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Abstract 
This paper presents the simulation of electromagnetic 

transients (EMTs) with Modelica. The advantages and 

disadvantages are discussed. Simulation performance and 

accuracy are analyzed through the IEEE 118-bus 

benchmark which includes EMT-detailed models with 

nonlinearities. The domain-specific simulator EMTP is 

used for validations and comparisons.  

Keywords: Modelica, Equation-based Modeling, Acausal 

modeling, Electromagnetic transients, EMT, Synchronous 

machines, Large scale, Nonlinearity, IEEE 118-bus grid. 

1 Introduction 

Power system simulations are mainly categorized into 

phasor-domain and time-domain. In phasor-domain 

analysis, voltages and currents are computed as phasors 

varying in time. The electrical network is solved in steady-

state and at the fundamental frequency. Power generation 

sources, such as synchronous machines, are solved with 

their differential equations in time-domain and interfaced 

with network equations using phasor equivalents. The 

phasor-domain approach is suitable for electromechanical 

transients, load flow, and short-circuit studies in very 

large-scale grids and can be applied to any linear system 

but becomes less accurate with the presence of power 

electronics-based equipment e.g., FACTS and HVDC 

since this technique cannot represent the faster transients. 

Its main advantage remains computational speed for 

studying lower frequency transients, but harmonics and 

nonlinear models are ignored. 

In the time-domain simulation approach, the network 

and all integrated components are solved in time-domain 

with detailed differential equations. Harmonics and 

nonlinearities are modeled accurately. The solution may 

include lower frequency interactions, as well as very high-

frequency transients. The time-domain approach allows to 

solve networks for electromagnetic transients and is 

tagged as the EMT-type solution. 

Various specialized EMT-type simulation tools 

(Mahseredjian 2009) are currently available and well 

adapted for studying various power system phenomena, 

including transformer saturation effects, lightning and 

switching transients, and integration of inverter-based 

resources. Power electronics-based components can be 

simulated very accurately.   

 The EMTP (Mahseredjian, et al.  2007) software used 

in this paper is widely used for the EMT simulations. The 

cornerstone of this software is the discretization of 

component models using the well-known companion 

circuit approach. The A-stable trapezoidal and Backward-

Euler numerical integration methods are employed for the 

discretization. The latter is used at discontinuity points to 

avoid numerical oscillations (Sana, Mahseredjian, et al. 

1995). In EMTP, the companion circuits of components 

are interconnected (to respect Kirchhoff's first law) 

through a sparse matrix solver using the Modified 

Augmented Nodal Analysis (Mahseredjian, Dennetière, et 

al.  2007) formulation. 

In power system modeling, Modelica has been first 

considered for phasor-domain simulations. iTesla Power 

Systems Library (iPSL) (Vanfretti et al. 2016) is a 

comprehensive Modelica package that was generated 

through the iTesla project (Lemaitre 2014) for unified 

modeling and for facilitating network model exchanges 

amongst transmission system operators. PowerGrids 

(Bartolini et al.  2019) and ObjectStab (Larsson 2004) are 

other advanced libraries developed for electromechanical 

and stability analyses, respectively.  

Modelica (Fritzson 2014) is an equation-based 

language that relies on the description of a system by 

differential-algebraic equations. The EMT behavior of 

electrical components can be modeled by their differential 

equations. The language emphasizes the acausal approach 

based on declarative modeling where the model and 

solver are decoupled. It significantly improves model 

development process and model readability. 

The first attempt to develop a Modelica-based EMT-
detailed simulator was reported in (Masoom et al. 2020), 

where transmission lines incorporating the constant 

parameter and wideband (Kocar Mahseredjian 2016) 

models were introduced and validated. An EMT-detailed 

library was developed and validated using the IEEE 39-

bus network.  
A challenging problem with Modelica is computational 

speed (including compilation and simulation time). Some 
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solutions are based on numerical optimizations, e.g., 

Jacobian optimization (Kofman, Fernández, and 

Marzorati 2021) and simulation in DAE mode (Braun et 

al.  2017; Henningsson 2019). An open-source solution 

(called DynaꞶo) is specifically designed for power system 

simulations in phasor-domain (Guironnet et al. 2018). 

DynaꞶo approach is based on hybrid coding with 

Modelica and C++ and demonstrates competitive 

performance compared to the specific domain packages 

(Guironnet et al. 2018). This approach was used for EMT 

simulations in (Masoom et al. 2021) as well. Even though 

it delivers better performance compared to the pure 

Modelica tools, there is still a significant gap in 

comparison with EMTP.  

The IEEE 118-bus benchmark contains the following 

models: synchronous generators (including magnetic 

saturation model) with controls, transformers, 

transmission lines, nonlinear inductances, and nonlinear 

surge arresters. The basic models, such as resistance, 

inductance, and advanced models, that is, various models 

of transmission line, loads, saturable transformers, 

synchronous machine (without saturation), machine 

controls, etc. were already presented in previous papers 

(Masoom et al. 2020; Masoom et al. 2021). This paper 

focuses on the synchronous machine model with 

saturation and the nonlinear arrester and comparison of 

simulation efficiency in Modelica. 

