
ScalableTestGrids - An Open-Source and Flexible Benchmark
Suite to Assess Modelica Tool Performance on Large-Scale Power

System Test Cases

Francesco Casella1 Adrien Guironnet2

1Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy,
francesco.casella@polimi.it

2Réseau de Transport d’Electricité, France, adrien.guironnet@rte-france.com

Abstract
This paper introduces ScalableTestGrids, an open-source
and flexible benchmark suite for assessing the perfor-
mance of Modelica tools on large-scale power system test
cases. The benchmark suite is built by using components
from the PowerGrids library and generic utility scripts cre-
ating the final runnable Modelica models. It does not
depend on confidential data; its structure makes any fu-
ture needed modification or evolution easy and straight-
forward. Results obtained with the OpenModelica tool are
also reported. The benchmark suite can be used by tool
developers to assess the capability of their tools to handle
large-scale power generation and transmission models.
Keywords: Benchmark, Power System Simulation, Large-
Scale Simulation, Performance, Open-Source

1 Introduction
Power systems are evolving at a very fast pace due to
a global demand for cleaner energy. This drives major
changes in the system structure, with a growing penetra-
tion of Renewable Energy Sources (RES) and an impor-
tant boom of High-Voltage Direct Current (HVDC) lines
(ENTSO-E 2020; IEA 2021). To be able to ensure the sys-
tem stability and to handle the new challenges arising in
a satisfying manner, System Operators (SO) have to adapt
the way they control, operate and design the grid. This
notably implies that power system simulation tools should
offer a great flexibility to cope with the pace of evolution
and a high-level of transparency to facilitate collaboration
and coordination between all the actors.

While traditional power system software use closed-
source models, solvers and data, and are difficult to adapt
to emerging technologies, Modelica offers an appealing
alternative. Its open-source, declarative and high-level na-
ture makes it a good candidate for modern, flexible and
transparent power system modelling.

These advantages have boosted the development of sev-
eral power system Modelica libraries in the recent years
(Winkler 2017), from first efforts to port existing tool
models (Bogodorova et al. 2013) to libraries carefully
designed to take full advantage of the declarative mod-

elling approach of the language while easing the transi-
tion for power system experts who are Modelica begin-
ners (A. Bartolini, F. Casella, and Guironnet 2019). It
has also led to academics usage of Modelica in other do-
mains than classical electromechanical simulations, such
as electromagnetic transient simulations (Masoom et al.
2020), dynamic phasor modeling (Mirz et al. 2019) or
power-electronics dominated grid simulations (Cossart et
al. 2020) as well as proof of concept for industrial use
(Francesco Casella, Andrea Bartolini, et al. 2016; Guiron-
net et al. 2018).

At the same time, efforts have been made to ease a wide
adoption by both development of automatic conversion
methods for creation of standard test cases (Razik, Dinkel-
bach, et al. 2018; Gómez et al. 2019) and computation
time improvements (Francesco Casella, Leva, and Andrea
Bartolini 2017; Braun, Francesco Casella, and Bachmann
2017; Henningsson, Olsson, and Vanfretti 2019), for ex-
ample through the use of DAE-mode integration. How-
ever, fundamental performance barriers remain on these
two fronts, hampering the full operational use of general-
purpose Modelica tools to handle simulations involving
national- or continental-scale grids; this motivated for in-
stance the development of a mixed C++/Modelica ap-
proach by RTE (Guironnet et al. 2018).

Indeed, it is important to remind the reader the oper-
ational constraints currently existing on automation and
performance for time-domain simulations in power sys-
tems. One fundamental process to ensure power system
stability is the so-called Dynamic Security Assessment,
that consists in simulating a large number of contingen-
cies to make sure that the grid is operating in a secure
and stable way (Loud et al. 2010; Panciatici, Bareux, and
Wehenkel 2012). For example, the French national grid
control center launches 65 different simulation scenarios
every 15 minutes for voltage stability, and 1270 different
scenarios every 30 minutes for transient stability. In ad-
dition to this real-time use, similar calculations are done
in day-ahead and week-ahead situations with comparable
performance constraints.

