
Continuous Development and Management of
Credible Modelica Models

Leo Gall1 Martin Otter2 Matthias Reiner2 Matthias Schäfer1 Jakub Tobolář2

1LTX Simulation GmbH, Munich, Germany, leo.gall@ltx.de
2German Aerospace Center (DLR), Institute of System Dynamics and Control, Wessling, Germany

Abstract
Modeling and simulation is increasingly used in the design
process for a wide span of applications. Rising demands
and the complexity of modern products also increases the
need for models and tools capable to cover areas such as
virtual testing, design-space exploration or digital twins,
and to provide measures of the quality of the models and
the achieved results. In this article, we try to summarize
the state-of-the-art and best-practice from the viewpoint of
a Modelica language user, based on the experience gained
in projects in which Modelica models have been utilized
in the design process. Furthermore, missing features and
gaps in the used processes are identified.
Keywords: credible model, model requirement, data man-
agement, validation, verification, Modelica model

1 Introduction
The modeling of physical systems is a complex process
with many decisions, simplifications and assumptions on
its way, usually done by many different decision-makers.
In the real world, this often leads to simulation models and
simulation results that are not well documented. Due to
the increasing use of system simulation in nowadays prod-
uct development, there is an increasing need in traceable
model development with guarantees on model validity.

Models are often shared across organizational borders
(for example, from supplier to OEM). On this way the
direct access to model sources (for example to internal
repositories) and the model history is lost. To avoid this,
models have to “carry” documentation “with them”. If
only Black-Box Functional Mock-Up Units (FMU)1 or re-
sult data with simulation reports are shared, the require-
ments on credibility and traceability are even higher.

The ITEA 3 project UPSIM2 aims for system simula-
tion credibility via introducing a formal simulation quality
management approach, encompassing collaboration and
continuous integration for complex systems. It shall be
based on the recently proposed “Credible Simulation Pro-
cess” (Heinkel and Steinkirchner 2021).

In this article, it is tried to summarize the state-of-the
art in the development and management of credible Mod-
elica models, as a basis for future improvements in the

1https://fmi-standard.org/
2https://www.upsim-project.eu/

UPSIM project. The goal is to achieve a well-documented,
traceable development process for Modelica based “cred-
ible digital twins”.

The paper is structured as follows. First, a general
overview of the modeling and simulation process is given
in Section 2. Then, in Section 3, the former is particularly
discussed, focusing on requirements, level of details, val-
idation, etc. The management of Modelica libraries and
simulation data is finally elaborated in Section 4.

Even if several of the addressed points are valid for any
kind of model-based simulation, the focus of this paper is
on the Modelica point of view.

2 Modeling process
A modeling process can be roughly divided into the fol-
lowing steps, examined in the corresponding sections:

1. Definition of the requirements, Section 3.1.

2. Definition of the modeling task, Section 3.2
(based on the requirements - for which purpose is the
model needed?).

3. Implementation of the model, Section 3.3
(which detail is necessary for the modeling task,
based on which data?).

4. Calibration and validation of the model, Section 3.4
(determination of the parameters of the model based
on available data sources or measurement data).

5. Usage of the model.

The different steps in the modeling process are often per-
formed by different persons, either in the same company
or also across different companies (for example supplier
and OEM). Thus, in order to have a traceable model, all
relevant information has to be managed during the whole
modeling process. Therefore, a source-code management
(Section 4.1) and a version management (Section 4.2)
is necessary and the utilized resources need to be docu-
mented (Section 4.3)

One simple approach is to use a template with the
above-mentioned items (for example as Word or as Mark-
down document) and to store the filled-out template in
the model, for example as file model_history.md in the

DOI
10.3384/ecp21181359

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

359

root directory of the relevant Modelica package. For ev-
ery item a short summary must be included in the template
together with a description where the full details can be
found. This might be e.g., a report in the Resources di-
rectory of the package (cf. Section 4.3), a publication, an
internal report of the organization, or repositories or file
servers where simulation results or measurement data are
stored.

In the future, it would be also very helpful if the log-
comments of a version management system are automati-
cally extracted and attached to the model documentation,
in order to get easy access to this, usually, very valuable
information. In open-source projects the release informa-
tion of a software contains often a one-line comment and
a link to every issue and/or pull/merge request for this re-
lease. The same process could be also done for models
(Section 4.2).

Another approach to track changes of artefacts during
the modeling process is presented in (König et al. 2020).
The changes can be tracked more or less automatically
by collecting standardized information, which is sent by
the different tools involved in the modeling process, in a
database using server communication. Unfortunately, the
number of tools currently supporting this traceability ap-
proach is currently small, but is planed to be extended.

The focus of this paper is the development of a model
until a state “ready to use” is reached. The usage of
the model itself, including the maintenance of the model
throughout its whole life-cycle, is, in contrast, not consid-
ered in this paper.

3 Model development
3.1 Requirements
As described in Section 2, the modeling process starts with
the definition of the requirements to be fulfilled by the
final model. Requirements are typically developed and
defined textually in a document-based development pro-
cess using natural-language that might be following some
rules, such as the Easy Approach to Requirements Syntax
(EARS), see (Alistair and Wilkinson 2019). As a typical
example, see the requirements MIL-STD-704F for elec-
trical systems in US military aircraft (Department of De-
fense 2016). Definitions of requirements with natural lan-
guage might be supported with appropriate tools, such as
DOORS 3 from IBM or Reqtify4 from Dassault Systèmes,
to get support for collaboration, traceability and coverage
analysis.

There are several proposals and attempts to define
and check requirements more formally, such as (Schamai
2013) where it is proposed to generate Modelica code for
this purpose. At Electricité de France (EDF), the special
language FORM-L – FOrmal Requirements Modelling
Language, (Thuy 2014), was developed that formally de-

3https://www.ibm.com/products/requirements-management
4https://www.3ds.com/products-services/catia/products/reqtify/

fines requirements in a language close to the textual no-
tation used by system designers. The FORM-L language
is centered around the four basic questions: What, Where,
When, How Well. The example from (Bouskela and Jardin
2018) maps the natural language requirement

R1: While the system is in operation, the pump
must not be started more than twice.

into the following FORM-L definition:

requirement R1 is
for all pump in system.pumps
during system.inOperation
check
count (pump.isStarted becomes true) <= 2

FORM-L uses two and three-valued logic to define the
logical parts of requirements. The reason to use three-
valued logic is that in certain situations it is not possible
to state whether a property is satisfied (= true) or violated
(= false) and, therefore, a third value type undefined is in-
troduced.

In order to make the FORM-L language directly ac-
cessible for the Modelica community, the open source
Modelica library Modelica_Requirements5 was developed
(Otter et al. 2015). The library has about 200 model
and block components and about 50 functions. It al-
lows to define requirements with drag & drop and to
“bind” these definitions to Modelica models, so the re-
quirements are always checked when the models are sim-
ulated. It is then reported, whether requirements are
satisfied, violated, or not tested. Due to the needs of
the Modelica_Requirements library, some additional func-
tions have been introduced in the Modelica Standard Li-
brary (MSL)6, in particular the functions of sub-package
Modelica.Math.FastFourierTransform.