The paper is organized as follows. Two selected 

models, namely the synchronous machine and nonlinear 

arrester are developed using Modelica in Section 2. The 

numerical results for the IEEE 118-bus system are 

provided in Section 3. 

2 Modelica Model Implementation  

In this Section, two nonlinear models are presented and 

discussed in more detail. The models have been developed 

based on EMTP mathematical representations. 

2.1 Synchronous Machine Model with 

Magnetic Saturation 

The details required to model Synchronous Machine (SM) 

depend on the type of transient study. Saturation effects in 

SM are important for EMT analysis. Assuming the SM is 

modeled by two damping windings on the q-axis (denoted 

by kq1, kq2) and one damper winding (kd) and one field 

winding (fd) on the d-axis, (1)-(6) provide the flux-based 

equations of SM in state-variable form.  

𝐯𝑑𝑞0 = 𝐏(θ)𝐯𝑎𝑏𝑐/V𝑠𝑡𝑎𝑡𝑜𝑟,𝑏𝑎𝑠𝑒  (1) 
𝑝𝛙 = ω𝑏(𝐀𝛙+ 𝐮) (2) 
𝐀 = −(𝐑𝐋−1 +𝐖) (3) 

𝐢 = 𝐋−1𝛙 (4) 
𝐢𝑎𝑏𝑐 = 𝐏

−𝟏(θ)𝐢𝑑𝑞0 (5) 

𝐢𝑎𝑏𝑐,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐢𝑎𝑏𝑐 . I𝑠𝑡𝑎𝑡𝑜𝑟,𝑏𝑎𝑠𝑒  (6) 
where: 

𝐮 = [v𝑞 , v𝑑 , v𝑓𝑑 , 0, 0, 0]
𝑇

 (7) 

𝛙 = [ψ𝑞 ,ψ𝑑 , ψ𝑓𝑑 ,ψ𝑘𝑑 ,ψ𝑘𝑞1, ψ𝑘𝑞2]
𝑇

 (8) 

𝐢 = [i𝑞 , i𝑑 , i𝑓𝑑 , i𝑘𝑑 , i𝑘𝑞1, i𝑘𝑞2]
𝑇

 (9) 

𝐢𝑑𝑞0 = [−i𝑞 ,− i𝑑 , 0]
𝑇

 (10) 

𝐑 = diag(R𝑎 , R𝑎, R𝑓𝑑 , R𝑘𝑑 , R𝑘𝑞1, R𝑘𝑞2) (11) 

In the above equations, the operator 𝑝 is 
𝑑

𝑑𝑡
 , the vector 

𝐯𝑎𝑏𝑐 is the terminal voltage, 𝐯𝑑𝑞0 is the voltage in dq 

frame, ω𝑏 is the base angular velocity, 𝐏(θ) is the Park’s 

transformation, vectors 𝐮, 𝐢, and 𝛙 denote the stator and 

rotor voltages, currents, and flux linkages in the dq frame 

and 𝐢𝑎𝑏𝑐  is the stator current. 𝐖6×6  is the rotor speed-

dependent matrix; all elements are zero except 𝑤[1,2] =
𝜔𝑟 and 𝑤[2,1] = −𝜔𝑟, 𝐋6×6 is the symmetrical matrix of 

inductances in the rotor reference frame, 𝐑6×6 is the stator 

and rotor resistance matrix.  

The details of saturation effects modeling in the dq axes 

are explained in (Karaagac et al. 2011). In magnetic 

saturation modeling, the following assumptions are made: 

(1) The leakage flux saturation and cross saturation are 

ignored. It means only magnetizing inductances, L𝑚𝑑 and 

L𝑚𝑞 are saturable. (2) Saturation is determined by the air-

gap flux linkage. (3) The sinusoidal distribution of the 

magnetic field over the face of the pole is unaffected by 

saturation. 

Since the saturation relationship between the total air-

gap flux, ψ𝑇, and the magnetomotive force under loaded 

conditions is assumed to be the same as at no-load 

conditions, therefore magnetic saturation of stator and 

rotor iron can be modeled by the no-load saturation curve 
which is characterized by a piecewise linear graph 

(Karaagac et al. 2017). 

