
Software Architecture and Implementation of Modelica Buildings
Library Coupling for Spawn of EnergyPlus

Michael Wetter1 Kyle Benne2 Baptiste Ravache1

1Lawrence Berkeley National Laboratory, Berkeley, CA
2National Renewable Energy Laboratory, Golden, CO

Abstract
Spawn of EnergyPlus is a next-generation energy simula-
tion engine that targets control design and implementation
workflows. Spawn reuses the weather, lighting, loads, and
envelope modules from EnergyPlus through a precom-
piled library and couples them with HVAC and control
models implemented in Modelica. Thus, for Spawn, the
EnergyPlus HVAC models are removed. Spawn has been
designed to perform coupled simulation with any number
of EnergyPlus models, supporting simulation of a single
building or multiple buildings as part of a district energy
system.

This paper describes how the Modelica objects are im-
plemented and synchronized to allow the modular specifi-
cation at the Modelica-level that uses a Functional Mock-
up Unit (FMU) that contains the EnergyPlus model. A key
feature of our implementation is that multiple instances
of Modelica models call C functions, which jointly build
a data structure that defines parameters, inputs and out-
puts of the EnergyPlus model. This data structure is used
during the initialization to generate an FMU that contains
a fully configured EnergyPlus model. This FMU is then
accessed by all Modelica models to exchange with Ener-
gyPlus values for parameters, inputs and outputs during
the simulation. This setup allows the Modelica models to
be instantiated in a modular, object-oriented manner, as is
typical for Modelica, yet they jointly construct and use an
FMU that contains EnergyPlus.

Compared to an HVAC and envelope simulation that
uses a native Modelica building model of comparable level
of detail, the Modelica-EnergyPlus model translates about
35% faster and simulates about 50% faster.
Keywords: Modelica Buildings Library, Spawn of Energy-
Plus, Modelica External Object, FMI

1 Introduction
Modelica has been shown to be well suited to support re-
search, development and design of building and district
energy systems, including their control logic (Wetter and
Treeck 2017; Wetter, Treeck, et al. 2019). These appli-
cations typically require coupled simulations of the en-
ergy system and the building envelope. Coupled simula-
tion of building envelopes and energy systems has proven
challenging for various reasons. Building envelope mod-

els such as the ones in the Modelica Buildings (Wet-
ter, Zuo, Thierry S. Nouidui, et al. 2014), BuildingSys-
tems (Nytsch-Geusen et al. 2013) and IDEAS (Jorissen,
Reynders, et al. 2018) libraries add a significant amount of
code and a correspondingly large number of continuous-
time state variables. These result in long translation times
as Modelica tools do not yet satisfactory exploit repeated
structures to keep translation time reasonably short. For
simulation, the envelope model introduces a large number
of continuous time states. These present a problem for the
implicit ordinary differential equation solvers that are typ-
ically used on these stiff problems as these solvers scale
superlinearly in the number of states. At the same time,
the use of explicit solvers requires careful model tuning,
which is not practical for most users (Jorissen, Wetter, and
Helsen 2015). Finally, porting envelope models to Model-
ica would require considerable resources for porting algo-
rithms including for shading calculations, 3D heat trans-
fer, and coupled heat and moisture transfer through build-
ing fabrics, many of which may be better implemented in
traditional imperative code. Tools for converting 3D data
models for the building envelope would also need to be
adapted to support input for Modelica. While future ef-
forts by different building simulation developers may pro-
ceed along these lines, more advances are needed in Mod-
elica translators, and multi-rate solvers for systems of stiff
ordinary differential equation need to be accessible from
Modelica tools in order to make use of such models prac-
tical for simulation of large buildings.

The US Department of Energy (DOE) has sponsored
the development of EnergyPlus, a whole building energy
simulation program (Crawley et al. 2001), since 1996. En-
ergyPlus is built on fundamental assumptions that makes
it poorly suited to modeling building control sequences
as they are implemented in physical controllers. DOE has
also sponsored the development of the Modelica Buildings
Library which is well suited to model HVAC and controls,
but suffers from scalability to large building models for
the above mentioned reasons. Spawn of EnergyPlus (or
just Spawn) is the latest whole-building energy simulation
program sponsored by DOE. Developed by the National
Labs and industry, Spawn reuses the EnergyPlus envelope
model and couples it to Modelica HVAC and control mod-
els from the Modelica Buildings Library (Wetter, Benne,
et al. 2020), thereby combining the strengths of the two

DOI
10.3384/ecp21181325

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

325



Modelica 

simulation manager

 

EnergyPlus
time step

EnergyPlus
time step

HVAC & controls

variable
time step

OutputVariable

EnergyPlus

OutputVariable

Actuator

Schedule

EnergyManagementSystem:Actuator

Schedule

Air temperature
Air humidity
Radiant internal gains
Air mass flow rate & temperature

Radiative temperature
Sensible heat flow rates to air
Latent heat flow rates to air
Heat gains from people

Thermal zone Thermal zone

Temperature of surface

Air-side heat flow rate 

Zone surface Zone surface

Temperature of both surfaces
External heat flow rate at
both surfaces

Opaque construction Opaque construction

Figure 1. Partitioning of the envelope, room and HVAC model.

software approaches and implementations. Spawn is not
an imminent replacement for EnergyPlus. Rather, it is
intended to provide several capabilities that significantly
advance beyond EnergyPlus and the Modelica Buildings
Library. These include modeling of novel HVAC and dis-
trict energy systems, scalable simulation of large build-
ings, simulation of control sequences represented in ways
that also allow their implementation on building automa-
tion systems through a digitized control delivery process,
and intrinsic support of multi-physics simulation and co-
simulation with third party models.

