
Detailed White-Box Non-Linear Model Predictive Control for
Scalable Building HVAC Control

Filip Jorissen1 Damien Picard1 Kristoff Six1 Lieve Helsen1,2

1Mechanical engineering, KU Leuven, Belgium filip.jorissen@kuleuven.be
2EnergyVille, Genk, Belgium

Abstract
Grey-box and black-box MPC approaches for building
HVAC applications often use lumped, low-order models
with a low level of detail. While such models require
smaller computation times, their accuracy is limited and
there are practical constraints related to data collection,
how to deal with multi-zone buildings and they often do
not explicitly model the building HVAC equipment. In
this paper we present an alternative approach based on de-
tailed white-box models. TACO, a custom toolchain that
builds upon physics-based Modelica models and JModel-
ica, is used to efficiently solve the resulting optimisation
problems. This paper presents a realistic case study model
of 79 zones and OCP results for this case study are dis-
cussed, demonstrating the feasibility of the approach and
the underestimated potential of detailed white-box MPC.
Keywords: Optimal control of hybrid systems, HVAC,
white-box modelling, building automation, TACO, JMod-
elica, MPC

1 Introduction
Building Heating, Ventilation and Air Conditioning
(HVAC) accounts for 15 % of the world final energy use
(International Energy Agency 2019). While building de-
sign standards become stricter, the building energy use is
to a large extent determined during operation, when con-
trol and the available building flexibility play an important
role. Model Predictive Control (MPC) is a methodology
for controlling the building HVAC equipment during this
operational phase. The goal of MPC is typically to find the
HVAC control set points (or control actions) that lead to
the lowest (operational, environmental or other) cost while
ensuring that comfort and other constraints are respected.

Most MPC research and companies use data-driven
approaches such as grey-box and black-box modelling.
These approaches fit model parameters using measure-
ments from a real building and thus rely on the avail-
ability of qualitative data, which may not be easy to ob-
tain in practice. Moreover, the main challenge of grey-
box modelling still is the need for a robust parameter es-
timation method (Drgoňa et al. 2020). For data-driven
approaches, building zones are therefore often lumped to
limit the complexity during the training phase. This lump-
ing phase inevitably leads to a loss of detail, which could

be problematic when different parts of the lumped zones
have a different behaviour. E.g. the set points for a lumped
zone with average heat load may not be sufficient to heat
the two consisting zones that have low and high heat load
respectively. Perhaps this infrequently poses problems in
practice, but managing these kinds of problems takes time
(which is expensive and a liability in a commercial con-
text), and model simplifications are likely to cause re-
duced energy efficiency and thermal comfort throughout
the building lifetime. Furthermore, simplified models typ-
ically require the development of a subcontroller that maps
MPC set points to device set points, which can be cumber-
some (Drgoňa et al. 2020).

Using models with a higher level of detail leads to
additional advantages. For instance, the detailed physics-
based model can be used to benchmark the actual system,
it can be used for fault detection (Frank et al. 2016),
model and results are easier to interpret (‘Explainable
AI’), the model could be easier to adjust and update
since it is physically interpretable, it could be reused for
retrofit analyses, or even to visualize the building using
augmented reality. Sometimes white-box models are used
to train a grey or black-box model. Why would you train
a simplified model if you already have a detailed model?
Often the answer to that question relates to computation
time, or to the inability of the white-box tool to perform
optimizations altogether. Our goal is to improve the
solver, rather than to simplify the model. We start from
physics-based Modelica models, and JModelica (Åkesson
et al. 2010) to keep the original model accuracy, at
acceptable computational cost. For a recent overview of
MPC for building applications we refer to (Drgoňa et al.
2020).