Consequently, the mathematical model of saturation is 

introduced by: 

     ψ𝑇 = 𝑓(ψ𝑇,𝑢𝑠) = 𝑓 (√ψ𝑚𝑑,𝑢𝑠
2 +ψ𝑚𝑞,𝑢𝑠

2 ) (12) 

ψ𝑚𝑑,𝑢𝑠 = L𝑚𝑑,𝑢𝑠i𝑚𝑑 

             i𝑚𝑑 = i𝑑 + i𝑓𝑑 + i𝑘𝑑  
(13) 

ψ𝑚𝑞,𝑢𝑠 = L𝑚𝑞,𝑢𝑠i𝑚𝑞  

                i𝑚𝑞 = i𝑞 + i𝑘𝑞1 + i𝑘𝑞2 
(14) 

where ψ𝑇,𝑢𝑠 is the total unsaturated air-gap flux, ψ𝑚𝑑,𝑢𝑠 
and ψ𝑚𝑞,𝑢𝑠 are the unsaturated magnetizing flux linkages, 

L𝑚𝑑,𝑢𝑠 and L𝑚𝑞,𝑢𝑠 are the unsaturated magnetizing 

inductances, and i𝑚𝑑 and i𝑚𝑞  are the magnetizing 

currents; each on the dq axis, respectively. Throughout the 

paper, the subscript sat and us mean saturated and 

unsaturated, respectively. 

The value of saturated magnetizing flux linkages on the 

dq axis (ψ𝑚𝑑,𝑠𝑎𝑡  and ψ𝑚𝑑,𝑠𝑎𝑡) can be corrected by a ratio 

of corresponding unsaturated values as illustrated in 

Figure 1.a. In EMTP, the magnetic saturation is 

represented by a piecewise linear curve as sketched in 

Figure 1.b. For the jth operating segment, ψ𝑇 is given by: 
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                     ψ𝑇 = ψ𝑘𝑗 + b𝑗ψ𝑇𝑢 (15) 

= ψ𝑘𝑗 + b𝑗L𝑚𝑑,𝑢𝑠i𝑇  
 

                       i𝑇 = √i𝑚𝑑
2 + (

L𝑚𝑞,𝑢𝑠

L𝑚𝑑,𝑢𝑠
)
2

i𝑚𝑞
2  (16) 

                   b𝑗 =
L𝑚𝑑,𝑠𝑎𝑡𝑗

L𝑚𝑑,𝑢𝑠
 (17) 

where b𝑗  is the saturation factor and ψ𝑘𝑗 is the residual 

flux. The saturated values L𝑚𝑑,𝑠𝑎𝑡  and L𝑚𝑞,𝑠𝑎𝑡  are 

computed as: 

            L𝑚𝑑,𝑠𝑎𝑡 = b𝑗L𝑚𝑑,𝑢𝑠  

              L𝑚𝑞,𝑠𝑎𝑡 = b𝑗L𝑚𝑞,𝑢𝑠 
(18) 

For a salient pole machine, because of large airgap path 

along the q-axis, it is only required to correct the ψ𝑚𝑑; 

thus: 

            L𝑚𝑑,𝑠𝑎𝑡 = b𝑗L𝑚𝑑,𝑢𝑠 

            L𝑚𝑞,𝑠𝑎𝑡 = L𝑚𝑞,𝑢𝑠 
(19) 

Figure 2 demonstrates the solution procedure for the 

electrical equations of SM. In the case of no saturation, 

the relationship between field current (i𝑓𝑑) and terminal 

voltage (v𝑡) is linear; therefore, the magnetizing 

inductances in (20) are constant (q𝑗 = d𝑗 = 1). If 

saturation is selected, it is required to compute the 

magnetizing inductances at each time point; thus, 𝐋 is 

time-variant (q𝑗 = d𝑗 = b𝑗 for round rotor and q𝑗 = 0,

d𝑗 = b𝑗  for salient pole machine). This method results in 

implicit equations requiring an iterative solution. 

The model discussed above has been implemented for 

the first time in Modelica. The model code is illustrated in 

Figure 3. The declaration of variables and the conversion 

of operational parameters to the standard ones are hidden 

to conserve space and only the equation section is 

demonstrated. The terminal voltages of SM are 

represented by Pk.pin[1].v, Pk.pin[2].v and 

Pk.pin[3].v for the phases a, b and c, respectively. 

P(theta) represents a pre-defined function for the Park’s 

transformation calculations.  

Equation (2) is used as a differential equation for the 

implemented model; the state vector Phi represents the 

flux linkages and the input vector u the voltages. The 

system matrix A is time-variant and computed as per (3). 

The matrix of parameters for representation of 

saturation, SD, is given by a 2-by-n matrix, where n is the 

number of points taken from the no-load saturation curve. 

The first row of this matrix contains the values of field 

currents (physical value), while the second row contains 

values of corresponding terminal voltages (per unit). 

LinearInterplate(SD1PU, SD2PU, iT) is a function to 

interpolate the iT by the two vectors of field current 

(SD1PU) and voltage (SD2PU). These two vectors are 

calculated in the non-reciprocal per unit. The function 

returns the total flux (PhiT) and Lmdsat which the latter is 

used for calculation of coefficient b as per (17). The 

stator physical currents are represented by Pk.pin[1].i, 

Pk.pin[2].i and Pk.pin[3].i for the phases, a, b and c, 

respectively.  

Other pieces of code represent the mechanical 

equations of SM which are not discussed in this paper.  