This paper describes the additions to the Modelica
Buildings Library that enables coupling Modelica mod-
els to the EnergyPlus envelope model in a way that auto-
matically sets up the coupled simulation. While this im-
plementation is specific for the coupling of building enve-
lope models, a similar mechanism could be used to couple
other models for building or district energy systems, e.g.,
aquifer thermal energy storage in which individual bore-
holes are connected to the same subsurface model.

The paper is structured as follows: Section 2 describes
the variables that need to be exchanged between Model-
ica and EnergyPlus and states the requirements for cou-
pled simulations. Section 3 describes the implementation.
The key contribution is the mechanism that allows a deter-
ministic synchronization of the execution of multiple in-
stances of Modelica models. This synchronized execution
is necessary for the software to collect all data required
to generate one FMU for the whole building, before any
Modelica model requests parameter values or output val-
ues from this FMU. Section 4 shows examples of the im-
plementation, and Section 5 provides concluding remarks.

2 Requirements for Modelica Imple-
mentation

Figure 1 shows the variables that we require to be ex-
changed during the simulation between EnergyPlus and
Modelica. The coupling variables connect Modelica ther-
mal zone models, which implement the room air heat,
mass and pressure balance, with the EnergyPlus thermal
zone models that compute the convective heat gains from
building fabrics and from internal loads. To support ra-
diant systems, such as a radiant floors, coupling variables
connect surface temperatures and heat flow rates between
Modelica and EnergyPlus. Coupling variables are also
used to read the values of EnergyPlus output variables
for use in Modelica-implemented controllers, and to over-
ride EnergyPlus schedules and EnergyPlus Energy Man-
agement System actuators (Ellis, Torcellini, and Crawley
2007). The latter can be used to send signals to Energy-
Plus to control non-HVAC elements such as an active fa-
cade, lighting, or other equipment that contributes to heat
gains in the room and its surfaces.

To maximize usability and to enable drag-and-drop use
in a graphical Modelica editor by non-experts in Modelica,
the coupling needs to satisfy the following requirements.

1. To be able to graphically author and inspect models
in a graphical modeling environment, each model
(thermal zone, zone surface etc. as shown in Fig-
ure 1) should be its own instance, rather than being
part of an array of models. This also ensures that
translation and simulation diagnostics can be readily
understood, which would not be the case if models

Software Architecture and Implementation of Modelica Buildings Library Coupling for Spawn of EnergyPlus

326 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181325



were referred to by an index of an array. Further-
more, if arrays of models were used, then wiring the
connections would be impractical, in particular for
large building models.

2. To enable simulation of multiple buildings, it should
be possible to programmatically collect instances of
models that belong to the same building in a hierar-
chical manner. It must also be possible to set com-
mon parameters centrally for all models that belong
to the same building.

3. The coupled simulation between Modelica and En-
ergyPlus should be set up automatically for the user.

4. To allow large synchronization time steps, coupling
should be done through slowly varying variables.

These requirements are addressed as follows. The first
requirement is addressed by having individual Modelica
classes (e.g., a model or block) for each object that com-
municates with EnergyPlus.

The second requirement is addressed by using inner
/outer declarations of a building model that is used to set
common parameters in the Modelica objects that commu-
nicate with the EnergyPlus building model. An example
of common parameters is the name of the outer building
declaration, which is used to determine which instances of
thermal zone models belong to the same building.

The third requirement is addressed by adding a C layer
to the Modelica Buildings Library, and a facility to the
EnergyPlus program, that exports EnergyPlus as an FMU.
This FMU is such that the required inputs and outputs, as
specified by the Modelica instances, are exposed through
its interface. This C layer invokes a command that gen-
erates the FMU, it loads the FMU, and it exchanges data
with the FMU.

The second and third requirements leads to the situation
that only after the Modelica model is partially initialized,
the configuration of the FMU and hence the content of its
modelDescription.xml file is known. Thus, the FMU
needs to be generated during the Modelica initialization,
and loaded before Modelica instances read parameter val-
ues from the FMU. This situation is a key reason for im-
plementing our custom code for managing the FMU. This
code is called using Modelica external C functions that are
synchronized through the here explained mechanism.

The fourth requirement is addressed by modeling in
Modelica the fast transients of the room air heat, mass
and pressure balance, and coupling to EnergyPlus via the
slower varying surface temperatures. This partitioning
also has the advantage that the room air temperature, hu-
midity and pressure, which are all connected to the HVAC
system, are all natively implemented in Modelica. This al-
lows using the same differential equation solver for these
variables and the HVAC system.

We selected FMI for Model Exchange, version 2.0,
rather than Co-Simulation because we allow certain sig-
nals to have direct feed-through. For example we allow

setting a window blind and receiving the updated room
daylight illuminance level at the same time step. This is
only allowed in Model Exchange. Note, however, because
EnergyPlus integrates its continuous time states using its
own solvers, the FMU exposes no derivative. For Model-
ica, it looks like a discrete time model.

3 Implementation
3.1 Modelica Classes
For the coupling, we implemented the following Modelica
classes:

Building Model that declares a building to which En-
ergyPlus objects belong to.