Considering the above and also the economic context
we present an MPC development workflow that is
designed with scalability in mind. More specifically, it
is designed to be robust against modelling errors (user
error), fast to use, easy to maintain and to extend, generic
for many types of HVAC devices and HVAC schematics,
low-demanding with respect to expertise to implement
and operate, and systematically applicable to (a class of)
buildings. Our approach uses detailed white-box Model-
ica models as a starting point, which can be refined using
measurement data during operation. The use of Modelica
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unlocks efficient numerical algorithms that scale well
with the problem size and it facilitates collaborations on
model development (e.g. within IBPSA project 1). An
often quoted disadvantage of white-box modelling is the
effort required to describe building properties (Drgoňa
et al. 2020). By using automated modelling workflows,
this implementation effort is strongly reduced.

Few researchers have demonstrated white-box optimal
control methodologies that scale to the size and complex-
ity that is required for large buildings, assuming that the
goal is a qualitative implementation that sets individual set
points for individual actuators. (Sturzenegger et al. 2016)
have presented a respectable physics-based modelling ap-
proach, BRCM, that uses bi-linear models. A 20-zone
model with 300 states has been demonstrated and model
reduction has been used to reduce the number of states to
55. While the total conditioned floor area was 6000 m2,
only one of the six floors (1000 m2) was actually mod-
elled. In this work we present a white-box modelling ap-
proach that has been applied to case-study model that has
3421 state variables, 217 control inputs and 79 zones that
span 10 000 m2. Furthermore, multiple non-linear AHUs
and other HVAC equipment are included instead of only
using bi-linear HVAC. Th resulting proof-of-concept Op-
timal Control Problem (OCP) demonstrates the feasibility
of this approach even for complex multi-zone buildings.
Furthermore, the presented optimisation results illustrate
the potential of our approach. We present OCP results in
this work instead of MPC results since results of a sin-
gle optimisation with a long horizon are easier to interpret
than a concatenation of the first intervals of a sequence of
optimisations. We do not consider uncertainties on distur-
bance forecasts or modelling errors in this work. Clearly,
our approach would have to deal with these uncertain-
ties, as would any other approach. Note that the model
can indeed be used for MPC too, since MPC is control-
ling the modelled building (located in Luxemburg) since
a few months. A preliminary interpretation of the results
suggests that forecasting errors of weather and occupancy
dominate modelling errors.

2 Methodology
Our methodology uses detailed, physics-based (white-
box) models. We start by mapping each physical com-
ponent to a respective model. For the building envelope,
zones are grouped such that rooms that can be controlled
individually, are also modelled individually. For the build-
ing HVAC, components can be mapped to models one-
to-one as illustrated in Figure 1, or each group of com-
ponents that serves the same function is modelled using
one component model. E.g. each pump, valve, heat ex-
changer, etc. is modelled individually, but a set of two
redundant pumps, or a set of 20 solar collectors has 1
model per set. The component models are implemented
using the modelling language Modelica. For a description

of the building envelope models and equations, we refer
to the Modelica IDEAS library (Filip Jorissen, Reynders,
et al. 2018; KU Leuven and 3E 2012) and the Modelica
Buildings library (Michael Wetter et al. 2014; Wetter et
al. 2019). The models are parameterised using parame-
ters that are commonly available in the technical speci-
fications of the building HVAC equipment. Instantiating
the Modelica component models and making the required
connections between them is a tedious and error-prone
process. Therefore a browser-based tool has been de-
veloped that automatically generates the required Modeli-
ca/IDEAS code. This graphical user interface (GUI) only
allows valid building geometries to be specified, thereby
avoiding user errors. The GUI export of this geometri-
cal information is automatically mapped into the Model-
ica model as illustrated in Figure 2. Building geometry
information, such as orientations and surface areas, is au-
tomatically deduced from the export, while the user speci-
fies additional information such as material layers through
the GUI options.

Code generation of connections is automated, which
rules out errors such as unconnected ports or ports with
too many connections. Furthermore, sanity checks are
performed such as identification of unconnected devices,
(un)realistic thermal insulation values in outer walls,
missing parameters, etc.