In (Bouskela and Jardin 2018), the new Extended Tem-
poral Language (ETL) is described for the simulation of
the temporal aspects of FORM-L. ETL introduces a four-
valued logic by the additional value undecided (meaning
that the “decision making” is in progress), in contrast to
undefined (meaning that the “condition” is not applicable).
There is also the Modelica package ReqSysPro under de-
velopment at EDF to practically use ETL within a Model-
ica model. For more details about the usage of FORM-L
in the Modelica community, see also (Bouskela, Falcone,
et al. 2021).

The abovementioned approaches define requirements
formally and perform simulations on Modelica models to
automatically retrieve answers whether requirements are
satisfied, violated, or whether no answer can be given. In
order to make that possible, corresponding scenarios must
be defined (see Section 3.2). Thus, particular simulation
runs must be selected to perform these tests. It might not
be obvious to determine suitable scenarios. Instead, the

5https://github.com/modelica-3rdparty/Modelica_Requirements
6https://github.com/modelica/ModelicaStandardLibrary

Continuous Development and Management of Credible Modelica Models

360 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181359

central question is to figure out the scenarios and environ-
mental conditions for which the requirements are not ful-
filled, for example to figure out a (valid) load condition or
an operating point, where a controlled system is unstable.

A standard approach is to use Monte Carlo Simulations,
generating parameter and initial values randomly accord-
ing to given distributions and perform simulations for ev-
ery randomly selected value set. Most Modelica tools sup-
port Monte Carlo Simulation. There are also dedicated
tools, such as Persalys7. The drawback for typical indus-
trial usage scenarios is, that the number of parameters and
initial values is so large, that it is easily possible that op-
erating points are not found where requirements are vio-
lated. An alternative is to utilize more intelligent search
processes:

• Since 1997, worst-case optimization is routinely
used at DLR’s Institute of System Dynamics and
Control to tackle such problems. Hereby, multi-
criteria optimization problems are defined so that
systems behave as worse as possible. For more de-
tails, see e.g. (Bals, Fichter, and Surauer 1997; Joos
2015; Labusch et al. 2014).

• (Corso et al. 2020) provides a survey of optimiza-
tion algorithms for black-box safety validation: “[..]
finding disturbances to the system that cause it to fail
(falsification), finding the most-likely failure, and es-
timating the probability that the system fails“.

• TestWeaver from Synopsis8 (Tatar and Mauss 2014)
automatically generates stimuli for co-simulations of
virtual ECUs, plant models and requirement watch-
ers. The main generation strategy is the Coverage-
Driven Generation which combines random, com-
binatorial and optimization strategies with the goal
to increase (discrete) coverage measures and to find
worst-cases for (continuous) quality measures.

3.2 Simulation scenarios
The next step in the modeling process is the definition of
the modeling task. This implies a definition of the simu-
lation scenarios, the model should be used for. Human-
readable Modelica code is very well suited for compact
storage of defined scenarios. But, there are many ways to
handle static and dynamic boundary conditions of a Mod-
elica model and to define test cases.

3.2.1 Parameters
When preparing a model for a specific simulation task, the
source of parameter values should be documented: Who
changed the default value and why? At the instance level,
changing parameters means introducing modifiers. Mod-
elica modifiers do not provide the ability to comment mod-
ifications. A good practice in larger Modelica projects

7https://persalys.fr
8https://www.synopsys.com/verification/virtual-prototyping/virtual-

ecu/testweaver.html

is to define at which hierarchical level the parametriza-
tion should happen. Therefore, if there is a defined level,
the source of parameters can be documented on Modelica
info layer: component data sheets, measurements, edu-
cated guess, optimization results, etc. Another approach
is to store parameters with this documentation in replace-
able hierarchical records in a separate Modelica library or
sub-library on a different file as the model, in order that
changes to parameters are directly/easily visible in the ver-
sion control system.

The parameter handling of Modelica should be im-
proved to better support the formal definition of credible
models. In principle, extensions could be introduced via
Custom Annotations (Zimmer, Otter, and Elmqvist 2014),
but large scale usage is currently not user-friendly. Fur-
thermore, a standardized solution is needed, supported by
all the Modelica tools. In particular, the following features
would be useful:

• Defining the domain of validity of the model, prefer-
ably with a language element and not just in the doc-
umentation.

• Define parameter tolerances and/or uncertain distri-
butions (such as normal or uniform distribution).

• Introduce an orthogonal concept to parameter propa-
gation by mapping parameter values, their tolerances
and distributions into a model, so that model struc-
ture/equations and model data can be much easier
separated. This could be done by the merge concept
proposed in (H. Elmqvist et al. 2021).

3.2.2 Boundary conditions

A specific system model can be used in different scenar-
ios: a) simulation of stationary load points, b) simulation
with dynamic boundary conditions, or c) with external
boundary conditions (e.g. co-simulation or hardware-in-
the-loop (HIL)).

The dynamic boundary conditions can be important for
the correct initialization of a model. One example would
be to initialize a system based on the correct environment
temperature and pressure. From our past experience, it is
hard to initialize based on external dynamic inputs, e.g.
coming from table data or via co-simulation. This is, be-
cause in Modelica, the start values of input variables can
not be directly used as initialization parameters (parame-
ters having lower variability as inputs). To overcome this
problem, users have to write additional initial equations
in order to assign input values to initialization parameters,
see example code in Listing 1.

If the equations allow initalization of dynamic
states via connectors, graphical solutions like
Modelica.Mechanics.Rotational.Components.
InitializeFlange9 are possible.

9https://doc.modelica.org/Modelica%204.0.0/Resources/-
helpDymola/Modelica_Mechanics_Rotational_Components.html

Session 5A: Testing

DOI
10.3384/ecp21181359

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

361

Listing 1. Initalization of states from output of CombiTimeTable

...
parameter SI.Temperature T_initial(fixed=false) "Init, to be set from table output";

Modelica.Thermal.HeatTransfer.Components.HeatCapacitor heatCapacitor(
C=100, T(start=T_initial)) "Component to be initalized";

Modelica.Blocks.Sources.CombiTimeTable combiTimeTable_Tamb
"Boundary condition on table file";

initial equation
T_initial = combiTimeTable_Tamb.y[1] "Get first time point of table data";

...

The open source Modelica library ExternData10 from
Thomas Beutlich and further contributors is very helpful
in this respect, because it allows to read data from CSV,
INI, JSON, MATLAB MAT (v4,v6,v7,v7.3), SSV (Sys-
tem Structure Parameter Values v1.0)11, TIR (Tire proper-
ties), Excel XLS and XLSX, and XML files at the start of
a simulation without newly compiling the model. A Clay-
tex TechBlog12 gives a good description how to use this li-
brary. Data from INI files can be read in a similar way with
the open source Modelica library DeviceDrivers13.

3.2.3 Test case definition

For the definition of test cases, usually a scripting lan-
guage is needed to describe the wide variety of occur-
ring situations. There is neither a standardized nor an ac-
cepted scripting language available in the Modelica com-
munity. Depending on user’s preferences and the support
of scripting languages in the used Modelica tool, one of
the following scripting languages is typically used: Dy-
mola functions or script files (mos-files), Microsoft Ex-
cel (called Excel in the following text) via Excel-plug-
ins such as XRG Score14 or TLK Simulator for Excel15,
Maple, Mathematica, Matlab, Python. Industrial users
have often a strong preference for Excel or Python.