Currently available general-purpose Modelica simula-
tion tools are still not able to provide adequate support for

DOI
10.3384/ecp21181351

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

351

such applications, in particular because the standard ap-
proach followed for code generation requires flattening the
models to scalar equations, which leads to unacceptable
code generation time and generated code size, see, e.g.
(Francesco Casella, Leva, and Andrea Bartolini 2017). A
quantum leap is required in code generation technology,
which should avoid as much as possible to generate re-
peated code when hundreds or thousands of similar com-
ponents are instantiated in a system model, as is common-
place in national grid models. Significant improvements
may also be required on the simulation runtimes, e.g. to
handle events efficiently.

On the other hand, testing the performance of such ad-
vanced or experimental Modelica tools on large-scale, re-
alistic national power grid models is not a straightforward
task; in general, it requires a lot of domain-specific knowl-
edge to set up realistic test models and meaningful sim-
ulation scenarios, and possibly relies on confidential or
restricted-access data. The latter issue also makes it diffi-
cult to compare the performance of different tools, since
different tool developers may not have access to the same
models.

In order to fill this gap, the development of a Mod-
elica library based on the PowerGrids library (A. Bar-
tolini, F. Casella, and Guironnet 2019) was launched,
to offer open-source, easy-to-use, customizable and scal-
able benchmarks to all Modelica tools providers. The li-
brary captures the essential features of large-scale electro-
mechanical power grid models, while keeping the com-
plexity at the minimum possible level.

This library, called ScalableTestGrids, can be used
by people doing research and development on advanced
methods to handle large-scale Modelica models, to test
the ability of their methods and tools to handle the kind
of models that are required by SOs to run their daily oper-
ation. It can also be used to compare tools against each
other, to assess the improvements of a given tool over
time, and ultimately to make educated guesses possible
about when general-purpose Modelica tools could even-
tually be used for industrial-grade power system simula-
tions.

The rest of the paper will be organized in the following
way. Section 2 presents the requirements used for speci-
fying the benchmark suite while Section 3 introduces the
selected design. Section 4 provides the current benchmark
suite and gives the results obtained with OpenModelica
while sketching evolutions that could further improve the
performance. Finally, Section 5 serves as the conclusion.

2 Requirements
This section will introduce the main requirements used to
define the benchmark suite and their motivations.

The first requirement is that the benchmark suite is rep-
resentative of real power system test cases. This point is
very important and ensures that advanced tools take ad-
vantage of structural conditions really existing in large-

scale networks, rather than exploit artificial structural con-
ditions only appearing in the benchmark suite. In partic-
ular, large-scale power system test cases have two main
characteristics.

The first one is the very sparse structure of power sys-
tem. Indeed, in power systems, each electrical node is
only connected to a few other ones and the other physical
components are either connections between two nodes or
are interfaced to a single node. Controls are essentially
local even if a few wide-area ones exist but only affect
a very restricted subset of variables (frequency regulation
for example). Table 1 shows representative sparsity levels
for large-scale networks and Figure 1 shows the French
power system and enables to directly see the sparse nature
of the grid.

Figure 1. French Transmission System

The second characteristic is that large-scale networks
are built using relatively few component models, which
are instantiated a large number of times. This feature
should be exploited by the tool, which should avoid wast-
ing time and memory to generate repeated code structures.
The components are instantiated and connected on a one-
by-one basis, coming from a netlist description of the grid
structure, which is irregular, as shown in Figure 1. Table
2 illustrates this property with the number of components
for different large-scale test cases; the figures are taken
from the Horizon 2020 Pegase project reports.

The third requirement for the benchmark suite is that it
should be easily modified. In its current version the bench-
mark suite focuses on the impact of the system size, par-
ticularly the number of continuous variables, on the tool
performance. This already offers a lot of tough challenges
to address, but it could further evolve, for instance taking
into account issues arising with large numbers of discrete
variables and events. It is definitely of prime importance
that such changes can be included in a straightforward
way, considering the current pace of evolution in power
systems, ensuring that the benchmark suite consistently
captures the challenges posed to Modelica tools by such

ScalableTestGrids - An Open-Source and Flexible Benchmark Suite to Assess Modelica Tool Performance on
Large-Scale Power System Test Cases

352 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181351

Table 1. Sparsity levels for representative test cases with K nodes, N equations, NNZ non-zero elements in the Jacobian, density
factor d = NNZ

N.N (Razik, Schumacher, et al. 2019)