ThermalZone Model to connect to an EnergyPlus ther-
mal zone.

ZoneSurface Model to exchange heat with an inside-
facing surface of a thermal zone.

OpaqueConstruction Model to exchange heat with
both surfaces of an opaque construction. The con-
struction is modeled in Modelica. Heat is exchanged
with the room-facing front surface and the back-side
facing surface of an EnergyPlus construction.

Actuator Block to write to an EnergyPlus actuator.

OutputVariable Block to read an EnergyPlus output
variable.

Schedule Block to write to an EnergyPlus schedule.

These Modelica classes allow communication between
Modelica and EnergyPlus objects for thermal zones; ther-
mal zone surfaces, either for the inside-facing surface
only, or also its back-side facing surface (that may be lo-
cated in an adjacent zone, or be the outside, or the ground
temperature); Energy Management System (EMS) actu-
ators; schedules; and output variables. To associate the
Modelica classes to a building, the Building model is
instantiated using the inner component prefix, and the
other six classes use an instance of the Building model
with the outer prefix. Through this mechanism, every
instance that is in the instance tree below the Building

instance will be associated with that particular build-
ing, and multiple buildings can be modeled in one Mod-
elica model. All classes, other than Building, extend
from ExternalObject to communicate with code im-
plemented in C. In C, a data structure stores all build-
ing instances, and for each building instance, keeps track
of which of the above objects belongs to that build-
ing instance. This data structure is set up when invok-
ing the constructors of these Modelica instances via the
ExternalObject. After all constructors are called, an
FMU is generated for each building.

3.2 Constructor Synchronization
A key challenge was to enforce that all constructors are
called before the FMU is generated. The Modelica Lan-

Session 4B: Buildings

DOI
10.3384/ecp21181325

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

327



guage Specification 3.5 does not guarantee that all con-
structors in a model are called before any Modelica func-
tion that uses a return value of a constructor is being used.
In early research code, some Modelica tools invoked a
function that uses the return value from the constructor
of the ExternalObject before all instances called their
constructor. As a consequence, the FMU exposed inter-
face variables for some but not all instances, and the sim-
ulation terminated. Therefore, we changed the Modelica
implementation to enforce the execution sequence shown
in Algorithm 1.

Algorithm 1 Required execution sequence for generation
and simulation of envelope model.

Data Let I be the set of all instances that
communicate with EnergyPlus.

Step 1: For all instances i ∈I ,
call constructor for i.

Step 2: For all instances i ∈I ,
initialize i.
If first call to any initialization,

construct and load FMU,
setup experiment.

Step 3: For all instances i ∈I ,
assign Modelica parameters by
getting their values from the FMU.

Step 4: For all instances i ∈I ,
at each synchronization step,
set inputs, time and get outputs from FMU.

Step 5: For all instances i ∈I ,
call destructor for i.
If last call to any destructor

terminate and unload the FMU.

A key challenge was to enforce that in Algorithm 1,
Step 1 is completed before Step 2 begins. While this
would have been easy to enforce by using one constructor
for the whole building model, such a centralized specifi-
cation is impractical. To enforce this calling sequence, we
therefore synchronized all objects using a connector that
uses a potential and flow variable, together with inner
and outer constructs that hide this complexity from the
user. Note that these inner and outer constructs are dif-
ferent from the ones described in Section 3.1. Our im-
plementation is based on the code provided by Beutlich
(2021), which was motivated by Elmqvist et al. (2015).

Listing 1 to 9 describe this implementation, us-
ing a minimum representative example that has only
one building and two thermal zones. The ac-
tual implementation is considerably larger and can be
found in the Modelica Buildings Library 8.0.0, pack-
age Buildings.ThermalZones.EnergyPlus. Listing 1
shows the package with the SynchronizeConnector

whose flow variable will be assigned by every ther-
mal zone. The SynchronizeConnector is instantiated
at the building level, as shown in Listing 2. The build-
ing sets its potential variable, which is needed for the

model to be well defined, and it declares a variable
isSynchronized whose value is set to the flow variable
of the connector. Listing 3 shows the implementation of
the thermal zone which extends ObjectSynchronizer

and through this extends statement, gets a reference
to the outer building and an instance of synchroniza-
tion connector synBui. The call to initialize takes as
an argument building.isSynchronized, which is com-
puted by the outer building instance, and this compu-
tation requires the return value nZ of initialize which
is assigned to building.synchronize.done via the
ObjectSynchronizer. The other code in ThermalZone

is a standard use of an external function interface that
returns adapter which encapsulates a pointer to the C
structure that contains the data structure needed to orches-
trate the FMU coupling. This external function interface is
shown in Listing 4. The two Modelica functions that com-
municate with the C implementation are shown in List-
ings 5 and 6, and the C implementation is shown in List-
ings 7 and 8.