The resulting workflow leads to a set of interconnected
Modelica component models that describe the relevant
physics:

• Thermal conduction, convection and radiation within
and outside of the building envelope,

• Thermal inertia of the building,

• Solar heat gains (considering glazing type and shad-
ing) and internal heat gains from occupants,

• Pressure-driven flow rates for aerolic, hydronic sys-
tem, including non-linear valve and damper models,

• Pumps and fan powers,

• Temperature dependent and mass flow rate depen-
dent heat flow rates in emission systems,

• Temperature dependent and flow rate dependent effi-
ciencies in production and distribution systems.

The resulting model is non-linear. The most important
non-linearities are the relation between flow rate and pres-
sure in fluid flow networks, and the strongly non-linear
relation between fan/pump power and flow rate. For more
details about these models see (Filip Jorissen, Reynders, et
al. 2018; F. Jorissen, Boydens, and L. Helsen 2019; Filip
Jorissen, Michael Wetter, and Lieve Helsen 2018; F. Joris-
sen, Boydens, and L. Helsen 2017; Filip Jorissen 2018).
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(a) Hydronic schematic. Source: Boydens engineering
(b) Mapped model

Figure 1. Illustration of one-to-one component to model mapping

Figure 2. Automatically generated Modelica model. The drawn
icons depict zones, windows, exterior walls and interior walls.
Note that window icons are drawn on top of wall icons.

That Modelica model is translated into an optimisation
code using our Toolchain for Automated Control and Op-
timisation (TACO) (F. Jorissen, Boydens, and L. Helsen
2018), which extends the JModelica framework (Åkesson
et al. 2010). TACO identifies what equations must be
solved for what variables, splits variables that depend on
optimisation variables from those that do not, and per-
forms preprocessing on linear state1 interdependencies to
speed up code evaluation. The continuous time problem is
discretised at a user-defined non-equidistant set of points
in time. CasADi (Andersson et al. 2019) computes the
equation derivatives and generates C-code for evaluating
the objective, constraints, derivatives and other outputs.
The compiled code is coupled to a gradient-based NLP
solver and is portable to other (linux) machines. For more

1We distinguish state variables that are computed by a differential
equation from algebraic variables that are computed from an algebraic
equation.

details about the translation process that TACO performs
we refer to (F. Jorissen, Boydens, and L. Helsen 2018).

3 Case study
In this paper we present a case study building, Solarwind,
on which the presented methodology is applied. The office
building has a conditioned floor surface area of 10 000 m2

and was designed to be an examplary showcase towards
Luxembourg and the European design and construction
industry of a holistic and integrated operation and design
sustainability approach for future oriented office build-
ings. It uses geothermal heat pumps, concrete core acti-
vation (CCA), solar collectors, solar PV, passive cooling,
indirect evaporative cooling, a pellet boiler, a large stor-
age tank, etc. This building has been described in detail in
Chapter 2 of (Filip Jorissen 2018). Chapter 10 describes
an MPC for (a part of) the same building. That model is
substantially smaller and less detailed and complex than
the OCP that we present here. It also required manual
building-specific simplifications in the HVAC models that
conflict with the 1-to-1 mapping philosphy and the exper-
tise requirements that were outlined above. We now ex-
plain the building and its model together with the main
differences from the earlier MPC implementation.

3.1 Building envelope
The new model consists of six floors (instead of four) that
are modelled using 79 zones (instead of 32). We assume
that 6 people are present in each zone, between 7:00 and
19:00 on week days. Three zones have 9 occupants in-
stead of 6, to show the influence on the CO2 concentration
in the result section. Solar shading is not modelled to ar-
tificially increase the heat load and to make the optimisa-
tion problem more challenging to solve. A weather data
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file for Uccle, Belgium is used. The building uses triple
glazing and is strongly insulated with a U-value of about
0.1 W/m2K.