Test case K N NNZ d [%]
French Extra High Voltage with Simplified Loads 2000 26432 92718 0.013
French Extra High Voltage with Voltage-Dependent Loads 2000 60236 188666 0.0051
French + one neighbor Extra High Voltage with Simplified Loads 3000 47900 205663 0.0089
French + one neighbor Extra High Voltage with Voltage Dependent Load 3000 75300 266958 0.0047
French + neighb. countries Extra High Voltage with Simplified Loads 7500 70434 267116 0.0054
French Extra High Voltage + regional High Voltage with Simplified Loads 4000 90940 316280 0.0038
French Extra High Voltage + regional High Voltage with Voltage Dependant Loads 4000 197288 586745 0.0015
French + neighb. countries Extra High Voltage with Voltage Dependent Loads 7500 220828 693442 0.0014

Table 2. Number of components instances for representative test
cases

Test case Generators Loads Lines Transformers
French EHV 607 2905 2668 1040
French EHV + HV 725 7875 8592 2577
Continental European EHV 3483 7211 ∼ 16000 ∼ 5000

models.
The fourth requirement concerns the benchmark suite

scalability. The goal being to assess tool performance
on large-scale simulations, creating examples of different
size in a simple way is a must have. It means that from
a small test case, utility functions should exist to obtain
larger test cases with similar properties. These functions
should be as generic as possible to facilitate their use for
any kind of test case and should contain parameters en-
abling to define the final test case (its size for example).

Finally, the fifth requirement considered is related to
the usability of the benchmark suite. In order to maximize
its potential use, it is necessary that the initialization and
simulation work fine in different Modelica environments.
On the one hand, this implies that initialization should be
straightforward and robust. On the other hand, simulation
scenarios which are relevant but straightforward to simu-
late should be defined, ensuring that there are no potential
simulation issues even with the large-sized systems; at the
same time, the test cases should remain well representative
of real-life scenarios at all sizes. The goal of these bench-
marks is to show that a tool can handle systems of realistic
size with good performance, not to test corner cases or nu-
merically challenging situations.

3 Design
3.1 Package Structure
Considering the requirements laid out in Section 2, the
library has been structured in three main packages:

• A Components package, which defines the compo-
nents (based on the PowerGrids library) used to as-
semble the test cases.

• A GridModelGenerators package that contains the
utilities functions to create the actual test cases.

• A Models package, containing some instances of
automatically generated test cases for convenience,
e.g. to get them easily run by continuous integration
frameworks.

In the GridModelGenerators package, Modelica func-
tions are employed to create large-scale network model
using for-loops. This ensures that the library is fully
self-contained and does not rely on other languages (e.g.
Python or C) to generate the code of the test cases.

3.2 Model structure
A key feature of these models is that components and con-
nect statements are instantiated individually, as in a real-
life cases such as the one shown in Figure 1. Relying on
arrays of components and for-loop connection equations
could generate system structures that could be further op-
timized by smart tools, but that would be irrelevant to as-
sess the performance on real-life models, where such reg-
ular structures are absent.

The structure of the scalable grid model which is cur-
rently implemented as a benchmark in the library is shown
in Figure 2. At the top level, a meshed grid is repre-
sented, includings some nodes with large power genera-
tion systems, and some nodes with connection to local ra-
dial grids, which have a linear or tree-like structure. Twin
transmission lines are sometimes used to ensure higher
transmission capacity in the meshed part.

These structural features were represented by an ideal-
ized square, 2N × 2N-node meshed grid, with alternating
generation (round) and load (square) nodes. The nodes are
connected in the east-west direction by means of single
transmission lines, while twin parallel transmission lines
are used in the north-south direction.

Generator nodes contain a full-fledged synchronous
machine model, equipped with automatic voltage regula-
tion (IEEE AC4A type), power system stabilizer (IEEE
PSS2A type), and turbine governor with primary fre-
quency control (IEEE TGOV type), built with components
from the PowerGrids library. The generator is connected
to the meshed grid by a step-up transformer.

Load nodes contain a sub-system, built by the linear
connection of M transmission lines, each connected to a
PQ load at its end, and ultimately connected to the meshed
network by a step-up transformer.