A new, interesting possibility is proposed in (Buse and
Bellmann 2021) where one or more instances of a Lua
interpreter16 can be attached to a Modelica model via
the Modelica external object interface. Hereby complex
scenarios can be defined in a combination of Lua- and
Modelica-code. The Lua interpreter itself is a small DLL
(Dynamic Link Library) that is included in a Modelica li-
brary and therefore does not require any download or in-
stallation, contrary to other scripting environments that are
used with Modelica tools.

The following examples demonstrate how Dymola’s

10https://github.com/modelica-3rdparty/ExternData
11https://ssp-standard.org/
12https://www.claytex.com/tech-blog/using-external-data-in-your-

dymola-model/
13https://github.com/modelica-3rdparty/Modelica_DeviceDrivers
14https://www.xrg-simulation.de/de/produkte/applications/score
15https://www.tlk-thermo.com/index.php/en/simulator-suite
16https://www.lua.org/

scripting can be utilized for the definition of test cases.

Example 1: Automotive driving maneuvers There ex-
ists a range of well defined standard scenarios to identify
and verify the particular behavior of a vehicle. They are
typically referred to as open loop or closed loop driving
maneuvers. The former comprises for example ISO 4138
steady-state cornering, the latter ISO 3888 double lane
change. The example provided here uses Dymola built-
in functions.

Considering a vehicle’s architecture as defined in the
VehicleInterfaces library17(Dempsey et al. 2006), see Fig-
ure 1, the particular driving maneuver conditions can be
often controlled within the driver model only. Making
this element replaceable enables to adapt the desired driv-
ing conditions from outside, e.g. when simulating the
model. Utilizing this feature, there can even be imple-
mented a function to simulate various driving maneuvers
in one turn.

In the predefined vehicle’s architecture, called
ConventionalVehicle in Listing 2, a template of
a vehicle model is put together with its environment.
Therefore, a particular user’s vehicle model shall be
redeclared here and the architecture shall be checked
against possible compiling errors in a pre-processing
step. Then, the function in Listing 2 can be executed with
particular settings for each of the desired maneuvers. The
two exemplary maneuvers, mentioned above, are given in
Listing 2.

Listing 2. Run driving maneuvers

function runManouvers
input String modelSim =

"VehicleLibrary.ConventionalVehicle"
"Model to be simulated"
annotation (

Dialog(
__Dymola_translatedModel(
translate=false)));

input String priorRedeclarations = ""
"User defined prior modifications, e.g.
’redeclare class block(par1=...),’";

input String resultFile = "myVehicle"

17https://github.com/modelica/VehicleInterfaces

Continuous Development and Management of Credible Modelica Models

362 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181359

display

km/h

accessories

Set1

engine

Set1

transmission

6
Set1

driveline

Set1

chassis

NonLinear
Tire

Set1

brakes

Set1

driverEnvironment

Set1

road atmosphereworld

x

y

co
nt
ro
lB
us

Figure 1. Common vehicle’s architecture as defined in the VehicleInterfaces library and inherited in the PowerTrain library.

"Result file(s)";
input Boolean cornering40 = false
"ISO 4138 Cornering: R = 40 m";

input Boolean laneChange80 = false
"ISO 3888-1 Double lane change: v_x =

80 km/h";
...

protected
String problem;
String modifier;

algorithm
if cornering40 then

modifier :=
"VehicleLibrary.Drivers." +
"SteadyCornering" +
" driverEnvironment(" +
"vInit=2,Rcurve=40)";

problem :=
modelSim + "(" + priorRedeclarations

+ "redeclare " + modifier + ")";
ok := simulateModel(

problem = problem,
startTime = 0.0,
stopTime = 250,
resultFile = resultFile

+ "_StationaryCircle40m");
end if;

if laneChange80 then
modifier :=
"VehicleLibrary.Drivers.LaneChange" +
" driverEnvironment(" +
"vInit=22.22,variant=ISO3888_1)";

problem :=
modelSim + "(" + priorRedeclarations
+ "redeclare " + modifier + ")";

ok := simulateModel(
problem = problem,
startTime = 0.0,
stopTime = 15,
resultFile = resultFile

+ "_DoubleLaneChange80kmh");
end if;
...

end runManouvers

The core of the function are single simulation calls
of Dymola’s simulateModel function for each
of the maneuvers, carried out for the predefined
ConventionalVehicle model. Particular maneu-
ver conditions are given by the predefined attribute
modifier. Furthermore, maneuver specific simulation
conditions are set, such as the simulation stop time.
Moreover, each driver model contains an option to stop
the simulation once maneuver-specific conditions are
reached – for example the maximum lateral acceleration
for the steady-state cornering.

Besides fixed maneuver-specific attributes, the attribute
priorRedeclarations additionally enables to modify
the remaining blocks of the ConventionalVehicle.
Thus, for example variants of power train, environment
or controller can also be defined.

Example 2: Refrigeration cycle When simulating re-
frigerant cycles, there are usually subsequent tasks per-
formed interactively or via scripting: The first step might
be a parameter variation to define a suitable refrigerant
charge. Then, stationary results can be verified, e.g. by
checking the pressure-enthalpy-diagram. After this veri-
fication step, larger simulations studies on control points
and environmental parameters, like air temperature, mois-
ture and speed, can be defined.

3.3 Model complexity
After the definition of the simulation scenarios, the com-
plexity of the models should be considered. The decision
about complexity is based on the scenarios, the model is
implemented for.

Session 5A: Testing

DOI
10.3384/ecp21181359

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

363

3.3.1 Adequate modeling detail
Models describing every effect of a (technical) system,
don’t exist. A model is always created for a specified set
of scenarios. Utilizing the scenario-driven model for an-
other scenarios can either lead to inappropriate quality of
results, because the desired effects are not modeled, or it
needs an unnecessary parametrization effort and a lot of
computational resources, because it is too complex for the
expected outcome. An example of a mismatching vehicle
model is shown in Figure 2. Assuming a line-change ma-
neuver as a scenario, both submodels are inappropriate.
With the single-track model the roll angle of the vehicle
can not be evaluated and the FE-model, calculating the de-
formation of the rim, is far too detailed for this scenario.
Instead it can be assumed to be rigid .

chassis.fmu

one-track model

FE_rim.model

mismatching model assembly

h�ps://cdn.jvejournals.com/ar�cles/16988/xml/img4.jpg

upload.wikimedia.org/wikipedia
/de/8/84/EinspurKrae�e1.png

Figure 2. Mismatching model assembly. A simple single-track
model of a vehicle (left) versus a complex finite element model
of a wheel’s rim (right, from (Wei et al. 2016)).

The accuracy of the worst submodel in an assembly
(e.g. the less detailed) generally determines the total ac-
curacy. So it’s reasonable to assemble models of sim-
ilar complexity, depending on the aim of the use case.
In the example either a rigid rim or a more complex
chassis-model should be used. The adequate complexity
of a model also depends on the desired outcome of the
whole system. If the model has only a small influence on
the outcome, it can be modeled less complex.

