricalCellTemplate model and picking different 

OCV and internal resistance sub-models, a number of 

different electrical cell models can be created.  

In this way, using the ElectricalCellTemplate 

model, the three pre-defined electrical cell models, shown 

in Figure 6, were created: IdealCell, R_Cell and 

RC_Cell. 

2.1.2 Ageing 

Normally, battery ageing models includes two modes of 

ageing.  These are cycling and calendaring. In this library, 

only the cycling ageing model is considered. A cycling 

ageing model is a semi-empirical model of two main 

effects of ageing on cell performance, capacity fade and 

power fade.  
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It has been shown experimentally that the capacity fade 

can be described using a power law with energy 

throughput and is related to temperature via an Arrhenius 

relationship. This means that the capacity loss (capacity 

fade), can be described using the equation below (Andrea 

Cordoba-Arenas, 2015): 

𝑄𝑓𝑎𝑑𝑒 = 𝑘𝑄𝑠𝑒𝑣  𝐴ℎ𝑧                           (1) 

Where, 𝑄𝑓𝑎𝑑𝑒  is the capacity fade [%];  𝑘𝑄𝑠𝑒𝑣  is the 

capacity fade severity factor [-]; Ah is the charge 

throughput [kAh]; z is the power exponent [-]. 

The resulting increase in internal resistance can be 

described using a very similar equation to capacity fade, 

however without the power exponent (Andrea Cordoba-

Arenas, 2015): 

𝐼𝑅𝑖𝑛𝑐 = 𝐾𝐼𝑅𝑠𝑒𝑣  𝐴ℎ                          (2) 

Where, 𝐼𝑅𝑖𝑛𝑐  is the increase in internal resistance [%];  

𝐾𝐼𝑅𝑠𝑒𝑣  is the increase in internal resistance severity factor 

[-]; Ah is the charge throughput [kAh]. 

The Ageing model was created by using Equation (1) and 

(2) and added to the ElectricalCellTemplate model 

to create a new template called 

ElectricalCellsWithAgeing as shown in Figure 7. 

As the Ageing model reduces the cell capacity, and 

increases the cell internal resistance, the 

ElectricalInterfaces package was updated by 

adding new inputs and outputs to create a new package 

called ElectricalInterfacesWithAgeing in the 

Ageing package; and the 

ElectricalComponentsWithAgeing was updated to 

include the calculation of ageing effects from the 

ElectricalComponents package. The structure of the 

Ageing package is presented in Figure 6. Again, we can 

choose models for the OCV and internal losses to create 

several different electrical cell models some of which are 

shown in Figure 6. 

2.1.3 BatteryPack 

Using the electrical cell model interface, we can then 

construct a battery PackModel which is composed of 

battery cells connected both in series and in parallel. This 

battery PackModel and its parameters are shown in 

Figure 8.  

In the PackModel, the number of battery cells connected 

in series and the number of battery cells in parallel are 

defined by two parameters, ns and np, respectively Using 

these parameters in conjunction with the array and 

looping capabilities in Modelica we are then able to 

automatically generate the serial and parallel connections 

needed to wire together every cell in the PackModel. 

Different electrical cell models (with or without ageing) 

from the Electrical and Ageing package can be 

chosen as the replaceable CellModelType model 

which is used to instantiate each cell in the PackModel. 

Through our template models we can create both 

topological and parametric variants to match the 

underlying cells as shown in Figure 3. We place these 

fully parameterized models in the 

Battery.Parameters library. In this way, we can 

create pack models using any of the parameterized cell 

models that we have developed (with or without ageing) 

and independently specify the pack topology as well. 

 

 

Figure 6. The structure of Electrical and Ageing 

packages  

 

 

Figure 7. ElectricalCellsWithAgeing template 
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Figure 8. Battery PackModel and its parameters 

 

2.2 PowerElectronics 

The PowerElectronics sub-library is a part of the 

overall Digital Twin for Electrified Powertrains library, 

ePropulsionSystem, and focuses on capturing the 

behavior of the most commonly used electronic 

components and topologies, while ensuring easy 

parametrization from available manufacturer data. 