3.2 Emission system
Ventilation is provided using six air handling units (in-
stead of 2), for which the supply and extraction fan pres-
sure, the heating coil valve, humidifier, heat recovery by-
pass (2 dampers), indirect evaporative heat exchanger con-
trol signal and active chiller control signal are optimised.
Most zones have a supply Variable Air Volume (VAV) and
an extraction VAV for which one control signal is opti-
mised. A VAV control signal of 0 % corresponds to a set
point of 50 % of the nominal flow rate2. Furthermore,
each VAV has a heating coil for which the heating fluid
flow rate is optimised using a two-way valve. The supply
water temperature of the VAV coil collector is controlled
using a three-way valve.

The concrete ceilings are heated or cooled using CCA,
except for the top floor, which uses chilled ceilings (CC)
instead. Each floor is subdivided in about six CCA or CC
sections. Each section spans one or more zones, is con-
nected to one of three collector connections (south, north,
or top floor), and its total flow rate is controlled using one
two-way valve. The supply temperature of each connec-
tion (i.e. group of sections) is controlled at the collector
using a three-way valve.

3.3 Production system
The main collector draws water from either a geothermal
heat pump, or the geothermal borefield using a series of
pumps and heat exchangers (see Figure 2.3 in (Filip Joris-
sen 2018) for more details).

A pellet boiler and solar collector feed hot water in a
20 m3 storage tank, which is used by the AHU heating
coils. The corresponding fluid loop consists of 2 heat ex-
changers, 6 pumps, 3 three-way valves and a pressure-
independent valve. Three domestic hot water tanks that
are present in the building are not modelled for this study
since realistic load profiles are not available.

3.4 Objective and constraints
We minimize the electrical power use and the pellet boiler
thermal power, the latter being scaled by 1/3 to consider
that pellet fuel has a different price than electricity. Var-
ious constraints are enforced, among them the minimum
and maximum supply air temperature (16 ◦C - 26 ◦C),
(building owner specified) zone temperature limits (22 ◦C
- 24 ◦C) and a CO2 concentration upper limit of 1000 ppm.

3.5 Horizon
For the purpose of this paper, we discretise the model in
720 intervals of 1 hour (i.e. 1 month). The resulting OCP
is instantiated 12 times to optimise a full year. We use an
OCP since it simplifies interpretation of the results com-
pared to an MPC running in a receding horizon fashion.

2The set point may not be obtained if the fan pressure is too low.

Each OCP has the same initial state. For easier result inter-
pretation we assume that all HVAC equipment is enabled
24/7.

4 Results
The resulting model has 217 control inputs, 3421 state
variables and 41 577 algebraic variables as reported by
the Modelica simulation software Dymola 2020. Since the
OCP has 720 control intervals, 156 240 control inputs are
optimised in each OCP. Computation time for one OCP
(single-core, 2 GHz) is a few days, depending on the cho-
sen convergence tolerance. Note that an MPC using this
model is orders of magnitude faster since its horizon is
shorter and warm starting can be used. At the time of writ-
ing, a revised version of this model is successfully control-
ling the modelled building, where the MPC is updated ev-
ery 15 minutes. Computation speed is thus not a problem,
even for white-box models of this size.

Figures 3 - 6 present OCP results for January, April
and August. We use these figures to illustrate some of the
strengths of our detailed white-box MPC approach, with-
out discussing each sub-plot in detail. Despite that these
are in fact OCP results instead of MPC results, we con-
sider that the results are representative for MPC. The pre-
sented results are direct outputs of the OCP. This is a first
strength: since the model is detailed, the outputs are de-
tailed too, which allows a thorough analysis of the results
without requiring additional simulations to see the impact
on subsystems that are lumped in the optimisation.