Listing 1. Package that synchronizes all objects that belong to
the building.

within BuildingRooms;
package Synchronize

connector SynchronizeConnector
Real do "Potential variable";
flow Real done "Flow variable";

end SynchronizeConnector;

model SynchronizeBuilding
SynchronizeConnector synchronize;

end SynchronizeBuilding;

model ObjectSynchronizer
outer Building building;
SynchronizeBuilding synBui;

equation
connect(building.synchronize,

synBui.synchronize);
end ObjectSynchronizer;

end Synchronize;

Listing 2. Model that declares building-level parameters.

within BuildingRooms;
model Building

"Model that declares a building"
Synchronize.SynchronizeConnector

synchronize;
Real synchronization_done =

synchronize.done;
Real isSynchronized;

equation
synchronize.do = 0;

algorithm
isSynchronized := synchronization_done;

end Building;

Listing 3. Model that implements the thermal zone.

within BuildingRooms;
model ThermalZone

Software Architecture and Implementation of Modelica Buildings Library Coupling for Spawn of EnergyPlus

328 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181325



extends Synchronize.ObjectSynchronizer;
constant String name=getInstanceName();
ZoneClass adapter = ZoneClass(name,

startTime);

parameter Real startTime(fixed=false);
parameter Integer nZ(
fixed=false, start=0)
"Total number of zones in building";

constant Real k=1;
Real tNext(start=startTime, fixed=true);
Real T(start=293.15, fixed=true);
Real Q_flow;

initial equation
startTime=time;
nZ=initialize(

adapter=adapter,
startTime=time,
isSynchronized=building.isSynchronized)

;
equation

when {initial(), time >= pre(tNext)} then
(tNext, Q_flow) =exchange(

adapter,
time,
T,
nZ);

end when;
k*der(T) = Q_flow;
nZ =synBui.synchronize.done;

end ThermalZone;

Listing 4. Model that implements the thermal zone.

within BuildingRooms;
class ZoneClass extends ExternalObject;

function constructor
input String name "Name of the zone";
input Modelica.SIunits.Time startTime;
output ZoneClass adapter;

external "C" adapter=ZoneAllocate(name)
annotation (
Include="#include <thermalZone.c>",
IncludeDirectory="modelica://

BuildingRooms/Resources/C-Sources
");

end constructor;

function destructor
input ZoneClass adapter;

external "C" ZoneFree(adapter)
annotation (
Include="#include <thermalZone.c>",
IncludeDirectory="modelica://

BuildingRooms/Resources/C-Sources
");

end destructor;
end ZoneClass;

Listing 5. Model that implements the thermal zone.

within BuildingRooms;
function initialize

input ZoneClass adapter;
input Real startTime;

input Real isSynchronized;
output Integer nZ "Number of zones";
external "C" ZoneInitialize(adapter,

startTime, nZ)
annotation (

Include="#include <thermalZone.c>",
IncludeDirectory="modelica://

BuildingRooms/Resources/C-Sources")
;

end initialize;

Listing 6. Model that implements the thermal zone.

within BuildingRooms;
function exchange

input ZoneClass adapter;
input Real t;
input Real T;
input Integer nZ;
output Real tNext;
output Real Q_flow;
external "C" ZoneExchange(adapter, t, T,

tNext, Q_flow)
annotation (Include="#include <

thermalZone.c>",
IncludeDirectory="modelica://

BuildingRooms/Resources/
C-Sources");

end exchange;

Listing 7. Header file for C code that is a mock-up for the code
that instantiates and communicates the FMU for the building en-
velope.

#ifndef thermalZone_h
#define thermalZone_h

typedef struct Zone{
char* name;

} Zone;

#endif

Listing 8. C code that is a mock-up for the code that instantiates
and communicates the FMU for the building envelope.

#ifndef thermalZone_c
#define thermalZone_c

#include <string.h>
#include <stdbool.h>

#include "thermalZone.h"

static int nZon = 0; /* Number of zones */
static bool buildingIsInstantiated = false;

void* ZoneAllocate(const char* name){
Zone* ptrZone;

/* Allocate zone and assign name */
ptrZone = (Zone*) malloc(sizeof(Zone));
ptrZone->name =

malloc((strlen(name)+1) * sizeof(char))
;

strcpy(ptrZone->name, name);
/* Increment counter for zones */

Session 4B: Buildings

DOI
10.3384/ecp21181325

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

329



nZon++;

ModelicaFormatMessage(
"Allocated zone %s\n", name);

return (void*) ptrZone;
}

void ZoneInitialize(
void* object,
double startTime,
int* nZ){
Zone* zone = (Zone*) object;

*nZ = nZon;
if (!buildingIsInstantiated){

/* Here, the actual implementation
constructs an FMU that
is shared by all zones.
This requires that all zones
executed ZoneAllocate().

*/
buildingIsInstantiated = true;
ModelicaFormatMessage(

"Initialized zone %s.
Instantiated building, nZ = %
d.\n",

zone->name, nZon);
}
else{

ModelicaFormatMessage(
"Initialized zone %s, nZon = %d\n

",
zone->name, nZon);

}
}

void ZoneExchange(
void* object,
double time,
double T,
double* tNext,
double* Q_flow){
Zone* zone = (Zone*) object;
/* In the actual implementation,

this is computed in an FMU.

*/

*Q_flow = 283.15-T;

*tNext = time + 1;
ModelicaFormatMessage(
"Exchanged with zone %s at time=%f,

nZon = %d\n",
zone->name, time, nZon);

}

void ZoneFree(void* object){
Zone* zone = (Zone*) object;
free(zone->name);
free(zone);

}

#endif

For the user, the complexity of the synchronization is
hidden. A building and its elements can be configured
using the same Modelica constructs as are used for other
instances, as Listing 9 shows.