𝐋 =

(

 
 
 
 

L𝑙𝑠 + q𝑗L𝑚𝑞,𝑢𝑠 0 0 0 q𝑗L𝑚𝑞,𝑢𝑠 q𝑗L𝑚𝑞,𝑢𝑠
0 L𝑙𝑠 + d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 0 0

0 d𝑗L𝑚𝑑,𝑢𝑠 L𝑙𝑓𝑑 + d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 0 0

0 d𝑗L𝑚𝑑,𝑢𝑠 d𝑗L𝑚𝑑,𝑢𝑠 L𝑙𝑘𝑑 + d𝑗L𝑚𝑑,𝑢𝑠 0 0

q𝑗L𝑚𝑞,𝑢𝑠 0 0 0 L𝑙𝑘𝑞1 + q𝑗L𝑚𝑞,𝑢𝑠 q𝑗L𝑚𝑞,𝑢𝑠
q𝑗L𝑚𝑞,𝑢𝑠 0 0 0 q𝑗L𝑚𝑞,𝑢𝑠 L𝑙𝑘𝑞2 + q𝑗L𝑚𝑞,𝑢𝑠)
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Figure 2. Solution procedure of synchronous machine 
with/without magnetic saturation in Modelica (Only electrical 

equations are demonstrated). 
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Figure 1. (a): Saturated and unsaturated magnetizing flux 
linkages in the dq axes of a synchronous machine. (b): Magnetic 

saturation characteristic (piecewise-linear approximation). 
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model SM "Synchronous Machine 6 order including 

saturation"

// Declaration of variables and parameters are hidden    

due to space limitations. 

equation

// Conversion of terminal voltage to pu 

 vabc= {Pk.pin[1].v,Pk.pin[2].v,Pk.pin[3].v} /Vsbase;

// Conversion from abc frame to dq0 frame

   vdq0  = P(theta)*vabc;

// State space electrical equations

   der(Phi)  = Wb * (A * Phi + u);

   A         = -(R * inv(L) + W);

   i         =  inv(L) * Phi; 

// Implementation of magnetic saturation

   imd = Ip[2] + Ip[3] + Ip[4]; //imd = id + ifD + ikd

   imq = Ip[1] + Ip[5] + Ip[6]; //imq = iq + ikq1+ ikq2

   iT  = sqrt(imd^2 + (Lmqus/Lmdus)^2 * imq^2);

  (PhiT,Lmdsat) =  LinearInterpolation(SD1pu,SD2pu, iT);

   b  = Lmdsat / Lmdus;

   if Sauration then

     if RoundRotor then

       q=b;

       d=b;

     else

       q=0;

       d=b;

     end if;

   else

     q=1;

     d=1;

   end if;

    Lq      = Lls   + q * Lmqus;

    Ld      = Lls   + d * Lmdus;

    Lffd    = Llfd  + d * Lmdus;

    Lkdkd   = Llkd  + d * Lmdus;

    Lkq1kq1 = Llkq1 + q * Lmqus;

    Lkq2kq2 = Llkq2 + q * Lmqus; 

   L= [  Lq    ,   0    ,    0   ,   0    ,q*Lmqus ,q*Lmqus ; 

          0    , Ld     , d*Lmdus, d*Lmdus,   0    ,   0    ; 

          0    , d*Lmdus, Lffd   , d*Lmdus,   0    ,   0    ; 

          0    , d*Lmdus, d*Lmdus, Lkdkd  ,   0    ,   0    ;

       q*Lmqus ,   0    ,    0   ,   0    ,Lkq1kq1 , q*Lmqus;

       q*Lmqus ,   0    ,    0   ,   0    , q*Lmqus, Lkq2kq2];

 // Conversion from dq0 to abc frame

   iabc         =  inv(P(theta))* idq0;

// Calculations of actual Terminal current

   Pk.pin[1].i  = -iabc[1] * Isbase;

   Pk.pin[2].i  = -iabc[2] * Isbase;

   Pk.pin[3].i  = -iabc[3] * Isbase;  

// Mechanical equations  

   Te          = Phi[2] * idq0[1] - Phi[1] * idq0[2];  

   Tnet        = Tm - Te - D * dw;  

   Tm          = Pm_pu / Wr;     

   der(dw)     = Tnet * (1 / 2 / H);   

   Wr          = 1 + dw;          

   der(d_theta)= dw * Wb;

   theta       = d_theta + Wb * time;

// where

// u = {Vq      , Vd      , Vfd   , Vkd   , Vkq1   , Vkq2 }

  u = {vdq0[1], vdq0[2], vfd , 0    , 0     ,  0  }; 

// Phi = {Phiq  , Phid  , Phifd , Phikd , Phikq1,Phikq2 }

  Phi = {Phi[1], Phi[2], Phi[3], Phi[4], Phi[5] , Phi[6]}; 

// i = {iq     , id     , ifd   , ikd   , ikq1   , ikq2  }      

  i = {i[1]  , i[2]  , i[3] , i[4] , i[5] , i[6] }; 

// Change of sign due to generating mode 

   idq0    = {-i[1], -i[2], 0}; 