The main focus of the library is the modelling of the 

behavior of Diodes, Insulated Gate Bipolar Transistors 

(IGBTs) and Metal-Oxide-Semiconductor Field Effect 

Transistors (MOSFETs) in a way that enables the user to 

simulate a variety of electronics topologies utilizing any 

available parametrization data. For that purpose, the 

developed models are made up of numerous variants to 

estimate the static response (static model variants) as well 

as the corresponding losses of the device in question (loss 

model variants). 

The static model variants for the different semiconductors 

capture the response of the device disregarding the 

dynamic behavior due to the presence of capacitances and 

inductances. The models were developed and organized 

according to the level of detail that is needed for their 

parametrization: 

• Ideal models, where the devices under 

investigation are represented by their ideal 

equivalent circuit. 

• Constant models, where parameters such as 

channel resistance are not affected by system 

variables. 

• Look-up table-based models, where the device 
parameters at each simulation step are the output 

of a system variable dependent look-up table. 

Such variables include device temperature, gate 

voltages etc. 

All these variants are developed using the same 

underlying interface and can be seamlessly swapped using 

replaceable models. 

The loss model variants estimate the conduction losses as 

well as the switching losses of the devices, given a 

selected static model and the data available to the user. 

The variants developed are the following: 

• Lossless models, which are implemented for fast 

simulations where heat dissipation is of no 

interest. 

• Constant models, where parameters such as 

energy release during a switching event are not 

affected by system variables. 

• Look-up table-based models, where parameters, 

such as the switching energy loss, are estimated 

at every simulation step from the device variables 

using look-up tables. Such variables are the 

device current, the blocking voltage etc. 

• Dynamic models, where the dynamic behavior, 

due to parasitic capacitances and inductances of 

the device, is captured. The switching and 

conduction losses are subsequently estimated 

from the dynamic response of the system.  

The same development approach was used as with the 

static models when integrating these variants together to 

ensure simple and fast swapping between model variants. 

Table 1 summarizes the static and loss model variants as 

well as the number of possible model representations 

given those variants 

The models described are used as the building blocks of 

more complex power electronics topologies. An example 

of the utilization of the models is presented in Figure 9. 

The topology under investigation is an isolated DC-DC 

converter that represents the on-board charger of an EV. 

Using the models developed we were able to simulate the 

response of the converter when coupled with a simple PI 

controller that regulates the output current.  Furthermore, 

we were also able to carry out an investigation on the 

impact of different semiconductor technologies on the 

performance of the charger. The output current and 

voltage curves, as well as the full-bridge semiconductor 

temperatures are provided in Figure 10, Figure 11, Figure 

12 and Figure 13.  
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Table 1. PowerElectronics library model variants 

 Static 

Variants 

Loss 

Variants 

Total 

Variants 

Diodes 4 2 8 

IGBTs 5 9 45 

MOSFETs 5 9 45 

 

Moreover, we were able to use the developed system to 

execute batch simulations to estimate the impact of 

different switching frequencies on the Full-Bridge losses 

as presented in Figure 14. This capability to automatically 

execute batch simulations can be used in conjunction with 

Design of Experiments techniques to carry out system 

level parameter optimizations. 

 

Figure 9. Hard-switched isolated DC-DC converter  

 

 

Figure 10. DC-DC Output voltage 

 

 

Figure 11. DC-DC Output current 

 

 

Figure 12. DC-DC Output current ripple 

 

 

Figure 13. Full bridge semiconductor temperature 

 

A Modelica Library for Modelling of Electrified Powertrain Digital Twins

254 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181249



 

Figure 14. Full bridge technologies loss comparison 

 

2.3 EDU 

The electrical machines library found in the MSL (version 

3.2.1) contains models for synchronous induction 

machines, including permanent magnet and synchronous 

reluctance motors. To develop the electrified powertrain 

digital twin, the Modelica models were used as templates 

and extended to form the EDU Modelica Library. 

2.3.1 Python Automated Data Importing 

The library is coupled with the Ricardo eMotor design 

database (eMAD, see Figure 15) using a Python script. 