Session 5A: Testing

DOI
10.3384/ecp21181351

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

353

Figure 2. Test case structure with N = M = 2

As one can notice on the figure, the final test case com-
prises 2N2 generators, 2N2M loads, 4N2 transformers and
6N(2N − 1) + 2N2M lines. Thus, by setting N one can
change the overall system size, while changing M allows
to modify the sparsity pattern and include a more or less
important part of the radial network in the system model.

The spatial structure of the grid is somewhat idealized,
having a very regular pattern that can be easily scaled up in
size. On the other hand, individual components are instan-
tiated and connected one-by-one, and full-fledged realistic
component models are used, so that the performance of a
Modelica tool on a benchmark suite containing the num-
ber of nodes listed in Figure 2 can be considered to be fully
representative of the performance on a model of a real-life
system of the same size.

3.3 Initialization and simulation
Regarding initialization, dynamic power grid models, in-
cluding the ones built with the PowerGrids library, are
strongly nonlinear, and thus require the results of a static
power flow computation to set up the start values for ini-
tialization; this is normally taken from the output of a sep-
arate tool. However, this would really be inconvenient in
the case of this benchmark suite. The test model was thus
conceived in order to have an initial power flow that is eas-
ily computed by the generated Modelica model, exploiting
symmetry features.

Consider first an idealized case, where an infinite num-
ber of nodes is present, with full symmetry of voltages
and power flows. Each generator node would then be sur-
rounded by four load nodes of identical voltage, while

each load node would be surrounded by four generator
nodes of identical voltage. Also, there is zero net active
power exchange between pairs of synchronous generators,
which thus have all the same phase. Assuming that the
load nodes have their nominal voltage magnitude (1 p.u.),
and that the generator node voltages have a zero phase, it
is possible to compute the complex power flows through
the lines surrounding each load node, and hence the power
flows and voltage phase and magnitude at both generator
and load nodes. The active power output of each genera-
tor is then set to be equal to the total active power input of
each radial sub-system, where each load takes 1/M-th of
the total active load, plus a small extra term for resistive
losses across the transmission lines.

In this way, power flow values can be easily computed
analytically and the results can be used to directly set the
start values of voltage and complex power at the generator
and load ports. The actual values of this ideal power flow
are thus hard-wired in the code generator of the system
model.

In fact, the actual grid has a finite extent, so it shows
some border effects, compared to the ideal symmetric in-
finite grid; for example, the generator at node 11 needs to
send its power through three lines only, instead of six, thus
it requires a somewhat higher voltage. However, the dif-
ference with respect to the symmetric case is small enough
that the symmetric power flow results can be used as start
values for the finite grid steady-state initialization prob-
lem, without causing any convergence issue.

The only requirements on the Modelica tool used to
simulate the test case are that it should use a sparse non-

ScalableTestGrids - An Open-Source and Flexible Benchmark Suite to Assess Modelica Tool Performance on
Large-Scale Power System Test Cases

354 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181351

linear solver to handle the initialization problem, since its
size prevents using a dense solver in all cases except the
smaller ones, and that it should preferably use homotopy
for the initialization process, to avoid issues related to the
controller saturations.

Once the system has been initialized at steady state, the
simulation scenario assumes that all loads in the upper half
of the network reduce their active power consumption by
10% at t = 1, regardless of the system size. This starts a
transient in which all synchronous generators initially ac-
celerate, due to the overall power imbalance; then, the pri-
mary frequency controllers reduce the turbine power out-
puts and stabilize the grid at a slightly higher frequency.
Some local and inter-area damped oscillations of voltage
and frequency ensue.

The symmetric nature of this perturbation is such that
the transients of individual currents and power flows in
the grid components in certain areas of the grid are similar
regardless of the system size. This makes the comparison
of simulation times across different grid sizes fair, since
more or less the same things happen in each component,
regardless of the grid size. This would not be the case if,
e.g., the perturbation was applied to one load only, since
the relative effect of such a perturbation would become
smaller with increasing system size, potentially requiring
less time steps from the variable step-size solver.

3.4 Generation of system models
Figure 3 shows a code fragment of the Modelica function
that generates the system models, showing how individual
components are instantiated and how individual connect-
equations are added to the system.

The Components package contains the component
models that are instantiated by the system model. In the
current library version, as already mentioned, the genera-
tor model utilized is the connection of a synchronous gen-
erator with a voltage regulator control (IEEE AC4A), a
power system stabilizer (IEEE PSS2A) and a speed reg-
ulator (IEEE TGOV). All these models are connected to-
gether to create the ControlledGenerator model that is in-
stantiated in the system model.