   W[6, 6] = [ 0   , Wr  , 0  , 0  , 0  , 0  ;

              -Wr  , 0   , 0  , 0  , 0  , 0  ; 

               0   , 0   , 0  , 0  , 0  , 0  ;

               0   , 0   , 0  , 0  , 0  , 0  ;

               0   , 0   , 0  , 0  , 0  , 0  ;

               0   , 0   , 0  , 0  , 0  , 0  ];

  R[6, 6] = diagonal({Rs, Rs, Rfd, Rkd, Rkq1, Rkq2});

end SM;

Terminal voltage

Eq.(20)

Eq.(15)Eq.(17)

Eq.(16)

 
Figure 3. Implementation of synchronous machine model with 

magnetic saturation in Modelica. The saturation formulation is 
distinguished with the blue dashed frame. 

2.2 Nonlinear Arrester Modeling 

Surge arresters protect the insulation of equipment, e.g., 
transformers in electrical systems against overvoltage 

transients caused by lightning or switching surges. The 

voltage and current characteristic of a gapless metal-oxide 

surge arrester as illustrated in Figure 4 is a severely 

nonlinear resistor with an infinite slope in the normal 

operation region and an almost horizontal slope in the 

protection region (temporary and lightning overvoltages). 

In EMTP, the nonlinear resistance is represented by the 

following power function: 

i𝑘𝑚 = 𝑝𝑗 (
v𝑘𝑚
V𝑟𝑒𝑓

)

𝑞𝑗

 (21) 

where i𝑘𝑚 and v𝑘𝑚 are arrester current and voltage, 𝑗 is 

the segment number starting at the voltage V𝑚𝑖𝑛𝑗,  

multiplier 𝑝𝑗 and exponent 𝑞𝑗 are coefficients defined for 

each V𝑚𝑖𝑛𝑗 and V𝑟𝑒𝑓 is the arrester reference voltage. A 

linear function is used for the first segment. 

The technique for modeling a nonlinear resistance 

(arrester function) is like the one used for the nonlinear 

Vmin, 1

Vmin, 2

Vmin, j

Vkm

ikmSymmetrical
extension 

Vmin, 3

10-2 102 104103

Temporary OV
Lightning OV

Maximum Continuous 
voltage

Protection region

2
3 4

5

1

 

Figure 4. Voltage-current characteristic of ZnO surge arrester 

and operating regions. 

 

model ZnoArrester  ZnO arrester model in Modelica 

  extends Modelica.Electrical.Analog.Interfaces.OnePort;

  parameter Real Vref = 516000  Reference voltage  

  //Exponential segments before flashover

  parameter Real T[:, 3]  "multiplier p, Exponent q, Vmin_pu";

protected

  final parameter Real[:] p = T[:, 1];

  final parameter Real[:] q = T[:, 2];

  final parameter Real[:] V_min = T[:, 3]*Vref;  

equation

  i_km = ExponentialInterpolate(V_min, p, q, Vref, v_km);

end ZnoArrester;

 

Inheritance of  OnePort  partial class 

Constructive equation of surge arrester 

Internal parameters of model 

Parameters of model 

Zno

vkm

ikm

vk vm

 

Figure 5. Implementation of the ZnO surge arrester model in 

Modelica environment. 
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inductance. Figure 5 illustrates the code for the 

implementation of the surge arrester. The parameters of 

𝑝𝑗, 𝑞𝑗 and V𝑚𝑖𝑛𝑗 are defined by n -by-3 matrix, T. 

ExponentialInterpolate() is a function defined by the 

specific class function, where the operating voltage is 

searched for the appropriate segment, j. Then, the value of 

i𝑘𝑚 is exponentially interpolated using (21). The 

properties of partial class OnePort are inherited to apply 

the appropriate equations of one-port devices. 

As one can see, the implementation of the model is very 

straightforward, there is no limitation for connection of 

this model in series to current sources, or inductors. 

Solutions converge for very small time steps in the range 

of nanoseconds without any numerical errors (Masoom et 

al. 2021). 

3 Model Verification and Validation 

This section presents simulation results of the modified 

IEEE 118-bus benchmark (Haddadi, Mahseredjian, et al. 

2018) which is used to validate the accuracy of the 

proposed models. The same test case is also simulated 

with EMTP.  

Figure 6.a shows the schematic diagram of the IEEE 

118-bus network sketched using the developed EMT 

library in Modelica. A user-friendly Graphical User  

Interface (GUI) with an illustrative icon is designed for 

each component model for entering the parameters and 

drawing networks easily. The physical connection of 

components is carried out by interconnecting the 

terminals of appropriate components.  