A model developer should keep some questions in mind
while creating a scenario-driven model:

• What is the desired output of the model?
• Which accuracy does the model need?
• Which accuracy has the data used for calibration and

validation?
• Based on which data can the model be validated?

If a model is encapsulated as a FMU, its complexity is
not known in general if the source-code is not published.
In the above-mentioned example, this might be the reason
why the two models of largely different complexity are
even assembled. The complexity can be estimated by sim-
ulating the FMU and regarding the output (e.g. the trans-
lation statistics of the tool). This additional effort could

be avoided if a “scale” for the model complexity could be
stored in the FMU.

3.3.2 Model detail levels

The detail level of a model can be roughly characterized
by the following classification (adapted from (Kuhn, Otter,
and Raulin 2008), which in turn is based on a classification
sometimes used in aerospace industry):

• Level 1: Architectural level
Steady-state power consumption.
Models are described by algebraic equations based
for example on the energy balance between ports
(without dynamic response). Typical use: Rough
system design with power budgets.

• Level 2: Functional level
Steady-state power consumption and mean-value
transient behavior (e.g. inrush current or consump-
tion dynamics with regard to input voltage tran-
sients).
Models are described by differential-algebraic equa-
tions (without switching elements). Typical use: Sta-
bility studies, controller design.

• Level 3: Behavioral level
Detailed description of transient behavior (e.g.
switching and high frequency injection behavior).
Models are described by hybrid differential-
algebraic equations with events and switching
elements. Typical use: Network power quality
studies, verification of controllers.

• Level 4: Distributed level
Very detailed description of spatially distributed,
transient behavior (e.g. magnetic field in electrical
motor, stress field in a structure, flow around an air-
foil).
Models are described by partial differential equa-
tions, which are solved with FEM (Finite Ele-
ment Method), FVM (Finite Volume Method), CFD
(Computational Fluid Dynamics), or DEM (Discrete
Element Method). Typical use: Detailed vibration
investigations, design of structures or of the wind-
ings of electrical motors.

In Figure 3, the simulation of a DC/DC buck converter
is shown for model levels 1, 2 and 3. In (Kuhn, Otter,
and Raulin 2008), various alternatives are discussed how
to implement multi-level models in Modelica.

3.3.3 Selecting the model detail

A typical modeling process starts with a simple model for
one use case and then the complexity and number of use
cases is increased step by step. In the end the model con-
tains various physical effects and cover many use cases,
but for the initially anticipated simple use case it’s way
too complex.

Continuous Development and Management of Credible Modelica Models

364 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181359

Figure 3. Exemplary simulation results of architectural (left), functional (middle) and behavioral (right) model of a DC/DC buck
converter (Kuhn, Otter, and Raulin 2008). The right image contains high frequency switching leading visually to a "filled area".

degree of detail = 0

degree of detail = 1

degree of detail = 2

flange_a flange_b

Figure 4. A Modelica model containing three conditional com-
ponents reflecting different level of model’s detail.

A good practice to avoid such over-engineering is to
store development stages of different complexity and then
choose a suitable complexity for a specific use case. The
Modelica language provides the following possibilities to
switch between different modeling levels:

• Partial models.
• Conditional components.
• Replaceable components.
• If-clauses.

This modeling practice also simplifies the documenta-
tion, because it’s obvious to describe the differences be-
tween the levels of complexity, including the effects added
to the model step by step. On the contrary, the necessary
assumptions and simplifications can be described, to use
one of the less detailed models.

In Figure 4, a simple example for conditional com-
ponents is shown. Three different degrees of details
are modeled: a rigid connection (architectural-level, cf.
Section 3.3.2), a linear (functional-level) and a nonlin-
ear (behavioral-level) spring-damper behavior between

flange a and b. In this example, the particular de-
gree of detail – “stiff”, “linear” or “nonlinear” – can
be selected by changing the value of the parameter
degree_of_detail, as shown in Listing 3.

Listing 3. Conditional components

model ConditionalComponents
...
parameter Integer degree_of_detail=0 "

Parameter to switch between models
with different degree of detail";

Components.Detail_0 detail_0 if
degree_of_detail == 0;

Components.Detail_1 detail_1 if
degree_of_detail == 1;

Components.Detail_2 detail_2 if
degree_of_detail == 2;

equation
if degree_of_detail==0 then

connect(flange_a, detail_0.flange_a);
connect(detail_0.flange_b, flange_b);

elseif degree_of_detail==1 then
connect(flange_a, detail_1.flange_a);
connect(detail_1.flange_b, flange_b);

else
...

end if;
...

end ConditionalComponents;

The selection of an appropriate modeling stage depends on
the scenarios of the whole system. In Listing 3, the rigid
connection can be used if the component, represented by
this model, is very stiff in relation to other components in
the system. In contrast, the linear spring behavior is not
adequate, if the linear elastic range can be exceeded due
to large forces appearing in the system.

Similarly, to the connect-statements inside Listing 3, if-
clauses can be used to switch between different sets of
equations, with the disadvantage, that each branch must
have the same number of equations in Modelica. This
may lead to many dummy definitions. Another option in
Modelica are replaceable models. Unfortunately, they are
only beneficial if the interfaces (inputs, outputs, parame-
ters) of the different modeling stages are similar, because

Session 5A: Testing

DOI
10.3384/ecp21181359

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

365

they have to be adapted each time the replaceable model
is changed.

A disadvantage of storing different levels of detail is
the difficult testing strategy and higher effort for model
adaptations. Functionality tests and model updates must
be performed for each level. Therefore, it is advisable to
store only major development steps of different complex-
ity.

Typically, the level of detail should not only be switch-
able for a system model, but also for its sub-components.
Technically, such an approach cannot be implemented
fully satisfactory in the current Modelica language, be-
cause a feature to replace sub-components based on
Boolean expressions is missing.

If an FMU should be built, the parametrized switch
between different modeling stages (which is a structural
parameter) cannot be transferred, because the number of
state variables cannot be changed after the translation of
the model. An FMU can only contain one single degree
of complexity. It would be useful to support different lev-
els of modeling details in a future Functional Mock-Up
Interface (FMI) standard.

3.3.4 Physical versus data driven models

An important indicator for the credibility and the range
of validity of a model is the modeling basis. Models can
be based on physical equations or on data from measure-
ments, expert guesses or other sources.

Physical equations are usually public knowledge with
well defined assumptions. They usually cover a wide
range of physical applications and can be extrapolated
without immediately leaving their range of validity. Un-
fortunately, a proper parametrization is often difficult, be-
cause finding accurate parameter values (e.g. the friction
coefficient between two bodies in contact) can be costly.

Data driven models are using for example measurement
data. These data contain every single influence (e.g. the
environment temperature) on the system during the mea-
surement – even unknown ones. Consequently, the model
is only valid for exactly these circumstances and, more-
over, its extrapolation is limited. To put measurement
data into a Modelica model so called Combi-Tables can
be used. In this case the option “extrapolation triggers an
error” of the Combi-Tables should be selected.

Characteristic maps based on measurement data also of-
ten induce a higher numerical effort for Modelica tools.
This is because interpolation between the data points is
necessary, non resolvable non-linearities can appear, and
the variable described with the characteristic map can not
be selected as a state-variable.