4.1 System coordination and constraints
In the top sub-plot of each figure, relevant zone temper-
atures are indicated, while CO2 constraints are also indi-
cated in the top of Figure 3. The results show that the
operational constraints of 22 ◦C - 24 ◦C are respected, as
well as the upper limit of 1000 ppm CO2. At the same
time, the third sub-plot in Figure 3 indicates that the AHU
fans usually operate at low pressures of 30 Pa while the
nominal system pressure is around 300 Pa. At the same
time, most VAVs are at or around the minimum opening
of 0%. However, the VAVs that correspond to zones with
a larger occupancy are occasionally opened to avoid vi-
olating the CO2 constraint. During the summer period,
the fan pressures are occasionally increased to accommo-
date the peak cooling load due to solar heat gains. This
illustrates the second strength of MPC: the coordination
of multiple devices to ensure that constraints are achieved
at minimum cost.

4.2 System dynamics
A third strength of MPC is illustrated in Figure 4: its abil-
ity to anticipate heating and cooling loads and to deal with
them accordingly using fast (VAV) and slow (CCA) react-
ing systems. During the August period, large heat gains
are present since we deliberately omitted solar shading in
the model. This causes both the upper and lower temper-
ature bounds to be reached within the same day (and in
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Figure 3. Results that are relevant to air handling unit 1
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Figure 4. Heat pump, geothermal cooling, CCA and VAV operation.

Session 4B: Buildings

DOI
10.3384/ecp21181315

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

319



different zones). The cooling is spread over the entire day
and the cooling peak is out of phase with the temperature
peaks, see sub-plots 1 and 2. The building is thus pre-
cooled, thereby considering the emission system delay.

This is illustrated once more during the winter period
around day 25, when there is a period of large solar irra-
diation. During the three days preceding the solar peak,
the CCA thermal power is relatively low and shifted to-
wards the VAV coils to avoid excess heat being stored
in the building thermal mass, which would overheat the
building during the sunny period.

4.3 Hybrid systems
A fourth strength of MPC is its ability to coordinate be-
tween multiple heating and cooling sources and to use the
one with the lowest cost. This is illustrated in Figure 3.
During winter, the AHU bypasses (see last sub-plot) are
both closed since heat is valuable during winter. During
summer, 4 AHU cooling options exist (free-cooling by-
passes, humidifier3, indirect evaporative heat exchanger
(IEH), chiller (HP)), which are all used. Even when no
immediate cooling is required and the outdoor tempera-
ture is low, the AHU bypasses are opened. This cooling
option reduces the fan power since the AHU internal pres-
sure drop decreases. Note that the lower supply air tem-
perature limit of 16 ◦ C is respected. When the outdoor
temperature is higher than the indoor temperature, cold is
recovered by closing the bypasses. When this does not
suffice, the humidifier and IEH are used. They have the
lowest cost since they only require a pump to be operated.
In some cases, the chiller is used, which is the most ex-
pensive cooling option. Thanks to the good coordination
of all other devices, this rarely happens.

Another example is shown in Figure 5, which shows
the operation of the solar collector, pellet boiler and stor-
age tank. During winter, the sun is at a low altitude due to
which the collector heat losses are often larger than the so-
lar heat gains. The solar thermal collector valve (see sub-
plot 5) is therefore only opened when the sun intensity is
sufficiently strong to reach a positive thermal power (see
sub-plot 2). The remaining high-temperature heat load is
provided by the pellet boiler. During the summer period,
there is abundant (free) heat available from the solar col-
lector due to which the pellet boiler is never activated.

4.4 Operational limits
A fifth strength of MPC is its ability to operate the system
at its limits. For instance, the geothermal borefield can
be used to passively cool the building using the CCA. A
borefield temperature of 15 ◦C is assumed. Directly us-
ing this low temperature would be the least costly since
less mass flow rate (and thus pump power) is required to
achieve the same heat flow rate. However, condensation of
moist air can occur on CCA when its temperature is low.
Therefore, a minimum supply water temperature of 18 ◦C

3The OCP does not contain a humidity constraint due to which the
humidifier can be used to cool.

was set. Figure 4 clearly shows that this minimum supply
water temperature is used during periods of large cooling
load (see sub-plot 5).