The IEEE-118 bus circuit consists of 54 generating 

units with controls (a few power plants contain more than 

one SM; the total number of SMs is 69), 177 transmission 

lines (RL coupled), 9 three-winding grid transformers, 

145 two-winding transformers (91 Yd1-connected load-

serving transformers+ 54 generator transformers), and 91 

three-phase loads. The voltage levels are 345kV 

transmission, 138kV sub-transmission, 25kV distribution, 

and {20, 15, 10.5} kV generation. The network includes 
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Figure 6. (a): IEEE 118-bus Network including 177 PI-section models of TL sketched using the Modelica GUI. (b): the faulty 

zone; a phase-b-to-phase-c fault at k-end of Line_70_75. The powerplant “Portsmth_Cond” is selected for validation of SM with 
saturation in Case 2, Surge arrester ZnO1 is inserted in the circuit only for Case 3. (c): the sub-circuit of Load75 including a 

saturable transformer model and constant-impedance model of load.  
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519 nonlinear inductances and 1909 RLC elements. All 

SMs use a single-mass Wye-grounded model including 

the normalized saturation characteristics represented by 7 

points. The SM control systems consist of exciter type 
ST1, steam turbine and governor type IEESGO, 

synchronous machine phasor and power system stabilizer 

type PSS1A. The model of all three-phase transformers 

consists of three single-phase units. The nonlinear 

magnetization branch is placed on the high-voltage side. 

The model uses a piecewise linear current-flux curve 

defined by 8 points (in the positive part of the symmetric 

characteristic) to represent saturation. All loads are 

represented by a constant impedance model. 

The transmission lines (TL) are modeled using pi-

sections. The constant parameter line model with 

propagation delay is simulated slowly, owing to the very 

high computational cost of the Modelica built-in delay 

operator. Simulation of the network starts with zero initial 

states. 

3.1 Case 1: Phase-to-Phase Fault Analysis 

For creating a transient disturbance, (see Figure 6.b), a 

temporary phase-to-phase fault with a fault resistance of 

1 Ω  is applied on the phases ‘b’ and ‘c’ of “Line_70_75” 

at t =100 ms followed by the isolation of the line at t= 200 

ms (i.e. the breakers BRm and BRk open simultaneously 

after 6 cycles). The fault is cleared at t = 300 ms, then the 

line is reconnected at t = 450 ms.  

Re-energizing the TL introduces high-frequency 

transient oscillations and allows to investigate the 

accuracy of transformer models in nonlinear regions.  

For this purpose, the curve of flux versus current for 

LoadTransfo75 which is located near the faulty line is 

compared with EMTP as well. 

Numerical tests are performed using the variable-step 

DASSL solver (Petzold 1982) in ODE mode with the 

tolerance of 1e-3 and the maximum integration order of 5 

in Dymola 2021x. In EMTP, Trapezoidal/Backward Euler 

integrator with the step sizes of 1 µs and 5 µs is employed. 

The simulation time is 500 ms. The network model in 

Modelica contains 96308 acausal DAEs. The total number 

of network nodes and the size of the main system of 

equations in EMTP are 2533 and 3773, respectively. 

Figure 7.a depicts the voltage waveforms of phases a, 

b and c at the k-end of Line_70_75 obtained by the two 

simulators with different precisions. An excellent 

agreement is observed between the results. Figure 7.b 

shows the simulation results for the phases b and c in the 

interval of [300, 310] ms, i.e., after the fault is removed. 

The results produced by Modelica models are almost 

identical to EMTP when step size is 1 µs (black curve), 

whilst the high-frequency transient oscillations (f=1820 

Hz) are not captured by EMTP when 𝛥𝑡 = 5 μs (blue 

curve). Figure 7.c depicts the curves of voltage after the 

re-energization of TL. The consistent results between 

Modelica and EMTP are observed in this period once 

more. The close-up view of the phase a voltage waveform 

at the instant of closing the breakers BRm and BRk shows 

that Modelica voltage waveform rises precisely at t = 450 

ms while in EMTP it goes up in the next time point. The 
close-up illustrates the discontinuity treatment 

discrepancies between the two simulators. This is an 
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Figure 7.  (a): Voltage waveforms of phases a, b and c at the k-
end of Line_70_75; (b): comparison of results for the phases b 

and c for different solvers’ parameters. (c): voltage waveforms 
after re-energization of Line_70_75; the close-up at the instant 

of closing the breakers BRk and BRm. 
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Figure 8.  Current-Flux curve of magnetization branch in the 
LoadTransfo75 transformer; close-up of Modelica and EMTP 

solutions near to the knee-point. 
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important issue for the simulation of circuits with high-

frequency switching. 

For validating the accuracy of nonlinear components, 

the magnetization branch curve of LoadTransfo75 (see 

Figure 6.c) is examined in Figure 8. Once again, the 

results obtained by the two models show an excellent 

agreement and transformer operating points (depicted by 

the red dashed line) move on the transformer current-flux 

characteristics (distinguished by the solid red line). The 

iterative solution allows reproducing the nonlinear 

function accurately in both tools. 

