
Coupling physical and machine learning models: case study of a
single-family house

Basak Falay1 Sandra Wilfling2 Qamar Alfalouji2 Johannes Exenberger2 Thomas Schranz2

Christian Møldrup Legaard3 Ingo Leusbrock1 Gerald Schweiger2

1AEE-Institue for Sustainable Technologies, Austria b.falay@aee.at
2Institute of Software Technology, Technical University of Graz, Austria gerald.schweiger@tugraz.at

3DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Denmark, cml@ece.au.dk

Abstract
The emergence of Cyber-Physical Systems poses new
challenges for traditional modelling and simulation tech-
niques. We need to combine white, grey, and black box
models as well as different tools developed for specific
subsystems and domains. Co-simulation is a promising
approach to modeling and simulating such systems. This
paper presents a case study where a physical model of a
building’s heating system implemented in Modelica is co-
simulated with a machine learning model of a stratified
hot water tank implemented in Python. The Python model
is exported as Functional Mock-up Unit using UniFMU.
Keywords: Co-Simulation, Functional Mock-Up Inter-
face, Modelling, Machine Learning

1 Introduction
Future intelligent and integrated energy systems must have
a high degree of flexibility and efficiency to ensure reli-
able and sustainable operation (Lund et al. 2017). Along
with the rapid expansion of renewable energy, this degree
of flexibility and efficiency can be achieved by overcom-
ing the clear separation between different sectors and by
increasing connectivity and the associated data availabil-
ity through the integration of sensors and edge/fog com-
puting (Vatanparvar and Faruque 2018). All of these de-
velopments drive the transition towards so-called Cyber-
Physical Energy Systems (Palensky, Widl, and Elsheikh
2013). Cyber technologies (sensors, edge/fog comput-
ing, IoT networks, etc.) can monitor the physical systems,
enable communication between different subsystems, and
control them. Thus, the emergence of Cyber-Physical Sys-
tems poses new challenges for traditional modelling and
simulation approaches.

One of these challenges is that models need to com-
bine computational systems and data communication net-
works with physical systems. Furthermore, recent studies
showed that pure white-box models based on first princi-
ples deal with drawbacks such as time-consuming devel-
opment, validation problems or low computational speed
(Li and Wen 2014). Consequently, these approaches have
limited use for complex systems such as intelligent build-
ings outside of academia (Schweiger, Nilsson, et al. 2020).

Black-box approaches examine the system from the out-
side using input/output relations. Depending on the ap-
proach, they are computationally efficient but compared
to white-box approaches they lack in generalizability and
extensibility (Thieblemont et al. 2017). Beside white-box
and black-box models, grey-box models fall in between
(Harish and Kumar 2016). Several papers highlighted
the importance of combining white-, grey-, and black-
box models for analyzing and optimizing Cyber-Physical
Systems (O’Dwyer et al. 2019; Killian and Kozek 2016;
Thilker, Madsen, and Jørgensen 2021).

There are two options to simulate the interactions be-
tween subsystems; (i) the entire system can be modelled
and simulated with a single tool referred to as monolithic,
(ii) already established models for the respective subsys-
tems are coupled in co-simulation (Gomes et al. 2018).
A recent survey discussed the advantages, disadvantages,
and challenges of co-simulation approaches (Schweiger,
Engel, et al. 2018). This survey showed that experts con-
sider the Functional Mock-Up Interface (FMI) standard
to be the most promising standard for continuous-time,
discrete-event, and hybrid co-simulation.

In this paper, the physical parameters of a subsystem
(stratified storage tank) are not available. In this situation,
model calibration and parameter estimation approaches
can be used depending on availability of the measurement
data. On the other hand, machine learning models can
be as well used to mimic the behavior of the system by
construct relationships between input and outputs without
being dependent on the components parameters. Artificial
Neural Networks was used to model the stratified storage
tank in (Géczy-Vig and Farkas 2010). In this work, Ran-
dom Forest (RF) was used to model the temperatures in
each layer of the stratified storage tank. Since the states of
the other components influence the state of the stratified
storage, we have created a co-simulation workflow where
the machine learning and physical models can be cou-
pled. Physical and machine learning models are available
at https://github.com/tug-cps/NextHyb2 . Un-
fortunately, we cannot publish the data due to data privacy
policy. Therefore, we have additionally generated a syn-
thetic, open-source data set.

DOI
10.3384/ecp21181335

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

335



2 Method
2.1 Heating System of Single-family House
A single-family house with 180m2 floor area, located in
Austria with an annual energy consumption of 7500 kWh
was analyzed in this work. Figure 1 gives an overview of
the main components of the single-family house heating
system. The house, equipped with a floor heating system,
has three different heat sources: (i) a solar collector with
46m2 flat plate area, (ii) a stove which directly heats the
house, and the excess heat feeds the storage tank and (iii)
an air-to-water heat pump. Additionally, an estimated 3m3

storage tank bridges these three heat sources in order to in-
crease the efficiency of the heating system. The house has
an indoor pool (24m3), which is heated by the hot water
storage tank or directly by the solar collector.