4.5 Efficient operation
A sixth strength of MPC is its ability to operate the avail-
able equipment at an efficient operating point. Figure 4
illustrates this for the heat pump operation in the three last
sub-plots. For lower outdoor temperatures, larger heat-
ing powers are required. This increases the required heat
pump supply water temperature, which reduces the heat
pump COP (excluding pump power). Note day 4, where
a day of large solar intensity (see sub-plot 2 of Figure 5)
‘charges’ the building, immediately reducing the heating
requirements, increasing the COP and also increasing the
COP during the days after the heating event, despite the
decreasing outdoor temperatures.

4.6 Exploiting flexibility
The seventh MPC strength is to shift heating loads using
the available system flexibility. We already discussed pre-
cooling using the CCA. Note that this effect could have
been more pronounced if the building solar heat gains
were smaller or if the comfort band were larger than 2 K,
allowing more drift of the indoor temperature. Hitting
both the upper and the lower comfort bound within the
same day limits the available system flexibility.

Additionally, the hot water storage tank flexibility is
used, which is allowed to fluctuate between 50 ◦C and 90
◦C. E.g. during the winter period in Figure 5 solar heat
is accumulated for three weeks until the last days of the
month when the heat is most useful. During summer, so-
lar heat is abundantly available and is even dissipated by
not closing the solar collector valve at night. Otherwise
the storage tank upper temperature limit of 90 ◦C would
be violated at day 233. Figure 6b shows the solar collec-
tor operation in April, where solar heat is stored between
sunny (see sub-plot 2) days 95 and 107 and used during
overcast days 108, 109, 117 and 118.

4.7 Reliable performance
Finally, we discuss the system operation during the inter-
mediate season, when well insulated buildings are often
hard to control. For instance, on cold but sunny days
the building can be overheated by conventional heating
curve-based controllers that increase heating set points de-
spite substantial solar heat gains. It is hard to determine
whether the building should be in heating mode, cooling
mode, or perhaps even in both within the same day. It
is interesting to see how MPC copes with such scenar-
ios, which is illustrated for the month of April in Figure 6.
Our MPC controller does not formally define a ‘mode’ but
based on the second sub-plot left we conclude that MPC
is in heating mode during the first two days and in cooling
mode for three days. During the remainder of the month,
the system is in a neutral mode despite the outdoor tem-
perature ranges from 0 ◦C to 20◦C. In this neutral mode,
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Figure 5. Solar collector and pellet boiler operation.
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the system is simultaneously heating and cooling by ex-
changing heat within the system (see sub-plot 3 in Fig-
ure 6a). More specifically, the relatively warm CCA return
water is recirculated through the VAV heating coils, heat-
ing the supply air. The fifth sub-plot shows that the CCA
heat extraction is focussed on just a few CCA circuits and
the sixth sub-plot shows that heat dissipation does not use
all VAV circuits. This operating mode is particularly effi-
cient since fewer pumps and even the heat pump need not
be enabled. Perhaps more importantly, the low tempera-
ture differences allow simultaneous heating and cooling in
different zones and the comfort constraints are respected.
Furthermore, heat is also exchanged between warm and
cold CCA circuits, but this is not indicated in the graph.
Therefore, the total heat exchange is even larger than indi-
cated. Interestingly, this operating mode is automatically
discovered thanks to the level of detail of our white-box
MPC.