The script automates data transfer and formatting and the 

process can be broken down as follows:  1) The Python 

script queries the motor requirement such as motor 

maximum power, DC voltage, etc. from the eMAD 

database 2) The user selects a specific MotorCAD design 

which meets the requirement.  3) The script extracts from 

eMAD detailed parameters such as d-q inductances, pole 

numbers, the open circuit voltage, nominal frequency etc. 

(see Table 2) and saves the result into a Modelica 

parameter file. 4) The user directly imports the file into 

Modelica using a function called 
Modelica.Utilities.Example.readRealParamet

er from MSL.  

2.3.2 EDU library structure 

Following the literature review, the SMPM and SMR 

motor types were considered as the initial focus for the 

EDU library. Referring to Figure 16, within the 

EmachineSummary package, a standard interface called 

MotorInterface was implemented as a partial 

model to define drive unit subsystem of the overall e-

propulsion system. In doing so, a user may choose 

between the various motor types, e.g., SMPM. Referring 

to Figure 17, three electrical pins (pin_p, pin_p1, 

pin_p2) are used to connect to a three-phase inverter. 

Motor voltage, current, torque and rotational speed signals 

connect through a Control Bus to the EDU controller via 

an external control bus. The torque output connects with a 

vehicle model (gear and drive model) using a rotational 

flange connector from the MSL. The thermal port releases 

heat due to the power losses from the motor, as explained 

in Section 2.3.3. 

In the SMPMMotorTest and SMRMotorTest packages, 

the standard SMPM and SMR Modelica models were 

extended with the sub-component models based on 

outputs from MotorCAD. The modifications are mainly to 

improve the power loss equations (see the next section) to 

enhance correlation with MotorCAD data and to model 

the thermal behavior (see Section 2.3.3). 

2.3.3 Power loss models 

Firstly, using Ricardo’s MotorCAD database material 

(e.g., see Figure 18), the generic power loss equations in 

Modelica were re-parameterized for a specific MotorCAD 

design, including stator core losses, stator winding losses, 

rotor winding losses and permanent magnet losses. The 

parameterization of the equations was performed using the 

MATLAB curve fitting toolbox and optimized to 

minimize the error across the range of operating motor 

speed and torque values. To achieve a better correlation 

with MotorCAD’s data, some equations such as those for 

stator core losses were extended, for example, to include 

dependency on shaft torque. As MSL models do not 

specify an equation for the rotor core losses 

(lossPowerRotorCore is set to zero by default), a custom 

binomial equation as a function of motor speed and torque 

was included. 

Through the ThermalAmbientSMPM interface block 

provided by Modelica, the motor power losses are 

extracted, and the detailed node temperatures are fed into 

the state-space thermal model. Temperatures 

corresponding to MotorCAD nodes ID 12 and 31 (the 

location nearest to the stator winding and permanent 

magnet, respectively) are used as temperature feedback 

signals to the thermal interface block.  

 

Figure 15. eMAD typical motor design 
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Figure 16. Structure of EDU library  

 
Table 2. Modelica imported parameters from MotorCAD 

Parameters Value Unit 

Number of poles in pairs 10  

Nominal frequency 600 Hz 

Open circult voltage 1000 v 

Nominal stator resistance 

per phase 
0.013 Ω 

Stator main field 

inductance in d-axis 
0.1755 mH 

Stator main field 

inductance in q-axis 
0.6618 mH 

Stator copper loss MotorCAD design map 

Stator iron loss MotorCAD design map 

Magnet loss MotorCAD design map 

Rotor iron loss MotorCAD design map 

 

 

Figure 17. IPM_motor_interface 

 

2.3.3 Thermal model 

In order to better represent the thermal behavior of the  

EDU, a reduced order state-space thermal model (see 

Figure 19 and Figure 20) was also developed for Modelica 

and parameterized with MotorCAD data files, namely 

“.cmf” files for thermal capacitances, “.rmf” files for 

thermal resistances, “.pmf” files for power losses, “.tmf” 

files for node temperatures. 