Figure 1. Overview of the single-family house heating system.
Red line represents the supply and blue line represents the return
temperatures.

The following rule-based control strategy of the heating
system is given below.

• The priority of the solar collector is to maintain the
temperature of top layer of the storage tank at 52◦. If
this condition is satisfied, then the excess heat from
the solar collectors heats the indoor pool to 35◦.

• If the solar collector cannot meet the heating demand
of the indoor pool and if the top layer temperature of
storage tank is higher than 52◦, the storage tank heats
the pool.

• If these conditions don’t satisfy or the temperature of
the bottom layer of the storage tank drops below 35◦,
the heat pump turns on.

• If the temperature of the stove is higher than 40◦, the
excess heat is fed into the storage tank.

2.2 Measurement Data
In Appendix, Figure A.1 shows an overview of the heating
system components and the locations of the heat meters.
Temperatures are represented in (Tcomponent , mass flow
rate in dmcomponent . Four temperature sensors from top to
bottom respectively TStorage,1,TStorage,2,TStorage,3,TStorage,4
are located at the storage tank. The measured data from

the heat meters is between 01.02.2019 and 31.01.2020,
with a temporal resolution of 1 minute. Figure 2 gives
an overview of the data quality of the measurement data.
White lines represent the missing data points and corre-
sponding periods. 4% of the measurement data is miss-
ing; 65% of them falls into the period between November
2019 and January 2020, 25% of them falls into September
2019. In addition to missing values, there are wrong mea-
surements between November 2019 and January 2020 due
to the failures in the meters.

Figure 2. Missing data periods for the given measurement data

The missing parts of the data were imputed by taking
the profile of the previous day. Figure 3 demonstrates the
imputation of missing data points for four days in a row,
given in dashed lines. The measurement data was ignored
after November 2019 due to the bad quality of data. The
whole data set was resampled to 15-minute values to avoid
the over fitting the predictions of the ML model. After
post-processing, the dataset had 27840 datapoints. The
resampled data was later used for training and testing for
the ML model.
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Figure 3. Imputation of the missing data

One of the most critical features in the dataset is mass
flow rates from each component. Figure 4 shows the spar-
sity of the mass flow rates from each components. The
y-axis represent the total data points (27840) after pre-
processing, the x-axis represents the mass flow values of
the components. The black points in the figure show the
values that are not zero and the gaps between the black
points represent the zero values. Mass flow rate in the
stove has the highest percentage 99.8% of zero values and
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the mass flow rate in the CollectortoPool has the lowest
percentage with 86%.
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Figure 4. Visualization of data sparsity in mass flow rates of
each component

2.3 Physical Models
The physical models were implemented in the Modelica
language (Fritzson and Engelson 1998). Model-
ica is an open source, a-causal, object-oriented and
multi-domain modelling language. A discussion of
limitations and promising approaches of the Modelica
language can be found (Schweiger, Nilsson, et al.
2020). All the models used in this system are based
on the Modelica IBPSA Project 1 library (Wetter,
Treeck, et al. 2019) and the Buildings Library (Wet-
ter, Zuo, et al. 2014). Dymola was used to simulate
Modelica models (Brück et al. 2002). The following
sub - implemented in Modelica are: Solar system
(Buildings.Fluid.SolarCollectors.EN12975),
heat pump (Buildings.Fluid.HeatPumps.
CarnotTCon) and the indoor pool
(Modelica.Fluid.Vessels.ClosedVolume). The
energy demand of the house and the heat supply profile of
the stove were taken from the measurement data instead
of modelling these components. Since there was no
weather profile acquired within the given data period,
Typical Meteorological Year 3 (TMY3) for Austria were
generated from Meteonorm.

2.4 Machine Learning Model
There was no available information of the system param-
eters of the storage tank such as the insulation material
and the thickness, the wall thickness, the height or the lo-
cations of the temperature sensors. Therefore, the stor-
age tank was modelled based on RF. RF is a combination
of tree predictors which splits nodes based on a best split
of random subsets of the features, thus reducing the vari-
ance of the tree model and increasing the overall predictive
power of the model.