The number of nonlinear components and control 

closed loops has a significant impact on the accuracy and 

speed of simulation. For example, simulation of the same 

network, that is IEEE 118-bus, jams in Simscape 

Electrical Specialized Power Systems (SPS) package 

(Simscape Electrical 2020) which is comparable to 

Modelica environment in some ways. This package is 

based on the state-space representation of the linear 

network in a loop with external current sources denoting 

the nonlinear components. In Modelica, nonlinear 

functions are solved simultaneously through iterative 

methods which gives the most accurate results. 

Table 1 shows the data and run-times of simulations 

carried out in Dymola and EMTP. The CPU times are 
extracted from the average of 5-times “re-simulations”. In 

Dymola, simulation is accomplished with 203034 steps in 

371.2 s, which yields 1.83 ms for each time step. EMTP 

outperforms Dymola with the ratio of 3.37:1 when the 

least error is favorite, i.e., 𝛥𝑡 = 1 μs.  
Tolerance has a significant impact on the CPU time and 

the number of time steps for the DASSL since the local 

error is tightly coupled with the logic for selecting the step 

size and order of integration. In this experiment, the 

simulation is repeated with the tolerance of 1e-2 as well. 

It causes a considerable increase in the number of time 

steps, Jacobian, and function evaluations. Consequently, 

the CPU time increases with the ratio of 4:1, whereas the 

accuracy of simulation does not change effectively (see 

Figure 7.b). The norm of error between these two 

simulations is reported 4.8e-3 for phase b. In both 

tolerances, the results are practically identical to EMTP 

when 𝛥𝑡 = 1 μs . 
However, it should be noted that the solution methods 

in Modelica and EMTP are fundamentally different, and a 

direct comparison of variable step solver with fixed-step 

one is not so fair. The time steps selected in Table 1 are 

for demonstration/comparison purposes; in reality, it is 
possible to select even higher time steps without 

significant loss of accuracy. 
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Figure 9. (a): Waveform of phase-a stator voltage of SM with and without saturation model; the close-up after load rejection. (b): 

field current with and without saturation model; the zoomed views during and after fault. 
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Figure 10. Phase-a stator current with and without saturation 

model; zoomed view after removing the fault and load rejection. 

 

 

 

 

Table 1. Case 1: comparison of simulation performance. 

Characteristics Dymola EMTP 
Solver DASSL Trapezoidal /Backward Euler 

Tolerance 1e-3 1e-2 

∆𝑡: 1 𝜇𝑠 ∆𝑡: 5 𝜇𝑠 ∆𝑡: 10 𝜇𝑠 ∆𝑡𝑀𝐼𝑁 0.115 𝑓𝑠 0.116 𝑓𝑠 

∆𝑡𝑀𝐴𝑋 5.79 𝜇𝑠 0.16 𝜇𝑠 

No result points 203035 335261 601757 154367 81 661 

No accepted steps 203034 335260 Not applicable 

f-evaluations 415437 760052 Not applicable 

J-evaluations 7393 337458 Not applicable 

CPU time (s) 371.2 1510.6 110.1 44.2 23.5 

CPU-time for 1 

accepted steps  
1.83 𝑚𝑠 4.49 𝑚𝑠 0.18 𝑚𝑠 0.28 𝑚𝑠 0.28 𝑚𝑠 

Performance ratio 1 0.24 3.37 8.39 15.79 

 

 

 

Session 4A: Applications (2)

DOI
10.3384/ecp21181277

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

283



3.2 Case 2: Analysis of Saturation in SM 

To verify the validity of the SM model in the saturation 

region, a large disturbance including a sudden three-phase 

short-circuit fault is applied at t = 50 ms near to the 

terminals of SM “Portsmth_Cond” and lasts till t =150 

ms. The SM protective relays detect the fault and trip the 

generator breaker at t = 200 ms. The parameters of both 

solvers are the same as Case 1, e.g., Tol=1e-3 in Dymola 

and 𝛥𝑡 = 5 μs in EMTP. 

Figure 9.a shows the phase-a stator voltage waveforms 

of the SM with and without magnetic saturation. As one 

can see, the results obtained from Modelica model are 

superimposed on EMTP ones.  As time elapses, the 

difference between the results obtained by saturated and 

unsaturated models is more distinguishable on the voltage 

curves.  

Figure 9.b depicts the field current curves of the SM 

with and without magnetic saturation. It is observed that 

the inclusion of saturation has an important impact on the 

excitation current needed for the generator operation. 

Figure 10 illustrates the phase-a stator current graphs. 

As one can see, Modelica model yields precisely the same 

results as EMTP for both cases (with and without 

saturation). The stator current considering magnetic 

saturation is lower than without saturation. It is seen that 

the effect of saturation on the current in the sub-transient 

state is more than the transient state and the difference 

decreases as time elapses. 

3.3 Case 3: Lightning 

In this case, it is assumed that a lightning strike with the 

characteristics of 10kA, 8 /20 µs (see Appendix, equation 

(22) for the impulse source model) hits the phase-a of 

“Line_70_75” when the network is in steady state at t = 

95 ms. The surge arresters (see Appendix, Table 3 for the 

parameters) are located on the bus “SthPoint_138_075”, 

the nearest place to the high-voltage side of the 

transformer “LoadTransfo75” to protect it from transient 
overvoltages (see Figure 6.b).  The simulation is run for 

130 ms with the step sizes of 0.1 µs (depicted by black 

curve) and 10 µs (depicted by red curve) in EMTP. Other 

solvers parameters are like Case 1.  