Listing 9. Model that instantiates a building and two thermal
zones that belong to this building.

within BuildingRooms;
model MyBuildingInstance

"Building with two thermal zones, e.g.,
nZ=2"

inner Building building;
ThermalZone t1;
ThermalZone t2;

end MyBuildingInstance;

Simulating this model will give an output such as

Allocated zone MyBuildingInstance.t2
Allocated zone MyBuildingInstance.t1
Initialized zone MyBuildingInstance.t1.

Instantiated building, nZ = 2.
Initialized zone MyBuildingInstance.t2,

nZon = 2
Initialized zone MyBuildingInstance.t1,

nZon = 2
Initialized zone MyBuildingInstance.t2,

nZon = 2
Exchanged with zone MyBuildingInstance.t1

at time=0.000000, nZon = 2
Exchanged with zone MyBuildingInstance.t2

at time=0.000000, nZon = 2
...

3.3 C API
To control the FMU that contains the EnergyPlus envelope
model, we developed a library in C which uses the FMI Li-
brary (FMI Library 2021) to interact with the FMU. Fig-
ure 2 shows the UML sequence diagram. Each Modelica
object that communicates with EnergyPlus extends from
the Modelica built-in class ExternalObject. Through its
constructor, the Modelica instance calls the C code which
registers the object in a static struct, and stores pa-
rameters that are declared in Modelica. These parameters
include for example the name of a thermal zone so that it
can be matched to the thermal zone object in the Energy-
Plus model. Through the name of the outer instance of
Buildings, objects that belong to the same building are
registered accordingly. After all constructors are called,
the first call to initialize will invoke a program that
generates the FMU. Next, through the Modelica func-
tion getParameters, parameters such as the volumes of
a thermal zone that are computed by EnergyPlus are re-
trieved from the FMU and assigned to Modelica parame-
ters. During the simulation, the Modelica exchange func-
tion exchanges data and synchronizes time with the FMU.
Finally, the destructor of the Modelica ExternalObject

terminates and unloads the FMU.

3.4 FMU Generation
During the initialize step, an executable program
spawn is invoked to generate a unique FMU for each
Building configuration. spawn is invoked via a com-
mand line interface, which accepts a JSON file that speci-
fies the contents of the resulting FMU. All configuration is
specified by the Modelica classes described in Section 3.1.

Software Architecture and Implementation of Modelica Buildings Library Coupling for Spawn of EnergyPlus

330 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181325



Modelica C FMU generator FMU

constructor ()

registerObject()

return ptr
return ptr

initialize (ptr)

generateFMU ()

return

return n

Construct FMUConstruct FMU

getParameters(ptr)

getReal()

return p

return p

Initialize parametersInitialize parameters

exchange(ptr, t, u)

setTime(t)

advanceTime()

setReal(u)

getNextEventTime()

return tnext

getReal()

return y

return [y, tnext ]

Simulation, when(initial(), t ≥ tnext)Simulation, when(initial(), t ≥ tnext)

destructor ()

terminate ()

DeconstructionDeconstruction

Figure 2. Sequence diagram for interaction with FMU.

The following steps are taken by the spawn program
during FMU generation.

1. Create a staging directory.

2. Copy required resources into the staging directory,
including the EnergyPlus input data file (IDF), and
weather files. These files are specified by the user
via parameters of the Modelica Building model.

3. Modify the given EnergyPlus IDF file so that it con-
forms to Spawn’s requirements. The primary mod-
ification is to remove any EnergyPlus HVAC and
control related objects.

4. Copy a custom EnergyPlus based shared library into
the staging directory.

5. Generate a modelDescription.xml file, according
to the variables that are requested via JSON input.

6. Compress the staging directory into zip format.

The resulting FMU is a self contained package with all
of the resources required for an EnergyPlus based build-
ing simulation. Although it is possible to interact with the
command line tool directly, it is currently not supported as
a stand-alone tool.

3.5 Changes to EnergyPlus
The coupling of EnergyPlus with Modelica introduces
unique requirements that EnergyPlus did not originally
address. First, EnergyPlus was its own simulation man-
ager and controlled the progression of simulated time; in
Spawn, time is managed by Modelica. Second, although
EnergyPlus included an External Interface feature for run-
time data exchange, the existing capability was insuffi-
cient for Spawn. Most importantly, the External Interface
feature limited the communication step to that of the zone
time step, a limitation that derived from EnergyPlus’ inter-
nal HVAC and control system models. In Spawn, HVAC
and control system models are simulated using Modelica.

Session 4B: Buildings

DOI
10.3384/ecp21181325

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

331



We modified EnergyPlus to allow the EnergyPlus
HVAC loop to be bypassed, leaving the core EnergyPlus
zone heat balance calculation engine which, based on our
modifications, can be invoked at any simulated time even
below the traditional zone time step limit of one minute.

We also added a software layer on top of Energy-
Plus that facilitates simulation in which EnergyPlus is
advanced through time by another program, and data is
exchanged at each step. The former External Interface
approach to co-simulation was based on a client-server
architecture operating over a TCP/IP socket. However,
socket based communication involves serialization and
de-serialization at the endpoints that introduces a perfor-
mance penalty with every exchange. The new approach
implemented for Spawn is based on a co-routine design
pattern. The co-routine is implemented using two threads.
One thread contains the conventional EnergyPlus routine,
and a second thread is a control thread that implements
functions such as setTime, setReal, and getReal. In
the co-routine, only one thread is active at any moment in
time, and the two threads share memory, making data ex-
change between them efficient. The co-routine works by
ping-pong’ing between the two threads. The EnergyPlus
thread is blocked until a signal from the control thread
is sent to advance in time; in turn the control thread is
blocked until EnergyPlus signals that it has advanced to
the desired time. When the EnergyPlus thread is blocked,
the control thread can access EnergyPlus state and respond
to requests for data. This results in an efficient data ex-
change with EnergyPlus and limited modifications to En-
ergyPlus code. This software layer combined with Ener-
gyPlus is compiled as a shared library and included in the
generated FMU described in Section 3.4.