A model based on measurement data must contain all
relevant information about the measurement (such as mea-
sured range, measurement methods and tools, measure-
ment precision, ...) best in a formal way, and not just in
the documentation.

Other kinds of data driven models can use mathemati-
cal approximations such as neural networks, response sur-

faces or optimization functions. Mathematical approxima-
tions are either used as a simplification of a physical model
to reduce computation time or as an attempt to generalize
measurement data by learning from the output of multi-
ple measurements. There are several publications on this
topic, also from the Modelica point of view (e.g. (Bruder
and Mikelsons 2020) and (Tundis et al. 2017)).

3.4 Model Calibration
Once a model is implemented, the modeling process goes
on with the calibration, validation and verification, to en-
sure that the model appropriately achieves the aims it was
made for. Since the scope of model calibration, valida-
tion and verification is very large, we can only give here
a short overview in the context of a typical use case for
a multi-physical Modelica model. For a broader overview
on the topic, a recent paper (Riedmaier et al. 2021) goes
into more details and gives many additional references.

Multi-physical Modelica models are typically used ei-
ther to represent a real physical system or to reproduce
the behavior of such a system as a part of a model-based
feed-forward or feed-back control system. Especially the
direct generation of inverse models from Modelica mod-
els is a powerful feature which can also be used during the
calibration process, see (Reiner 2011) or (Mesa-Moles et
al. 2019).

3.4.1 Goal definition

The aim of the calibration process is to parameterize mod-
els with the help of measurements with regard to defined
goals and criteria. For models, this generally means that
they should map the behavior of the real-world system as
precisely as possible. Figure 5 shows an overview of the
model calibration process.

The calibration of the parameters of these models is im-
portant in order to achieve a good representation of the
real system or to have a good controller performance, in
the case of model-based control.

For many physical systems the knowledge of the in-
dividual involved parameters can be quite different. For
example, for the model of a robot, the mechanical pa-
rameters such as link lengths or masses could be known
very precisely from data-sheets or CAD data, whereas the
friction or damping in connecting joints can be highly un-
known. Well known parameters should, thus, be included
in the models directly, in order to reduce the number of
unknown parameters for the calibration process. Addi-
tionally, the source of these parameters should be docu-
mented.

The aim of the calibration for model-based controllers
is an optimal control performance, as well as sufficient
disturbance suppression and vibration damping (in the
case of feed-back control). For Modelica models used as
part of a control system, this often means that the model is
calibrated directly on a HIL (Hardware-in-the-Loop) setup
(Reiner 2011).

Continuous Development and Management of Credible Modelica Models

366 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181359

Goal Defini�on System Analysis Sensor Selec�on Measurement plan Op�miza�on Evalua�on

Model Calibra�on

Compila�on of the
calibra�on goals

Selec�on of the
valida�on range and
opera�on condi�on

Nonlineari�es
Excita�on signals
Emergency strategy and

Safety for HIL setups
and measurements

System dynamics
Measurement range
Noise level
Sensor placement

Experimental procedure
Sta�s�cal verifica�on
Online/Offline analysis

Strategy
Method selec�on
Star�ng values
Verifica�on/Analysis

Quan�ta�ve goals
Qualita�ve goals
Robustness analysis

Goal of the calibra�on Understanding of the
system

Safety

System Dynamics
measurable

Test procedure Model/controller
parameter

Conclusion
Itera�on necessary?

Figure 5. Overview for the Modelica model calibration process using measurement data.

3.4.2 System Analysis
There are numerous approaches for the identification pro-
cess in the literature. In particular, however, a distinction
must be made between methods for verification and iden-
tification in the frequency domain and in the time domain.
Methods in the frequency domain are useful for systems
that have (approximately) linear behavior, or for individ-
ual operating points of a system for which this assumption
applies. Methods in the time domain are also suitable for
non-linear systems, but are usually associated with greater
effort (e.g. with regard to required computing time and ex-
periment effort / duration).

Multi-physics Modelica models are usually used for
modeling of complex non-linear systems. However, also
the generation of linear systems from Modelica models is
possible using numerical linearization, which is supported
by many Modelica tools. Nonetheless, the focus is on non-
linear models in the following.

In a second step of the calibration the physical system
has to be analyzed after the aim of the calibration has been
be defined.

Normally, models of a physical system do not contain
every detail or the entire operating range of the system, see
Section 3.3.1. It must, therefore, be investigated to what
extent an undesired or non-modeled behavior can be iso-
lated. For the verification of model-based controllers on
(HIL) test benches, further considerations must be made,
such as taking precautions to ensure safe operation of the
test bench in case of a controller failure (e.g. unstable be-
havior or violation of manipulated variable restrictions).
In addition, suitable emergency strategies (e.g. emergency
stop switch, mechanical emergency braking) must be im-
plemented. If the controlled system is unstable without
a controller, a robust parallel controller can also be help-
ful, which can be activated in the event of a fault and by-
passes the controller to be verified.

3.4.3 Sensor selection
Suitable sensors have to be selected based on the calibra-
tion objectives. It is important to consider the dynamics
and measuring ranges of the sensors used. If no single

sensor can capture the entire relevant dynamics of the sys-
tem, it must be examined whether a suitable result can
be achieved by merging several measurements and / or
sensors. Sensors generally have measurement noise and
offsets, that must be considered during measurements and
appropriately compensated / calibrated. This can also be
done during a pre-processing step. After an analysis of
the system, the sensor placement must be selected in such
a way that the dynamics of the system is reproduced as
clear as possible. This is especially important for elas-
tic mechanical systems (e.g. eigenmode shapes). In case
of doubt, different placements should be examined (in the
case of elastic systems, the measurements can be influ-
enced by vibration modes, for example).

3.4.4 Measurement plan

After suitable sensor selection and placement, a measure-
ment plan should be documented, for which the statistical
nature of measurements must also be considered. Criti-
cal measurements (e.g. measurements of parameters with
a large impact on the system dynamics) must always be
carried out several times and, if there is a broader spread
of the measurement results, they must also be processed
appropriately. Particularly in the case of large deviations,
the sensor selection and placement must be critically ex-
amined again.

For the verification and tuning of controller parameters
directly on the test bench, online methods are available, in
which the evaluation takes place directly after or already
during the measurements on the test bench. HIL setups
are suitable for this, in which the Modelica-based model
controller parameters can be changed with minimal effort.

Alternatively, however, offline methods can also be
used in this case by first identifying suitable Modelica
models of the controlled system in order to be able to de-
sign appropriate controllers with the help of simulations.
For the identification of Modelica models and model-
based observer systems of the physical system, an “of-
fline” method can always be used, because the change
of the Modelica models’ parameters does not change the
measurement data, which is, on the contrary, the case, if

Session 5A: Testing

DOI
10.3384/ecp21181359

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

367

the model is part of a feed-back system. This enables more
elaborate methods to be used. Since Modelica models typ-
ically also do not represent the physical system up to very
high frequency ranges, noisy measurement data should be
low-pass filtered before the calibration process if possible
using forward-backward filtering to avoid a phase shift in
the data.