This model structure makes it easy to modify or extend
the test case, to include a new model or new levels of com-
plexity. For example:

• in order to assess the impact of discrete variables and
events, it is possible to create a composite model us-
ing the transformer physical model and a tap-changer
logic (available in the original PowerGrids library)
in the Components package, using it in place of the
simple transformer physical model when instantiat-
ing the radial part of the network;

• if one wants to see the effect of distributed RES
on performances, the load nodes can be enriched
by connecting a RES model in parallel with the PQ
loads;

• to include a new structure in the test cases, such as a
few HVDC lines between two sub-networks, an ex-
tra for-loop could be included in the code generation
function.

All these variants could be handled by Boolean parame-
ters of the code generation function, which would activate
the generation of the corresponding code.

4 Benchmark suite and results
The library has been used to create a first set of test
cases using the basic model described in Section 3.2: syn-
chronous generators with frequency and voltage regula-
tions, voltage-dependent loads, classical linear transmis-
sion lines and transformers models (no regulations nor sat-
urations).

Test cases were run with different values of N and M us-
ing OpenModelica version 1.18.0-dev-263-g3806526c07,
setting the the most favourable options: use of DAE-
mode, fixed-step homotopy solver for the initialization
part, sparse Kinsol/KLU solver for the time-domain part,
no tearing, which is too cumbersome for large systems,
and -O0 optimization of the C code compilation, to avoid
spending too much time on executable code optimizations.

The same experiments were performed on two differ-
ent machines: a 20-core Xeon E5-2650 workstation with
72 GB of RAM under Ubuntu 20.04, and on an 8-core
i7-8550U laptop with 16 GB of RAM under Windows 10
Pro, both 64-bits. During code generation, OpenModelica
can exploit multiple cores by running several threads in
parallel, e.g. for garbage collection; the generated C code
is also split in several files, that can be compiled in paral-
lel. Hence, simulations were run one at a time, to exploit
parallelism a much as possible.

The results obtained are collected in Table 3. Simula-
tions were ran successfully up to N = 11, M = 4 on the
workstation and up to N = 6, M = 4 on the laptop; larger
test cases could not be run due to memory limitations.
However, the expected performance figures for those cases
were extrapolated based on smaller test case results, and
shown in italics in the table.

Concerning the simulation part, performance remain
acceptable up to about 4000 components (i.e., generators,
transformers, lines, and loads) in the system. It is compa-
rable to the performance of existing domain-specific tools
and demonstrates that the computation time is compati-
ble with industrial uses of Modelica-based solutions for
power system stability. Above this size, further improve-
ments are needed, both on the software side - symbolic
Jacobians in DAE-mode for simulation, more efficient and
streamlined run-time code - and on the hardware side -
using last-generation high-performance hardware, for ex-
ample.

Code generation and compilation have reasonable per-
formance up to about 300 components in the system. This
means that general-purpose Modelica-based tools such as
OpenModelica can be used for research studies on small

Session 5A: Testing

DOI
10.3384/ecp21181351

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

355

algorithm
when initial() then

Modelica.Utilities.Files.remove(f);
print("within ScalableTestGrids.Models;", f);
print("model Type1_N_" + String(N) + "_M_" + String(M), f);
print(" extends Modelica.Icons.Example;", f);
print(" inner PowerGrids.Electrical.System systemPowerGrids(", f);
print(" initOpt = PowerGrids.Types.Choices.InitializationOption.globalSteadyStateFixedPowerFlow);", f);
for i in 1:2 * N loop

for j in 1:N loop
if i == N and j == div(N + 1, 2) then

print(" PowerGrids.Electrical.Buses.ReferenceBus BUS_GEN_EHV_" + String(i) + "_" + String(j) + "(SNom = 1e9, UNom = 400e3,
UStart = 400e3 * 0.966, portVariablesPhases = true);", f);

else
print(" PowerGrids.Electrical.Buses.Bus BUS_GEN_EHV_" + String(i) + "_" + String(j) + "(SNom = 1e9, UNom = 400e3,

portVariablesPhases = true);", f);
end if;