4 Examples
We will now show two examples. The first example shows
how translation and simulation time compares between
a scalable model that uses an identical Modelica HVAC
and control model with the envelope model of either the
Modelica Buildings Library (Wetter, Zuo, and Thierry
Stephane Nouidui 2011; Thierry Stephane Nouidui et al.
2012) or of EnergyPlus. The second example shows how
to configure a Modelica model that uses the EnergyPlus
envelope model to control a shade.

4.1 Translation and Simulation Time
This example shows how translation and simulation
time changes between a native Modelica implementa-
tion and the EnergyPlus-Modelica coupled implemen-
tation for a building model with detailed HVAC sys-
tem of varying size. For this example, we cre-
ated a scalable model of the Modelica Buildings
Library’s ThermalZones.Detailed.MixedAir thermal
zone model and the EnergyPlus envelope model
ThermalZones.EnergyPlus.ThermalZone. Both cases
model multiple floors that are representative of the large
office building from the commercial reference building

models for Chicago, IL (Deru et al. 2011). Each floor
has 4 perimeter zones and a large core zone. Each floor
is served by its own VAV system that includes an econo-
mizer, heating and cooling water-to-air coils and terminal
reheat boxes. The system controls the ventilation, heating
and cooling of all five zones based on ASHRAE Guide-
line 36 (ASHRAE 2018). Both cases use the same HVAC
model. The hot- and cold-water loops are modeled with
idealized heat sources and sinks.

The template models are scaled in size by varying the
number of floors as shown in Table 1. As each floor is
served by one HVAC system and has 5 thermal zones, the
case with 10 floors has, for example, 10 HVAC systems
and 50 thermal zones.

To have different state trajectories for each floor, each
floor was configured to have a slightly different design air
flow rate. This measure ensures that each floor triggers
state events that are not simultaneous to state events from
other floors, and that the adaptive time step solver com-
putes indeed different error estimates for each floor, which
overall may lead to more time steps as the number of di-
verse floors increases. Without this measure, the scaling
may have been non-representative as temperatures in dif-
ferent floors typically evolve on different trajectories.

The models are available from https://github.
com/lbl-srg/modelica-buildings, commit
15b90ae8bd5c4f3d6de23eee66b2efaab0c78b60.1 The
translated model with 10 thermal zones has 1700 con-
tinuous states and 48800 time varying variables if the
MixedAir model is used, and 810 continuous states
(about half of the native Modelica implementation) and
36800 time varying variables if the EnergyPlus model is
used. All models were simulated for the days indicated in
Table 1, using the Chicago TMY3 weather file. We used
Dymola 2021 on Ubuntu 18.04 with the CVode solver, a
tolerance of 10−5 and the sparse solver unless indicated
otherwise in the table.

Table 1 show the translation and simulation times. The
simulation time corresponds to the total CPU time re-
quired to simulate the compiled model. 2 Figure 3 shows
the CPU time as a function of model time, and the rela-
tive computing time for each day. As can be seen in the
figure, the slope of the CPU time is not constant over the
model time. These change in slope are attributed to the
change in dynamics of the state trajectories that occurs
during certain parts of the model time. As shown in the
plot, there are no step changes in the CPU time. A step
change would have indicated a numerical problem, which
may distort the total computing time as the numerical error
is not an artifact of the different envelope model but rather
of the resulting differential algebraic system of equations.

1Modelica package Examples.ScalableBenchmarks.ZoneScaling.
2This version of Spawn computes the numerically expensive shadow

calculations from January 1 to the start day of the simulation. For the
cases where the simulation starts in summer, this time is substantial.
Because this is planned to be corrected in future releases, we subtracted
this time in all reported results.

Software Architecture and Implementation of Modelica Buildings Library Coupling for Spawn of EnergyPlus

332 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181325



Table 1. Translation and simulation time for the MixedAir and
EnergyPlus thermal zone model.

Model Floors Translation
Time [s]

Simulation
Time [s]

MixedAir
days 1-5

2 47 81
4 89 223
10 230 973

EnergyPlus
days 1-5

2 31 (66%) 35 (43%)
4 57 (64%) 97 (43%)
10 139 (61%) 462 (48%)

MixedAir
days 1-5,
non-sparse

2 102
4 361
10 2570

EnergyPlus
days 1-5,
non-sparse

2 39 (38%)
4 115 (32%)
10 677 (26%)

MixedAir
days 180-185

2 66
4 160
10 583

EnergyPlus
days 180-185

2 30 (45%)
4 74 (46%)
10 264 (45%)

In summary, the models with the EnergyPlus thermal
zones translate about 35% faster. Their simulation time is
also about 50% faster for the cases with the sparse solver.
For the model with 10 zones, disabling the sparse solver
increases the computing time by a factor of 2.5 for the case
with the MixedAir model, and by about 1.5 for the case
with the EnergyPlus model.