3.4.5 Optimization

Suitable identification strategies for Modelica models are
optimization-based methods. Therefore, mathematical
criteria are to be defined which can then be minimized
using a suitable optimization algorithm by varying the pa-
rameters of the model. Appropriate start parameters have
to be selected for this purpose. An important difference
to classical optimization, however, is the statistical na-
ture of the measurement results, which must be appro-
priately considered for the criteria specification. In the
case of HIL optimization, mainly only optimization meth-
ods with a small number of steps (function evaluations)
are to be used, since HIL experiments are usually signifi-
cantly more time-consuming compared to pure numerical
evaluations. This normally means that local optimization
methods are to be preferred (e.g. gradient based methods
or surrogate optimization techniques).

For offline methods, nearly all optimization algorithms
can be used. However, because of the noise in the
data, usually those algorithms converge better, which are
gradient-free or robust against noise. For Modelica mod-
els, a wide range of optimization tools are available. There
are methods for optimizing the Modelica model directly
within Dymola using e.g. the DLR Optimization library
(Pfeiffer 2012), as well as many other external tools. The
latter use the Modelica model directly as an executable or
exported as an FMU within a chosen environment, such
as Python or Matlab, since the parameters of the Model-
ica models can still be changed, even after the compilation
and export, see e.g. (Leimeister 2019).

3.4.6 Evaluation

After the Modelica model of the system has been verified
the obtained results must be assessed quantitatively and
qualitatively with regard to the selected objectives. To en-
sure robustness and to avoid over-fitting, additional mea-
surements should be used for this step, which were not
used within the optimization process of the parameters. If
not all goals could be met during the calibration process,
the process must be carried out again iteratively after an
analysis of the results and, if necessary, a new modified
model or controller structure must be used.

As a final result, the obtained set of model parameters
should be documented, together with the model and the
original measurement data, as well as a detailed descrip-
tion of the overall process. For Modelica models, such
a documentation can be done directly within the model
(see also sec. 3.2.1).

4 Model management
The modeling process described in Section 3 is a com-
plex procedure with many steps and iterations. During the
modeling process as well as afterwards, the different mod-
eling stages should be traced. Therefore, a version and re-
vision management is needed, as well as an archiving of
measurement data, simulation results, etc.

4.1 Source code management using git
Modelica models and packages are stored in ASCII-files.
It is therefore obvious to store these files in a source code
management system, such as GitHub18 or GitLab19, which
provide a lot of additional functionality compared to pure
git20. Model developers can then profit from issue track-
ing, merge/pull requests, release handling, etc. One disad-
vantage of these widespread source code management sys-
tems is that access rights can be only defined for a whole
repository. In industrial projects, it is typically not desired
that everyone has access to the whole information and it is
then necessary to split the information over several repos-
itories, for example:

• A repository contains the source code of the Mod-
elica model or the Modelica package. Only model
developers have access to this repository.

• A repository contains the released versions (possibly
with encrypted Modelica packages), as well as an is-
sue tracker. Users of the model library have access
to this repository.

• A repository contains administrative information,
such as contracts, clearance, license information.
Managers have access to this repository.

Data to parametrize the models is often not stored in
a source code management system but is extracted from
database systems. Simulation results and measurement
data is often stored in binary format and, therefore,
a source code management system is not well suited. In-
stead, this data is typically stored at different locations
on a pure file system without version management. Al-
together this means that the information about a model
might be spread across several locations. Consequently,
it is advisable to maintain a document with information
about the different storage locations. Regarding the model
credibility, there is room for improvement.

Due to its textual nature, any change in the Modelica
model can be traced, read and understood by humans. But,
keeping minimal textual differences is a hard job for Mod-
elica tools, especially when users mix graphical and tex-
tual modeling. As the formatting of Modelica code is not
specified, the problem even increases if different Model-
ica tools are used within one project. To our experience, it

18https://github.com/
19https://about.gitlab.com/
20https://git-scm.com/

Continuous Development and Management of Credible Modelica Models

368 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181359

is a significant early step to establish implementation rules
for a project collaboration in order to keep model changes
traceable. A public starting point for these modeling con-
ventions is Modelica.UsersGuide.Conventions21.
Another best practice concerning Modelica code man-
agement is to seperate git commits for larger graphical
and documentation changes and for actual changes to the
model (like introducing new components or changing or
adding equations). Furthermore, all auto-formatting in
tools should be switched off.

4.2 Version management
While source-code management of Modelica models
works fine within one organization, most of the time
this important information is lost when delivering mod-
els across organizational boarders, e.g. from supplier to
OEM. Modelica has multiple ways of storing the current
revision information in annotations e.g. the revisions
and/or revisionID. See an example of MSL 4.0.0 in
Listing 4. One important limitation is that revisionId
and dateModified are usually stored only on the top
level package, so it cannot be used to see when an actual
class has been changed. For specific classes, one has to
rely on the non-formalized revisions annotation. Con-
ventions for how to structure and update the revisions
annotation are library specific, so far. The revisionId is
not automatically handled by most Modelica tools and it is
typically lost when generating an FMU based on Modelica
code.

While Modelica tools can give support on versioning
and releases, a library release still implies coordination
between multiple team members. One public resource for
release workflows is the Modelica Standard Library De-
velopers Wiki22

4.3 Model resources
By convention, non-Modelica language information, such
as manufacturer data sheets, data-files for CombiTables,
images, is stored in folder Resources which is located at
the top level directory of a library. It might be helpful to
distinguish – also in the structure of the Resources folder –
between model-data (parametrization data, e.g. for Com-
biTables) and documentation-data (e.g. example results or
information used for modeling). Model-data are necessary
for the functionality of the model, while documentation-
data is “only” nice to have, but can be extremely helpful
for the comprehension of the model. There is a smooth
transition between model-data and documentation-data.
For example, icon-graphics is irrelevant for the function-
ality of a library, but improves the user’s handling signifi-
cantly by giving a quick graphical impression of the com-
ponent.

As already mentioned in Section 4.1, larger measure-
ment databases are usually not stored within the Modelica

21https://doc.modelica.org/Modelica%203.2.3/Resources/-
helpDymola/Modelica_UsersGuide_Conventions.html

22https://github.com/modelica/ModelicaStandardLibrary/wiki

library. But, in order to understand the quality of cali-
brated models, we propose to store a minimal set of mea-
surement data, actually used for parameter optimization
within the Resources folder as documentation-data.

While the file structure of Modelica code is automati-
cally updated by a Modelica tool on the file system, the
central resources folder has to be organized manually.
This is error-prone and, depending on the chosen struc-
ture, hard to update when e.g. re-structuring the Model-
ica package. External links to larger measurement data
sources is not handled by the current Modelica package
concept and local resolving of the loadResource()23

function.
In order to be able to extract working system models

out of a larger library, Modelica tools are typically able
to store a so-called total model, including all required re-
sources. The storage of total models is not standardized in
Modelica, yet. The loadResource() function in com-
bination with a Uniform Resource Identifier (URI) helps
to avoid path issues and allows a Modelica tool to analyze
which resources are needed. As models can access files in
multiple ways, it still remains a tedious task to check e.g.
for missing resources or too much files to be copied.

4.4 Archiving of simulation results
Simulation results are usually stored in a file, in binary
or ASCII format. This includes reference data as input
for a model, as well as reference results that a simulation
should reproduce within some tolerance. Various result
file formats are used in the Modelica community, but there
is no satisfactory, standardized solution.