end for;
end for;
for i in 1:2 * N loop

for j in 1:N loop
print(" PowerGrids.Electrical.Buses.Bus BUS_LOAD_EHV_" + String(i) + "_" + String(j) + "(SNom = 1e9, UNom = 400e3,

portVariablesPhases = true);", f);
end for;

end for;
for i in 1:2 * N loop

for j in 1:N loop
print(" Components.ControlledGenerator GEN_" + String(i) + "_" + String(j) + "(GEN(SNom = 1e9, PStart = -806e6, QStart = -300

e6));", f);
end for;

end for;
for i in 1:N loop

for j in 1:N loop
for k in 1:M loop

print(" PowerGrids.Electrical.Loads.LoadPQVoltageDependence LOAD_" + String(i) + "_" + String(j) + "_" + String(k) + "(PRef
= Pvar, QRef = Qvar, UNom = 63e3, SNom = " + String(1e9 / M) + ", PStart = " + String(800e6 / M) + ", QStart = " +

String(100e6 / M) + ");", f);
end for;

end for;
end for;

...

print("equation", f);
for i in 1:2 * N loop

for j in 1:N loop
print(" connect(BUS_GEN_EHV_" + String(i) + "_" + String(j) + ".terminal, TRANSFORMER_GEN_" + String(i) + "_" + String(j) + "

.terminalB);", f);
end for;

end for;
for i in 1:2 * N loop

for j in 1:N loop
print(" connect(GEN_" + String(i) + "_" + String(j) + ".terminal, TRANSFORMER_GEN_" + String(i) + "_" + String(j) + ".

terminalA);", f);
end for;

end for;

...

Figure 3. Part of the algorithm implemented to create the Modelica code of the system models

Table 3. Performance results for different system sizes

Xeon E5-2650, Ubuntu 20.04 i7 85506, Windows 10
N M #

equations

#
non-trivialeqs.

#
nodes

#
generators

#
transform

ers

#
lines

#
loads

#
solversteps

code
gen.tim

e
/s

C
com

pile
tim

e
/s

exec
size

/M
B

sim
.tim

e
/s

code
gen.tim

e
/s

C
com

pile
tim

e
/s

executable
size

/M
B

sim
ulation

tim
e

/s

2 4 12174 5091 80 8 16 68 32 297 17.4 3.6 13.5 0.8 26.7 12.7 21.0 1.0
3 4 28284 11801 180 18 36 162 72 319 40.7 8.9 31.2 1.9 66.8 25.1 36.7 2.2
4 4 51078 21307 320 32 64 296 128 315 75.3 15.7 56.2 3.5 125.3 41.2 59.0 4.2
6 4 116718 48683 720 72 144 684 288 294 178.5 36.8 128.2 8.2 305.4 66.0 123.1 10.7
8 4 209094 87211 1280 128 256 1232 512 300 329.1 69.6 229.6 15.8 600.0 140.0 240.0 20.0

11 4 397788 165913 2420 242 484 2354 968 322 737.5 163.8 438.0 34.6 1200.0 300.0 500.0 40.0
16 4 800000 350000 5120 512 1024 5024 2048 300 1500.0 350.0 900.0 70.0 2400.0 600.0 1000.0 80.0
23 4 1600000 660000 10580 1058 2116 10442 4232 300 3000.0 800.0 1800.0 150.0 5000.0 1200.0 2000.0 160.0
32 4 3200000 1400000 20480 2048 4096 20288 8192 300 6000.0 1800.0 3600.0 320.0 10000.0 2500.0 4000.0 320.0
45 4 6400000 2600000 40500 4050 8100 40230 16200 300 12000.0 4000.0 7500.0 700.0 20000.0 5000.0 8000.0 640.0
64 4 12800000 5600000 81920 8192 16384 81536 32768 300 24000.0 9000.0 18000.0 1500.0 40000.0 10000.0 16000.0 1280.0

ScalableTestGrids - An Open-Source and Flexible Benchmark Suite to Assess Modelica Tool Performance on
Large-Scale Power System Test Cases

356 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181351

test cases without any problem; as soon as the number of
components increases more, code generation becomes too
time-consuming for practical industrial use. As already
mentioned in the Introduction, as long as the structural
analysis and symbolic processing of the system equations
is done on a scalar basis, the code generation process and
the generated code size do not scale up well enough.