4.2 Shade Control
This example illustrates how to interface with EnergyPlus
from different Modelica models. Figure 4 shows a model
of a building with three thermal zones, one of which has a
window with a shade. These are simulated in EnergyPlus.
Modelica models the window shade control sequence, for
which it obtains incident solar radiation from EnergyPlus
and sends the actuation signal back to EnergyPlus. Model-
ica also models the fresh air supply and an idealized cool-
ing system in each thermal zone. The air heat and mass
balances for each room are modeled in Modelica, and the
envelope heat transfer is modeled in EnergyPlus.

In the figure, the instance building specifies building-
level settings, such as the EnergyPlus IDF file. The three
blue icons in the middle connect to three EnergyPlus ther-
mal zones. The instance incBeaSou reads from Ener-
gyPlus the incident beam solar radiation on the window,
and the instance actSha actuates the window shade. In
the EnergyPlus model, the west-facing thermal zone has
a window blind that is open if its control signal is 0 or
closed if it is 6. The control sequence obtains the room
air temperature of the west-facing zone from the Model-
ica instance zonWes, and connects it to a hysteresis block
that switches its output to true if the zone temperature is
above 24◦C, and to false if it drops below 23◦C. The in-
stance incBeaSou obtains from EnergyPlus the incident
solar beam radiation on the outside of the window, and
feeds it into a hysteresis block that outputs true if its in-

0 1 2 3 4 5

simulation time [days]

0

500

1000

C
P

U
ti

m
e

[s
]

MixedAir, 2 floors

MixedAir, 4 floors

MixedAir, 10 floors

EnergyPlus, 2 floors

EnergyPlus, 4 floors

EnergyPlus, 10 floors

0 1 2 3 4 5

simulation time [days]

0.0

0.5

1.0

R
el

at
iv

e
co

m
p

u
ti

n
g

ti
m

e
[1

]

2 floors

4 floors

10 floors

(a) Winter days, with sparse solver.

180 181 182 183 184 185

simulation time [days]

0

200

400

600

C
P

U
ti

m
e

[s
]

MixedAir, 2 floors

MixedAir, 4 floors

MixedAir, 10 floors

EnergyPlus, 2 floors

EnergyPlus, 4 floors

EnergyPlus, 10 floors

180 181 182 183 184 185

simulation time [days]

0.0

0.5

1.0

R
el

at
iv

e
co

m
p

u
ti

n
g

ti
m

e
[1

]

2 floors

4 floors

10 floors

(b) Summer days, with sparse solver.

Figure 3. CPU time and relative computing time for Model-
ica Buildings Library MixedAir and EnergyPlus thermal zone
model. The relative computing time is the ratio of CPU time it
took to simulate the indicated day for Spawn compared to the
native Modelica model.

building

qIntGai[]

k=0

qIntGai[]

k=0

zonWesWest Zone TRad

air

q

TAir

zonWes

phi
zonEasEAST ZONE TRad

air

q

TAir

zonEas

phi

zonNorNORTH ZONE TRad

air

q

TAir

zonNor

phi

actSha

incBeaSou

0

shaT

22 °C 24 °C

shaH

10 W/m²200 W/m²

and

and2

greEquT

h=0

0 0.5

greEquH

h=0

0 0.5

booToRea

0
6

B R

m

m_flow

C

bou[]

m

bou[]

out

11.7

res

res1[]res1[]res1[]res1[]

cooNor

cooWes

cooEas

weaBus

Figure 4. Schematic diagram of the Spawn model
with shade control, available from the Buildings Library
as Buildings.ThermalZones.EnergyPlus.Examples.
SingleFamilyHouse.ShadeControl. Note that the ther-

mal zone models zon*, the output variable reader for the inci-
dent solar radiation incBeaSou and the actuator for the shade
actSha all communicate with the same EnergyPlus model via
C functions. Thus, the control loop from shade control to zone
temperature zonWes.TAir is closed via EnergyPlus.

Session 4B: Buildings

DOI
10.3384/ecp21181325

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

333



put exceeds 200W/m2, and switches to false if it drops
below 10W/m2. The instance actSha connects to the ac-
tuator in EnergyPlus that activates this shade. If both out-
puts of the hysteresis blocks are true, then the EnergyPlus
shade actuator is deployed by setting the input of actSha
to 6. Otherwise, the input is set to 0. To the right of the
model, there are three idealized cooling systems that keep
the room air temperature below 25◦C in each of the three
zones. Also, each zone is connected to a constant, uncon-
ditioned outside air supply.

5 Conclusions
Through the use of inner/outer constructs and a flow
variable, we were able to ensure a correct synchroniza-
tion of Modelica models that communicate with a com-
mon data structure via C functions that each use a dis-
tinct pointer to memory obtained through a Modelica
ExternalObject. This was essential for enabling model
authoring in the same way as one typically does with Mod-
elica models that are instantiated in a distributed manner
within a larger Modelica system model. The implementa-
tion ensures that each constructor is called before the first
Modelica instance calls its initialization function that gen-
erates and imports the FMU, which is then accessed for
input and output by the different Modelica instances. The
resulting implementation allows simulating one or several
buildings, where each building is represented by an FMU
that can have any number of objects that are synchronized
with Modelica.