When results need to be exchanged, such as reference
results of the Modelica Standard Library, or of FMUs, they
are often stored in CSV format24 due to its widespread
support in tools. Hereby, the result is seen as a table,
where every column has a name (optionally with "."s to
mark hierarchical structures or "[..]" to mark elements of
an array) and represents a time series. The first column
contains the monotonically increasing value of the inde-
pendent variable (usually Time). A discontinuity is sig-
naled by two identical time instants. For an example see
listing 5.

Listing 5. Example of a CSV file with time event at 0.1 s

Time, control.w_ref, motor.w, on[3]
0.0, 0.0 , 0.0, 0
0.1, 0.0 , 0.0, 0
0.1, 1.0 , 0.0, 1
0.2, 1.0 , 0.1, 1
0.3, 1.0 , 0.2, 1

The essential advantage of this format is its simplicity, but
there are numerous drawbacks. Especially, it is not suited
for large data sets as needed to archive simulation results.

23Modelica.Utilities.Files.loadResource:
https://doc.modelica.org/Modelica%204.0.0/Resources/helpDymola/-
Modelica_Utilities_Files.html#Modelica.Utilities.Files.loadResource

24https://en.wikipedia.org/wiki/Comma-separated_values

Session 5A: Testing

DOI
10.3384/ecp21181359

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

369

Listing 4. Annotations relevant to versioning using the example of the Modelica Standard Library

package Modelica

// Sub=packages removed

annotation (
version="4.0.0",
versionDate="2020-06-04",
dateModified = "2020-06-04 11:00:00Z",
revisionId="6626538a2 2020-06-04 19:56:34 +0200",
uses(Complex(version="4.0.0"), ModelicaServices(version="4.0.0")),
Dymola(checkSum="469888163:3572996634"),
conversion(
from(

version={"3.0", "3.0.1", "3.1", "3.2", "3.2.1", "3.2.2", "3.2.3"},
script="modelica://Modelica/Resources/Scripts/Conversion/ConvertModelica_from_3.2.3

_to_4.0.0.mos")),
...);

end Modelica;

For larger data sets often the dsres (dynamic system re-
sults) storage format is used that was developed around
1996 by Martin Otter and used by Dymola. It was later
also used by OpenModelica25. There are several import-
ing and exporting scripts available, especially for Matlab
and for Python26. The dsres-format consists of a set of
matrices that are either stored in MATLAB MAT v4 bi-
nary format or in a textual format. The logical view is:

1. String vector name contains the names of the sig-
nals. An index i of this vector characterizes the cor-
responding signal i.

2. String vector description contains a description text
for the signal, typically with its unit.

3. Integer matrix dataInfo contains information where
and how a signal is stored: A signal i is stored in a
matrix j in column k with an interpolation type l and
an extrapolation type m. If k is negative, column |k|
has to be multiplied with -1.

4. The core data is stored in data_j matrices where ev-
ery column of a matrix contains the time series of
one signal. The first column is the independent vari-
able. Different matrices can have different time axes,
that is, different number of rows. Typically, two data
matrices are present: One matrix with two rows, that
stores the parameters as time series with two time
points, and one matrix with the time-varying signal
data that corresponds to the data stored in CSV file
format.

Due to the connector definition, a Modelica model has
typically many variables that are identical or have op-
posite sign. The time series of these signals are stored

25https://openmodelica.org/doc/OpenModelicaUsersGuide-
/latest/technical_details.html#the-matv4-result-file-format

26https://github.com/jraedler/DyMat/
https://github.com/kdavies4/ModelicaRes/

in a compact way with the dsres-format, because the ac-
tual time series of variables that are related by equations
v1 = v2 = −v3 = −v4 = ... are stored in one column of a
data matrix. If all variables of a Modelica model are stored
in a result file, then often the size of the file is reduced by
a factor of 4-5 by this technique. Furthermore, the second
data matrix is stored in such a way, that the binary result
file can be recovered, even if a simulation run crashes dur-
ing integration.

There had been a few attempts to define a standard-
ized time series file format based on HDF527, an open
source file format that supports large, complex, heteroge-
neous data and meta information stored hierarchically in
one binary file: In particular, the MTSF format (Modelica
Association Time Series File Format) (Pfeiffer, Bausch-
Gall, and Otter 2012) and the SDF format (Scientific Data
Format)28. In (Pfeiffer, Bausch-Gall, and Otter 2012) it is
reported that simulation results up to 200 Gbyte could be
stored and retrieved in HDF5 format on file. Although,
HDF5 looks attractive for scientific data sets and espe-
cially simulation result data, it has severe drawbacks, es-
pecially because it is complex and not suited for today’s
cloud-services. For a more detailed discussion, see (Tiller
and Harman 2014).

A more modern design is the recon29 format developed
by (Tiller and Harman 2014): Simulation results and meta
data are stored in a network friendly way using the JSON
format30 where the core data is packed with msgpack31.

4.4.1 Result meta data
The result format should store more than just numeric val-
ues. In order to interpret the results correctly, the follow-
ing additional information seems especially valuable:

27https://www.hdfgroup.org/solutions/hdf5/
28https://github.com/ScientificDataFormat
29github.com/xogeny/recon
30https://www.json.org/json-en.html
31https://msgpack.org/

Continuous Development and Management of Credible Modelica Models

370 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181359

• Which simulation tool and of which version gener-
ated the result? Which simulation settings have been
used?

• Which system model, which validated (sub-)models
and which boundary conditions/scenarios were used
to produce the simulation results?

• What are the interesting variables for analysis? In
large Modelica result files, finding relevant variables
for analysis might be difficult. Two possible ways to
improve this situation could be:
1) Predefined plots – based on figure annotations of
MLSv35 (Modelica Association 2021) – could be
also available in the result format.
2) The file modelDescription.xml of FMI defines the
system model interface – inputs, outputs and parame-
ters – in a re-usable, standardized way. This interface
information could also be available in result formats.

• What is the expected accuracy of the simulation?
The upcoming FMI for embedded systems (eFMI)
specification32 (Lenord et al. 2021) defines toler-
ances.

When generating reference results for the MSL, some of
this meta data is stored in a separate file creation.txt, see
an example in the MSL33.

The SSP Traceability Specification34 is currently un-
der development within the Modelica Association Project
"System Structure and Parameterization of Components
for Virtual System Design"35. The approach is based on a
so-called glue particle, an XML file providing a consistent
data schema along the simulation process. For specifics of
the proposed file format, see Simulation Task Meta Data in
file STMD.xsd. If this concept would be applied to Mod-
elica and supported by Modelica tools, it could save a lot
of today’s manual documentation work.

4.4.2 Results for post-processing
Most result formats are designed in a way, that the Model-
ica tool can conveniently write those files during simula-
tion. For archiving purposes, it is also important to retain
the readability of the files even when the source tool is no
longer available. Moreover, post-processing should also
be possible in any external tool, like Excel, Julia, Mat-
lab, Python, etc. If a standardized result file format would
be available, both issues could be solved by standardized
reading procedures for different languages.