5 Conclusion
This paper presents a detailed white-box MPC approach
for buildings that is designed for commercial MPC appli-
cations, including large and complex buildings. The ap-
proach maps physical objects and devices into their re-
spective Modelica models using a custom browser-based
graphical user interface. The resulting Modelica model
is translated into an efficient MPC code using TACO.
The approach is applied to a case study office building
of 10 000 m2, resulting in a model of 79 zones. A dis-
cussion of OCP results for three individually optimised
months shows the strengths of the toolchain. All pre-
sented strengths are automatically achieved by our white-
box OCP, without substantial tuning or training. Each op-
timisation consists of 720 intervals of one hour, resulting
in 156 240 control inputs and 29 935 440 algebraic vari-
ables, which demonstrates the feasibility of large-scale
white-box optimisation. The presented case study is
currently being controlled by MPC, hence also demon-
strating the computational feasibility of this approach for
direction optimisation. Furthermore, the presented OCP
approach can be compared to other control methodolo-
gies, e.g. within the frame of IBPSA Project 1, WP 1.2
BOPTEST (Blum et al. 2019). Future work will present
real-life, operational results of our MPC approach.
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Drgoňa, Ján et al. (2020). “All you need to know about model
predictive control for buildings”. In: Annual Reviews in Con-
trol 50, pp. 190–232. ISSN: 1367-5788. DOI: 10 . 1016 / j .
arcontrol.2020.09.001.

Frank, Stephen et al. (2016). “Hybrid model-based and data-
driven fault detection and diagnostics for commercial build-
ings”. In: 2016 ACEEE Summer Study on Energy Efficiency
in Buildings. Pacific Grove, CA.

International Energy Agency (2019). Global Status Report for
Buildings and Construction: Towards a Zero Emissions, Effi-
cient and Resilient Buildings and Construction Sector. Tech.
rep.

Jorissen, F., W. Boydens, and L. Helsen (2017). “Validated air
handling unit model using indirect evaporative cooling”. In:
Journal of Building Performance Simulation 11.1, pp. 48–64.
DOI: 10.1080/19401493.2016.1273391.

Jorissen, F., W. Boydens, and L. Helsen (2018). “TACO, an Au-
tomated Toolchain for Model Predictive Control of Build-
ing Systems: Implementation and Verification”. In: Journal
of Building Performance Simulation 12.2, pp. 180–192. DOI:
10.1080/19401493.2018.1498537.

Jorissen, F., W. Boydens, and L. Helsen (2019). “Implementa-
tion and Verification of the Integrated Envelope, HVAC and
Controller Model of the Solarwind Office Building in Mod-
elica”. In: Journal of Building Performance Simulation 12.4,
pp. 445–464. DOI: 10.1080/19401493.2018.1544277.

Jorissen, Filip (2018-04). “Toolchain for Optimal Control and
Design of Energy Systems in Buildings”. PhD thesis. Aren-
berg Doctoral School, KU Leuven.

Jorissen, Filip, Glenn Reynders, et al. (2018). “Implementation
and Verification of the IDEAS Building Energy Simulation
Library”. In: Journal of Building Performance Simulation
11.6, pp. 669–688. DOI: 10.1080/19401493.2018.1428361.

Jorissen, Filip, Michael Wetter, and Lieve Helsen (2018). “Sim-
plifications for Hydronic System Models in Modelica”. In:
Journal of Building Performance Simulation 11.6, pp. 639–
654. DOI: 10.1080/19401493.2017.1421263.

KU Leuven and 3E (2012). IDEAS. https://github.com/open-
ideas/IDEAS.

Detailed White-Box Non-Linear Model Predictive Control for Scalable Building HVAC Control

322 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181315



Sturzenegger, David et al. (2016). “Model Predictive Control of
a Swiss Office Building: Implementation, Results, and Cost-
Benefit Analysis”. In: IEEE Transaction on Control Systems
Technology 24.1, pp. 1–12. DOI: 10 . 1109 / TCST . 2015 .
2415411.

Wetter, Michael et al. (2014). “Modelica Buildings library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270. DOI: 10.1080/19401493.2013.765506.

Wetter, M et al. (2019-09). “IBPSA Project 1: BIM/GIS and
Modelica framework for building and community energy sys-
tem design and operation – ongoing developments, lessons
learned and challenges”. In: IOP Conference Series: Earth
and Environmental Science 323, p. 012114. DOI: 10 .1088 /
1755-1315/323/1/012114.

Session 4B: Buildings

DOI
10.3384/ecp21181315

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

323