For a Modelica model that consists of a variable air vol-
ume flow system and detailed control sequence, coupled
to a multi-zone building envelope model that is imple-
mented either in Modelica or in EnergyPlus, the version
that uses EnergyPlus translates about 35% faster and sim-
ulates about 50% faster.

Acknowledgements
This research was supported by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Office of Build-
ing Technologies of the U.S. Department of Energy, under
Contract No. DE-AC02-05CH11231.

The authors would also like to thank Thomas Beutlich
for pointing out and adapting a similar synchronization
problem from Elmqvist et al. (2015).

References
ASHRAE (2018-06). ASHRAE Guideline 36-2018 – High Per-

formance Sequences of Operation for HVAC systems.
Beutlich, Thomas (2021). Modelica Specification issue 2842.

URL: https : / /github.com/modelica /ModelicaSpecification /
issues/2842#issuecomment-776194950 (visited on 2021-03-
08).

Crawley, Drury B. et al. (2001). “EnergyPlus: creating a new-
generation building energy simulation program”. In: Energy
and Buildings 33.4. Special Issue: BUILDING SIMULA-
TION’99, pp. 319–331. ISSN: 0378-7788. DOI: https:/ /doi .
org/10.1016/S0378-7788(00)00114-6.

Deru, Michael et al. (2011-02). U.S. Department of Energy Com-
mercial Reference Building Models of the National Building
Stock. Tech. rep. National Renewable Energy Laboratory.

Ellis, Peter G., Paul A. Torcellini, and Drury B. Crawley (2007).
“Simulation of Energy Management Systems in EnergyPlus”.
In: Proc. of the 10-th IBPSA Conference. Ed. by Jiang Yi et al.
International Building Performance Simulation Association
and Tsinghua University. URL: http://www.ibpsa.org/.

Elmqvist, Hilding et al. (2015-09). “Generic Modelica Frame-
work for MultiBody Contacts and Discrete Element Method”.
In: 11-th International Modelica Conference. Ed. by Peter
Fritzson and Hilding Elmqvist. Modelica Association. Paris,
France, pp. 427–440. DOI: 10.3384/ecp15118427.

Jorissen, Filip, Glenn Reynders, et al. (2018). “Implementation
and Verification of the IDEAS Building Energy Simulation
Library”. In: Journal of Building Performance Simulation 11
(6), pp. 669–688. DOI: 10.1080/19401493.2018.1428361.

Jorissen, Filip, Michael Wetter, and Lieve Helsen (2015-09).
“Simulation Speed Analysis and Improvements of Modelica
Models for Building Energy Simulation”. In: 11-th Interna-
tional Modelica Conference. Ed. by Peter Fritzson and Hild-
ing Elmqvist. Modelica Association. Paris, France, pp. 59–
69. DOI: 10.3384/ecp1511859.

FMI Library (2021). URL: https : / / github . com / modelon -
community/fmi-library (visited on 2021-03-08).

Nouidui, Thierry Stephane et al. (2012-09). “Validation and Ap-
plication of the Room Model of the Modelica Buildings Li-
brary”. In: Proc. of the 9-th International Modelica Confer-
ence. Modelica Association. Munich, Germany, pp. 727–736.
DOI: 10.3384/ecp12076727.

Nytsch-Geusen, Christoph et al. (2013). “Modelica Build-
ingSystems eine Modellbibliothek zur Simulation komplexer
energietechnischer Gebäudesysteme”. In: Bauphysik 35.1,
pp. 21–29. ISSN: 1437-0980. DOI: 10.1002/bapi.201310045.

Wetter, Michael, Kyle Benne, et al. (2020-09). “Lifting the
Garage Door on Spawn, an Open-Source BEM-Controls En-
gine”. In: Proc. of Building Performance Modeling Confer-
ence and SimBuild. Chicago, IL, USA, pp. 518–525. URL:
https:/ /simulationresearch.lbl .gov/wetter/download/2020-
simBuild-spawn.pdf.

Wetter, Michael and Christoph van Treeck (2017-09). IEA EBC
Annex 60: New Generation Computing Tools for Building and
Community Energy Systems. ISBN: 978-0-692-89748-5. URL:
http://www.iea-annex60.org/pubs.html.

Wetter, Michael, Christoph van Treeck, et al. (2019-09). “IBPSA
Project 1: BIM/GIS and Modelica framework for building
and community energy system design and operation – ongo-
ing developments, lessons learned and challenges”. In: IOP
Conference Series: Earth and Environmental Science 323,
p. 012114. DOI: 10.1088/1755-1315/323/1/012114.

Wetter, Michael, Wangda Zuo, Thierry S. Nouidui, et al. (2014).
“Modelica Buildings library”. In: Journal of Building Perfor-
mance Simulation 7.4, pp. 253–270. DOI: 10.1080/19401493.
2013.765506.

Wetter, Michael, Wangda Zuo, and Thierry Stephane Nouidui
(2011-11). “Modeling of heat transfer in rooms in the Mod-
elica "Buildings" library”. In: Proc. of the 12-th IBPSA Con-
ference. International Building Performance Simulation As-
sociation. Sydney, Australia, pp. 1096–1103. URL: https : / /
simulationresearch . lbl . gov / wetter / download / 2011 - ibpsa -
BuildingsLib.pdf.

Software Architecture and Implementation of Modelica Buildings Library Coupling for Spawn of EnergyPlus

334 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181325