Figure 11 shows the phase-a voltage waveforms of the 

arrester ZnO1. As one can see the results obtained from 

Modelica arrester model are identical to EMTP when 

𝛥𝑡 = 0.1 𝜇𝑠. A high frequency transient (1300 Hz) is 

created due to the strike of lightning.  

Table 2 compares the performances of simulations in 

both tools. In Dymola, simulation is accomplished with 

51513 steps in 87.2 s, which yields 1.69 ms for each time 

step. In this case, Dymola outperforms EMTP’s best 

result, that is when 𝛥𝑡 = 0.1 μs, with the ratio of 5.56:1. 

This test case is designed to show the potential 

advantages of variable time step solvers over fixed time 

step ones (like EMTP). It is designed on the purpose to 

illustrate the fact that a very smalltime step used for the 

short duration of the very high transient has a penalizing 

effect on EMTP, but not on Modelica solver. Modelica 

integrator expectedly reverts to a very small time step only 

for a short duration. It would have been possible to apply 

lightning in EMTP at simulation time t = 0 s, and in which 

case the performance results would have been much 

better, nevertheless, our demonstration remains valid. A 

more practical example is the breaker arc model that also 

forces the usage of very small time steps and may be 

triggered at any point of time. It will effectively give an 

advantage to Modelica since in this case, it is required to 

capture longer simulation periods. 
 

Table 2. Case 3: comparison of simulation performance. 

Characteristics Dymola EMTP 

Solver DASSL Trapezoidal /BE 

Tolerance 1e-3 

∆𝑡: 0.1 𝜇𝑠 ∆𝑡: 10 𝜇𝑠 ∆𝑡𝑀𝐼𝑁 0.623 𝑝𝑠 

∆𝑡𝑀𝐴𝑋 5.56 𝜇𝑠 

No result points 51514 1335308 21637 

No accepted steps 51513 Not applicable 

f-evaluations 105576 Not applicable 

J-evaluations 1503 Not applicable 

CPU time (s) 87.2 485.6 9.9 

CPU-time for 1 accepted steps 1.69 𝑚𝑠 0.36 𝑚𝑠 0.45 𝑚𝑠 

Performance ratio 1 0.179 8.8 
 

Conclusion 

In this paper, Modelica programming language has been 

considered for EMT simulations due to its advantages for 

creating models at very high abstraction levels. In this 

paper, we have emphasized the modeling of synchronous 

machine including magnetic saturation and surge arrester. 

These two nonlinear models are validated by comparisons 

with EMTP in a large grid (IEEE 118-bus benchmark). It 

is shown that high-level modeling in Modelica is very 

accurate as compared to EMTP. However, the 

performance is not satisfactory, except when variable time 

step is used advantageously for very high-frequency 

transients of short duration in a long simulation interval. 

Nonetheless, in comparison with Simscape Electrical SPS 

package, the Modelica package demonstrates an excellent 
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Figure 11. Voltage waveform of surge arrester ZnO1 on the bus 

SthPoint_138_075, DASLL solver: Tol=1e-3, EMTP solver: 

Trapezoidal /BE with ∆t=0.1 μs and 10 μs. 
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performance in the EMT simulation of large-scale 

networks composed of many nonlinearities. 

The EMT-type package created by Modelica code is 

user-friendly, modular, easily expandable, and 

modifiable. It can be used for didactic purposes as well. 

Furthermore, the EMT-type models can be used for model 

exchange and co-simulation incorporating FMI.  

This paper presents useful and practical information on 

currently available capabilities with Modelica for EMT 

simulation of large-scale grids. Future work will be 

oriented toward performance improvements and the 

inclusion of new models. 
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Appendix 

Lightning is represented by an impulse current source 

given by: 

i(𝑡) = i𝑚[𝑒
𝛼𝑡 − 𝑒𝛽𝑡]    (22) 

where i𝑚 = 24.9 [𝑘𝐴], 𝛼 = −55k [1/s] and 𝛽 = −175k [1/s]. 

Table 3. Exponential segments before flashover for ZnO1. 

Multiplier p Exponent q 𝐕𝒎𝒊𝒏 (𝒑𝒖) 
0.163113059479073E+02 0.240279296219978E+02 0.667857269772541E+00 

0.134112947529269E+02 0.266219333383985E+02 0.107838745800672E+01 

0.383838137212802E+02 0.200870413085749E+02 0.117458089341624E+01 

0.115443146532003E+01 0.352906710089203E+02 0.125919561101624E+01 

0.407093229412981E+03 0.111310570543275E+02 0.127478619617635E+01 

0.256681175704043E+04 0.536270125014350E+01 0.137605475880033E+01 
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