The RF model predicted the four temperature layers of
the storage tank. An overview of the input features for
the model is given in Figure 5. The static input features
are temperatures, Ti, and mass flow rates, dmi, from the
solar collector, heat pump, floor heating and stove. The

Static Features

TSolar,s(t), dmSolar(t), dmSolarStor(t)

Trooms,r(t), dmrooms(t)

TStove,s(t), dmStove(t)

Tpool,r(t), dmpool(t)

Random Forest
Model 4

Random Forest
Model 3

TStorage,1(t)

Random Forest
Model 2

Random Forest
Model 1

Tank Storage
ML ModelInput Features Output Features

TStorage,2(t)

TStorage,3(t)

TStorage,4(t)

THP,s(t), dmHP(t)

Dynamic Features

TStorage,4(t-1,..t-4)

TStorage,3(t-1,..t-4)

TStorage,2(t-1,..t-4)

TStorage,1(t-1,..t-4)

Pload, Tstorageroom

Figure 5. Input/Output features of the applied machine learning
model of the storage tank.

dynamic features are the four temperature layers of the
storage tank with a 1-hour look-back time with interval
15 minutes and 15 minutes prediction horizon, see Fig-
ure 6. The measured data was split randomly into training
(80%, 50 epochs) and testing (20%). The model hyper-
parameters are n_estimators = 100 which represents the
number of decision trees that achieves the best trade-off
between the accuracy and efficiency; max_depth that has
been set to an unlimited value so the nodes can expand au-
tomatically; and min_samples_split = 2. The implemen-
tation was done using the Python framework presented in
(Schranz et al. n.d.) based on Scikit-learn.

t-4 t-3 t-2 t-1 t

4 lookback time-steps

1 prediction time step

Figure 6. At time t, four look-back time-steps are used to predict
one time-step in future with each step = 15 minutes.

2.4.1 Model Performance Analysis
Two criteria were selected to evaluate the performance of
the RF model: the coefficient of variation of the Root
mean square error (CVRMSE) and mean absolute percent-
age error (MAPE) given in Equation 1 and Equation 2.

CV (RMSE) =

√
1
N ∑

N
i=1(Yi − Ŷi)2

Y
∗100 (1)

MAPE =
1
N

N

∑
i=1

(

∣∣Yi − Ŷi
∣∣

Yi
)∗100 (2)

where Y is the true value, Ŷ is predicted value, Ȳ is the
average of the true values over N test samples.
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2.5 Co-Simulation
To integrate the ML model of the storage tank into the sim-
ulation environment, the ML model must be exported as
an FMU. The UniFMU tool (Legaard et al. 2021) was used
to generate a Python-based FMU. Therefore a template
of the FMU was generated using the command unifmu
generate python name.

To specify the behavior the dummy example in List-
ing 1, implemented by the generated FMU, is replaced
with the components of the ML model. A benefit of this
is that the scikit-learn code can be reused and inte-
grated into the FMU gradually. This makes sure that no
breaking changes occur. A crucial part of the FMUs im-
plementation is the fmi2DoStep method which instructs
the model to simulate forward in time for an amount of
time corresponding to the time step. For the storage-tank
FMU, this is equivalent to running one or more inference
steps of the trained model.

Listing 1. Implementation of fmi2DoStep by storage model.

from sklearn.ensemble import
RandomForestRegressor

from sklearn.datasets import
make_regression

...
def do_step(current_time,step_size,

no_step_prior):
self.temp_next=self.forrest(self.

temp_prevs)
return Fmi2Status.ok

3 Results and Discussion
3.1 Validation of the ML model
Table 1 shows the model performance on the test data set.
The ML model is imported as FMU in Dymola. Testing
of the FMU-ML model with the measurement data is per-
formed in Dymola environment, see Figure 7. TStorage,4
and TStorage,3 are the worst predicted target value accord-
ing to the CVRMSE and MAPE. The discussion of Table 1
is supported with the results of the testing.

Table 1. Performance metrics of predicting the four target tem-
perature values: TStorage,1, TStorage,2, TStorage,3 and TStorage,4 using
random forest models

CVRMSE MAPE

TStorage,1 0.0097 2.3056
TStorage,2 0.011 2.2656
TStorage,3 0.0157 4.9064
TStorage,4 0.0281 6.0215

Winter, spring and summer periods were chosen, aim-
ing to represent different boundary conditions. The only
difference in each test period was the initial values set for
the FMU-ML. These initial values of the static and dy-
namic input features were chosen from the measurement

data based on each period starting time. Since the strati-
fied hot water storage tank is a short term storage, the daily
predictions are representative. In these three figures, 9
days period for each season was chosen to show the model
prediction based on interactions of all heating supplies. In
Figure 8, Figure 9 and Figure 10, the first subplot repre-
sents the comparison between the true and the predicted
temperature values of each 4 layers of the storage tank.
The true temperature values of the top layer, middle-top
layer, middle bottom layer and the bottom layer are re-
spectively red, dark orange, blue and cyan dashed lines.
The predicted temperature values are represented the same
color code but in straight lines. In the second subplot, the
mass flow rates from different components are given. The
mass flow rates stand for when the specific component is
turned on/off.