The use of non-expanded arrays in all the stages of the
compilation of the Modelica code into simulation code,
which would exploit the repeated instantiation of the same
model a large number of times, seems to be the most
promising path to push back these limits. To the au-
thor’s knowledge, such methods are currently not yet im-
plemented in any production-grade, general-purpose stan-
dard Modelica tool. They are in fact already available in
the IDA simulation tool (Sahlin et al. 2019), which how-
ever supports a variant of the language, IDA Modelica, a
subset of the full Modelica language, with some exten-
sions for separate compilation. Unfortunately the authors
did not have access to that tool at the time of this writ-
ing, so they were unable to assess its performance with
the proposed suite of benchmark models.

The results obtained clearly show that the most impor-
tant barrier for large-scale simulations is currently found
in the code generation and compilation time. This is an
even more difficult challenge, knowing that state-of-the-
art, domain-specific power system simulation tools don’t
need such phases during their operation and that one key
process is stability assessment demanding a large number
of simulations. On the other hand, the particular structure
of large-scale power system simulations, built by a small
number of different components which are instantiated a
large number of times in the system, is not yet really ex-
ploited in the back-end process, meaning that a large room
for improvement exist.

5 Conclusions
This paper introduces the ScalableTestGrids benchmark
suite, created on top of the PowerGrids library. This open-
source library, which is hosted on GitHub (ScalableTest-
Grids library 2021), offers a simple way to build bench-
mark models of electro-mechanical power generation and
transmission systems, that are scalable up to very large
size, representative of real-life system models, easy to cus-
tomize, and easy to simulate, except for their sheer size.

Experiments with the latest version of OpenModelica
were carried out on the benchmark suite, proving that
the simulation times that can be achieved with general-
purpose Modelica tools are already satisfactory. On the
other hand, results showed that fundamental progress
is still needed in the code generation and compilation
phases, to envision an industrial use of general-purpose
Modelica tools for large-scale power system stability sim-
ulations. In particular, a quantum leap in code generation
methods is required, to exploit the feature of these system
models, that contain very large numbers of instances of

relatively few component models.
In the future, the authors plan to use the benchmark

suite to measure the improvements achieved in Model-
ica tools for large-scale simulations, especially through
the use of vectorized code generation. Efforts are on-
going in this direction, for example the LargeDyn project
at Linkoping University, and HiPerMod project at Politec-
nico di Milano. They will also continue enriching it – e.g.,
by introducing more discrete variables or by adding new
power system components such as RES or HVDC lines
– to be able to assess the tools performance with diverse
power system structures.

As a final remark, the comparison of the performance
of different Modelica tools on the presented benchmark
suite goes beyond the scope of the present paper, since
the challenging nature of the benchmark suite may require
to use experimental or undocumented features of the tools
(which are not know to the authors of this paper), to obtain
the best performance, as was the case with OpenModel-
ica. Other Modelica tool developers are thus encouraged
to test their tools on this benchmark suite, to report their
best results, and to use it as a reference case to improve the
support of large power system modelling in their tools.

References
Bartolini, A., F. Casella, and A. Guironnet (2019-02). “Towards

Pan-European Power Grid Modelling in Modelica: Design
Principles and a Prototype for a Reference Power System
Library”. In: Proceedings of the 13th International Mod-
elica Conference, Regensburg, Germany, March 4–6, 2019.
Linköing University Electronic Press.

Bogodorova, T. et al. (2013). “A Modelica power-system library
for phasor time-domain simulation”. In: Proc. 4th IEEE PES
ISGT Europe.

Braun, Willi, Francesco Casella, and Bernhard Bachmann
(2017-05). “Solving large-scale Modelica models: new ap-
proaches and experimental results using OpenModelica”.
In: Proc. 12th International Modelica Conference. Prague,
Czech Republic, pp. 557–563. DOI: 10.3384/ecp17132557.

Casella, Francesco, Andrea Bartolini, et al. (2016-10). “Object-
Oriented Modelling and Simulation of Large-Scale Electrical
Power Systems using Modelica: a First Feasibility Study”.
In: Proceedings of the 42nd Annual Conference of the IEEE
Industrial Electronics Society IECON 2016. IEEE. Firenze,
Italy: IEEE, pp. 0–6. ISBN: 978-1-5090-3474-1.