 

Figure 18. Example stator copper loss map from MotorCAD 

 

 

Figure 19. A guide to reduced lumped-mass thermal models in 

MotorCAD 

 

 

Figure 20. Motor node temperature calculation 
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Figure 21. The structure of the 

ePropulsionSystemModel 

 

2.4 ePropulsionSystemModel 

The ePropulsionSystemModel library was built by 

using the components in Battery, PowerElectronics 

and EDU sub-libraries, and its structure is shown in Figure 

21. The interfaces for the key components (Battery, 

PowerElectronics and EDU) in the 

ePropulsionSystemModel library were created in the 

SystemInterfaces package. Then the replaceable 

models of each of these components were built in the 

SystemComponents package by using the interfaces and 

the models developed in Battery, PowerElectronics 

and EDU sub-libraries. By connecting the replaceable 

Battery model, EDU model and Inverter model, an 

ePropulsion System Architecture system model can be 

created. Figure 22 shows an example model from the 

SystemArchitectures package which is an 

ePropulsion system model with Alternating Current (AC) 

architecture. Because the Inverter and EDU are 

replaceable, by choosing different Inverter and EDU 

models, different types of ePropulsion systems can be 

created. In this way, the ePropulsion system model can 

work as a standalone model or be integrated into complete 

vehicle models.  

3 Use Case  

To assess the ePropulsion system library, a vehicle co-

simulation was done. The ePropulsion system library was 

imported into Ricardo IGNITE, which is a physics-based 

tool developed for complete vehicle system modelling and 

simulation. IGNITE features comprehensive built-in 

automotive Modelica libraries. These enable users not 

only to quickly and accurately model conventional and 

highly complex vehicle system models including hybrid-

electric, full electric and novel vehicles, but also to import 

any Modelica based library such as the ePropulsion 

system library. 

 

Figure 22. The ePropulsion system model with AC 

Architecture 

 

 

Figure 23. The co-simulation models 

Figure 23 shows the co-simulation models used in this 

study. There are three important parts of the IGNITE 

model. These are the IGNITE vehicle model, the 

electrified powertrain digital twin and the co-simulation 

interface. The IGNITE vehicle model was built with the 

built-in, comprehensive vehicle modelling libraries. The 

electrified powertrain digital twin was built by using the 

components from the ePropulsion system library. The co-

simulation interface provided the input and output 

interfaces for co-simulation. The vehicle controller used 

was developed in MATLAB/Simulink and coupled to the 

Modelica libraries, as shown in Figure 23, to showcase the 

ability to utilize pre-existing controllers developed in 

other environments. As this co-simulation model is a 

forward-facing simulation, a driver model was developed 

and included in MATLAB/Simulink  as well. 

The vehicle used in this study is a 6x4 long haul truck 

model which was defined based on typical MY2019 

specifications. The key vehicle parameters are shown in 

Table 3. The vehicle performance attributes and 

propulsion system requirements are also given in Table 4. 
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Table 3. Vehicle parameters 

Parameter Value Unit 

GVW 44 t 

Cd 0.6 - 

Frontal area 10.2 m2 

Tyre RRC 6.4 N/kN 

Tyre rolling radius 0.49 m 

Table 4. Vehicle performance attributes and propulsion system 

requirements 

Vehicle Performance 

Attributes 

Propulsion System 

Requirements 

90km/h on 3% grade 

40km/h on 10% grade 

Climbing 30% grade 

Powertrain max 

continuous power 

≥525kW 

6x2 mode for GCW<32t 

(2nd axle lifted) 

6x2 mode max 

continuous power 

≥380kW 

Min top speed 120km/h 

on flat road 

Powertrain max 

continuous torque 

≥67,500Nm (‘at 

wheels’) 

A baseline configuration of the propulsion system was 

defined which has an 800 V system voltage, two EDUs, 

and one battery pack which has 530 kWh of nominal 

useable energy. To evaluate the baseline propulsion 

system performance, simulations were carried out using a 

variety of drive cycles. 