Figure 7. Dymola layout of testing FMU-ML storage model

Figure 8 represents the frequently running components;
solar collector and pool heating for summer period. Based
on these components inputs, the ML model shows good
aggrement with the measurement data during the summer
period. One of the static input features, "PLoad", which
indicates whether at least one component in the system is
on, is introduced to capture the cooling behavior of the
storage tank. It is observed in the summer period during
the night when there is no load, the four temperature val-
ues of the storage tank decrease.
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Figure 8. Storage temperature levels predicted vs measurement
in summer period

The cold return water from the floor heating is fed into
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the storage tank from the bottom and the middle layer.
These temperatures are expected to decrease as in the mea-
surement data. In Figure 9, between 18th and 19th March,
when the floor heating starts, the predictions of the tem-
perature of the bottom layer fails. On the 19th March,
when the heat pump is on, represented in the purple line,
the middle bottom temperature shows an increasing be-
havior. However, it cannot reach to the values of the mea-
surement data. On 20th March, only two components are
on as in the summer period. On this day, the prediction of
the temperature values can catch the measurement data.
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Figure 9. Storage temperature levels predicted vs measurement
in spring period

The winter period is selected between February and
March due to lack of winter representation from the data,
explain in Section 2.2. The bottom temperature layer of
the storage tank shows a decreasing behavior due to the
floor heating as in the measurement data. However, due
to the control strategies when the heat pump turns on, the
middle bottom temperature of the storage tank doesn’t in-
crease as in the measurement data profile.
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Figure 10. Storage temperature levels predicted vs measure-
ment in winter period

From these three testing periods of the FMU-ML
model, it is observed that the temperature values of the
storage tank is predicted better when there is only col-
lector component is on. In Figure 4, data that represent
collector to storage and collector to pool is denser than
the other components data. Therefore, these static input
features can dominate the predictions more than the other
static features which are sparse. Additionally, the dynamic
features of the past predicted temperature values of the

storage tank are as well input features. Once these values
are predicted wrong, the error accumulates to the further
time steps. Results from these tests also show the the per-
formance of the TStorage,4 and TStorage,3 are worse than the
other predicted target values.

3.2 System simulation
In Appendix, Figure A.2 shows the system implementa-
tion in Dymola. All heating components explained in use-
case are framed with dashed lines in the figure. The figure
is visually simplified by hiding the source/sink component
inside of the ’StorageML_FMU’ component where the
supply or return fluid from each component is fed to stor-
age tank. All the simulations are run in a virtual Ubuntu
environment with 188 GB RAM and the Intel Xeon Sil-
ver 4215R CPU @ 3.2GHz CPUs. Dymola 2021 FD01
with Dassl solver and 10e-6 tolerance was used during this
study. The system simulation with the FMU-ML was run
10 times. The averages of the CPU times for the 32 days
simulation with 15 minutes interval is 228 seconds. The
CPU-time taken to calculate one grid interval highly de-
pends on how the ML algorithm is implemented, number
of inputs features, number of processors.

The translated model statistics are given in Table 2. The
originally described system has 1966 non-trivial DAEs,
after translation it is reduced to an ODE system with 42
continuous time states.

Table 2. Model statistics:Translated model statistics of the
single-family house with the FMU-ML storage component.

FMU-ML Model

Constants 1733
Parameters depending 654
Continuous time states 42
Time varying variables 777
Alias variables 1342
Sizes of linear system of equa-
tions

{5}

Sizes after manipulation of the
linear system of equations

{0}

Sizes of nonlinear system of equa-
tions

{6, 5, 3, 1, 1}

Sizes after manipulation of the
nonlinear system of equations

{1, 1, 1, 1, 1}

Number of numerical Jacobians 0

Figure 11 shows the results of coupling ML and phys-
ical models of the single-family house heating system.
The first subplot in Figure 11 shows the temperature lev-
els of the tank for a 32 days period. The second sub-
plot shows which component is switched on and the third
shows the load condition for the storage tank. Despite the
same real-world control strategies implemented into sys-
tem, weather profile that represents the the measurement
data is not available. The TMY3 from Meteonorm is used
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Figure 11. Storage temperature levels according to the controls

for the system simulation and solar collector provides dif-
ferent outputs than the measurement data. And all outputs
based on the control strategies changes. Also the phys-
ical model parameters of the storage tank have not been
adjusted to give a good comparison. Therefore, the re-
sults from FMU-ML system simulation cannot be com-
pared with the measurement data.
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A Appendix
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Figure A.1. Overview of the system hydraulic flow. The supply pipe is represented in red, return pipe in blue. In each pipe, the
temperature and mass flow rates are measured.

Figure A.2. Dymola layout of the single-family house heating system
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