Casella, Francesco, Alberto Leva, and Andrea Bartolini (2017).
“Simulation of large grids in OpenModelica: reflections and
perspectives”. In: Proc. 12th International Modelica Confer-
ence. Prague, Czech Republic, pp. 227–233. DOI: 10.3384/
ecp17132227.

Cossart, Q. et al. (2020-10). “An Open-Source Implementation
of Grid-Forming Converters Using Modelica”. In: 2020 IEEE
PES Innovative Smart Grid Technologies Europe (ISGT-
Europe). IEEE.

ENTSO-E (2020). ENTSO-E Research, Development and In-
novation Roadmap 2020-2030. Tech. rep. ENTSO-E. URL:
https://eepublicdownloads.azureedge.net/clean-documents/
Publications/RDC%20publications/entso- e- rdi_roadmap-
2020-2030.pdf.

Session 5A: Testing

DOI
10.3384/ecp21181351

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

357

Gómez, Francisco J. et al. (2019-01). “CIM-2-mod: A CIM
to modelica mapping and model-2-model transformation en-
gine”. In: SoftwareX 9, pp. 161–167. DOI: 10.1016/j.softx.
2019.01.013.

Guironnet, A. et al. (2018-10). “Towards an open-source so-
lution using Modelica for time-domain simulation of power
systems”. In: Proc. 8th IEEE PES ISGT Europe. Sarajevo,
Bosnia and Herzegovina.

Henningsson, E., H. Olsson, and L. Vanfretti (2019-02). “DAE
Solvers for Large-Scale Hybrid Models”. In: Proceedings
of the 13th International Modelica Conference, Regensburg,
Germany, March 4–6, 2019. Linköing University Electronic
Press.

IEA, RTE (2021). Conditions and Requirements for the Tech-
nical Feasibility of a Power System with a High Share of Re-
newables in France Towards 2050. Tech. rep. IEA, RTE. URL:
https: / /assets . rte- france.com/prod/public/2021- 01/RTE-
AIE_rapport%20complet%20ENR%20horizon%202050_
EN.pdf.

Loud, Lester et al. (2010-08). “Hydro-Québec’s challenges and
experiences in on-line DSA applications”. In: pp. 1–8. DOI:
10.1109/PES.2010.5588120.

Masoom, A. et al. (2020-12). “Simulation of electromagnetic
transients with Modelica, accuracy and performance assess-
ment for transmission line models”. In: Electric Power Sys-
tems Research 189, p. 106799.

Mirz, M. et al. (2019-07). “DPsim—A dynamic phasor real-time
simulator for power systems”. In: SoftwareX 10, p. 100253.

Panciatici, Patrick, Gabriel Bareux, and Louis Wehenkel (2012-
09). “Operating in the Fog: Security Management Under Un-
certainty”. In: Power and Energy Magazine, IEEE 10, pp. 40–
49. DOI: 10.1109/MPE.2012.2205318.

Razik, Lukas, Jan Dinkelbach, et al. (2018-10). “CIMverter–a
template-based flexibly extensible open-source converter
from CIM to Modelica”. In: Energy Informatics 1.S1. DOI:
10.1186/s42162-018-0031-5.

Razik, Lukas, Lennart Schumacher, et al. (2019-06). “A Com-
parative Analysis of LU Decomposition Methods for Power
System Simulations”. In: Proc. 2019 IEEE PowerTech. IEEE.
Milan, Italy, pp. 1–6. DOI: 10.1109/PTC.2019.8810616.

Sahlin, Per et al. (2019-09). “On the scalability of equation-
based building and district simulation models”. In: Proceed-
ings 16th IBPSA International Conference and Exhibition.
Rome, Italy, pp. 2584–2590. DOI: 10.26868/25222708.2019.
210130.

ScalableTestGrids library (2021). URL: https : / / github . com /
PowerGrids/ScalableTestGrids (visited on 2021-05-07).

Winkler, D. (2017-09). “Electrical Power System Modelling in
Modelica - Comparing Open-source Library Options”. In:
Proc. 58th SIMS. Reykjavik, Iceland.

ScalableTestGrids - An Open-Source and Flexible Benchmark Suite to Assess Modelica Tool Performance on
Large-Scale Power System Test Cases

358 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181351