Simulation Results 

The drive cycle target speed profile is presented in Figure 

24 alongside the actual vehicle speed. Using the imported 

controller and the Digital Twin models we are able to 

accurately match the actual speed with the target profile. 

Having achieved the desired speed profile, we can then 

extract curves to assess the performance of each part of 

the electrified powertrain. Specifically, in Figure 25 the 

battery voltage, load current, delivered power and SoC are 

presented for the drive cycle. From those curves we can 

extract metrics such as depth of discharge and charge 

throughput for a single cycle, as well as total regeneration 

energy for that cycle. 

In Figure 26 the inverter power losses and output phase 

currents are plotted, enabling us to evaluate if the 

semiconductor peak currents are within the absolute rating 

limits, as well as compare the inverter losses with the total 

delivered power by the battery. 

Finally, Figure 27 and Figure 28 present curves extracted 

from a single eMachine model. In Figure 27 the eMachine 

torque and speed are plotted, which closely follow the 

controller demanded speed and torque, while in Figure 28 

the different loss components, as well as the total losses of 

the eMachine are presented, enabling us to evaluate the 

performance of the machine. 

 

Figure 24. Target vs Actual Speed 

 

 
Figure 25. Battery Performance Curves 

 

 
Figure 26. Inverter Performance Curves 
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Figure 27. eMachine Mechanical Performance Curves 

 

 

Figure 28. eMachine Power Losses 

Total Cost of Ownership (TCO) Assessment 

Optimising journey time and cost is the most important 

criteria for road-freight vehicles. To assess the impact of 

powertrain design and configuration on this criterion, a 

TCO study was carried out. The TCO study assessed the 

overall cost of vehicle ownership as €/t.100km and 

collected a wide range of inputs, both from the detailed 

system simulation previously discussed, expected 

degradation, component costs and costs of operation 

(electricity prices etc). The TCO model is presented 

schematically in Figure 29.  

The following assumptions have been made for the 

purpose of the TCO assessment. 

Table 5. TCO model assumptions 

Parameter Value Unit 

Electricity Price 0.25 €/kWh 

Battery Pack Cost 200 €/kWh 

Power Electronics and 

E-motor Cost 
43 €/kWh 

 

Figure 29. Schematic overview of Total Cost of Ownership 

model 

 

 

Figure 30. TCO sensitivity to battery pack energy 

 

 
Figure 31. Comparison of TCO for different powertrain 

technologies 

 

The TCO model enables a what-if analysis on the impact 

of various powertrain parameters (or indeed external 

parameters) on TCO. An example is shown in Figure 30 

where the TCO sensitivity to battery pack installed energy 

is presented. A clear minimum can be seen which suggests 
that, for this vehicle application, it is beneficial to have a 

larger battery pack installed, which improves battery 

lifetime and range. 
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The TCO model is also used to compare different 

powertrain technologies as shown in Figure 31. In this 

example, the TCO for a Diesel Internal Combustion 

Engine (ICE) is used as a baseline and compared against 

a BEV, optimised BEV (using the initial results from 

above) and a Catenary Electric Vehicle (CEV) variant. A 

detailed comparison, including Fuel Cell EV will be the 

focus of a future study. 

4 Conclusion 

The Modelica library of electrified powertrain 

components, ePropulsionSystem, the sub-libraries of 

key sub-components (Battery, Power Electronics and 

EDU), and the various models included in the sub-

libraries are detailed in the paper. The 

ePropulsionSystem library enables rapid construction 

of Digital Twins for Battery, EDU and Power Electronics 

systems in an electrified powertrain, and provides an 

approach which can scale automatically from low-fidelity 

for fast system level simulation to high-fidelity for sub-

system design analysis in the electrified powertrain 

development process. An example of applying the 

ePropulsionSystem library to an EV use case is also 

discussed. In the use case, the co-simulation models and 

driving cycles simulation result are presented. Then, by 

using the co-simulation models, a Total Cost of 

Ownership (TCO) optimisation is discussed as an example 

to prove that the developed Modelica library can be used 

to assess and optimise a wide range of electrified 

propulsion architectures. 
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