5 Conclusions and outlook
The paper summarizes current challenges in Modelica-
related continuous development processes with regards

32https://emphysis.github.io/pages/downloads/efmi_specification_1.0.0-
alpha.4.html#definition-of-csv-data

33https://github.com/modelica/MAP-LIB_ReferenceResults/blob/
v4.0.0/Modelica/Blocks/Examples/PID_Controller/creation.txt

34github.com/PMSFIT/SSPTraceability
35ssp-standard.org

to modeling, simulation, data management and calibra-
tion/verification. A particular focus was given on the de-
velopment and handling of Modelica models and libraries.

Several aspects have been identified that need to be
improved to arrive at a reliable process for the develop-
ment of credible models and digital twins based on coher-
ent Modelica Association standards (Modelica language,
FMI, SSP, DCP, eFMI)36. The upcoming eFMI standard
(Lenord et al. 2021) goes already in the right direction by
including tolerance-defined reference results in an eFMI
model to support automatic tests and verification of gen-
erated production code. The glue particle approach in the
SSP-project might be used for all MA standards so that
tool chains from Modelica models to FMI, SSP, DCP, and
eFMI components are completely traceable and no infor-
mation is lost. Furthermore, additional information needs
to be added to define the domain of validity of a model. It
might also be necessary to add further quality measures.
Simulation results need to be stored in a standardized way
both for exchange between tools, as well as for archiving
purposes. The recon format with glue particle information
included might be considered for all Modelica Association
standards and reference files.

As an overall target, the UPSIM project description
states: “Enable companies to safely collaborate with sim-
ulations, in a repeatable, reliable, and robust manner, and
for implementing simulation in a Credible Digital Twin
setting as a strategic capability to become an important
factor in quality, cost, time-to-market, and overall compet-
itiveness.” This view could become a guideline for further
development of the Modelica Association standards.

Acknowledgements
This work has been partly supported by the European
ITEA3 Call6 project UPSIM37 – Unleash Potentials in
Simulation (number 19006). The work was funded by
the German Federal Ministry of Education and Research
(BMBF, grant numbers 01IS20072H and 01IS20072G).

We would like to thank the reviewers of this paper as
well as Tobias Bellmann for quite a lot of constructive im-
provement proposals. We would also like to thank Thomas
Alpögger, Daniel Bouskela, Andreas Junghanns, Martin
Krammer, Lars Mikelsons, Mugur Tatar for their com-
ments on some details that we have taken into account.

References
Alistair, Mavin Mav and Philip Wilkinson (2019). “Ten Years of

EARS”. In: IEEE Software 36.5, pp. 10–14. DOI: 10.1109/
MS.2019.2921164.

Bals, J., W. Fichter, and M. Surauer (1997). “Optimization of
magnetic attitude- and angular momentum control for low
earth orbit satellites”. In: Proceedings Third International
Conference on Spacecraft Guidance, Navigation and Control
Systems 1996. ESTEC, Noordwijk, The Netherlands. URL:

36https://modelica.org/
37https://itea3.org/project/upsim.html

Session 5A: Testing

DOI
10.3384/ecp21181359

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

371

https : / /ui . adsabs .harvard .edu/ link_gateway/1997ESASP.
381..559B/ADS_PDF.

Bouskela, Daniel, Alberto Falcone, et al. (2021). “Formal Re-
quirements Modeling for Cyber-Physical Systems Engineer-
ing: an integrated solution based on FORM-L and Modelica”.
In: Requirements Engineering - accepted for publication.

Bouskela, Daniel and Audrey Jardin (2018). “ETL: A New Tem-
poral Language for the Verification of Cyberphysical Sys-
tems”. In: 2018 Annual IEEE International Systems Confer-
ence (SysCon). URL: https://ieeexplore.ieee.org/document/
8369502.

Bruder, Frederic and Lars Mikelsons (2020). “Towards Grey
Box Modeling in Modelica”. In: Kuo CH., Lin PC., Essomba
T., Chen GC. (eds) Robotics and Mechatronics. ISRM 2019.
Mechanisms and Machine Science, vol 78. DOI: 10.1007/978-
3-030-30036-4_17.

Buse, Fabian and Tobias Bellmann (2021). “General Purpose
Lua Interpreter for Modelica”. In: Proceedings of the 14th
International Modelica Conference.

Corso, Antony et al. (2020). “A Survey of Algorithms for Black-
Box Safety Validation”. In: arXiv:2005.02979. URL: https :
//arxiv.org/abs/2005.02979.

Dempsey, M. et al. (2006). “Coordinated Automotive Libraries
for Vehicle System Modelling”. In: 5th International Mod-
elica Conference. Vienna, Austria, pp. 33–41. URL: https :
//modelica.org/events/modelica2006/Proceedings/sessions/
Session1b2.pdf.

Department of Defense (2016). Aircraft Electric Power Char-
acteristics (MIL-STD-704F_CHG-1). Tech. rep. URL: http :
/ /everyspec.com/MIL- STD/MIL- STD- 0700- 0799/MIL-
STD-704F_CHG-1_55461/.

Elmqvist, Hilding et al. (2021). “Modia - Equation Based Mod-
eling and Domain Specific Algorithms”. In: Proceedings of
the 14th International Modelica Conference.

Heinkel, Hans-Martin and Kim Steinkirchner (2021). Credi-
ble Simulation Process. Tech. rep. Robert Bosch GmbH and
PROSTEP AG. URL: https://setlevel.de/neuigkeiten/credible-
simulation-process.

Joos, Hans-Dieter (2015). “Application of Optimization-Based
Worst Case Analysis to Control Law Assessment in
Aerospace”. In: Advances in Aerospace Guidance, Naviga-
tion and Control. DOI: 10.1007/978-3-319-17518-8_4.

König, Christian et al. (2020). “Traceability in the Model-
based Design of Cyber-Physical Systems”. In: Proceedings
of the American Modelica Conference 2020. Boulder, USA,
pp. 168–178. DOI: 10.3384/ecp20169168.

Kuhn, Martin R., Martin Otter, and Loic Raulin (2008). “A Multi
Level Approach for Aircraft Electrical Systems Design”. In:
6th International Modelica Conference. Bielefeld, Germany,
pp. 95–101. URL: https://modelica.org/events/modelica2008/
Proceedings/sessions/session1d1.pdf.

Labusch, Andreas et al. (2014). “Worst Case Braking Trajecto-
ries for Robotic Motion Simulators”. In: IEEE International
Conference on Robotics & Automation (ICRA). Hong Kong,
China. DOI: 10.1109/ICRA.2014.6907333.

Leimeister, Mareike (2019). “Python-Modelica Framework for
Automated Simulation and Optimization”. In: Proceedings of
the 13th International Modelica Conference. DOI: 10.3384/
ecp1915751.

Lenord, Oliver et al. (2021). “eFMI: An open standard for phys-
ical models in embedded software”. In: Proceedings of the
14th International Modelica Conference.

Mesa-Moles, L. et al. (2019). “Robust Calibration of Complex
ThermosysPro Models using Data Assimilation Techniques:
Application on the Secondary System of a Pressurized Water
Reactor”. In: Proceedings of the 13th International Modelica
Conference. DOI: 10.3384/ecp19157553.

Modelica Association (2021-02). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.5. Tech. rep. Linköping: Modelica Associa-
tion. URL: https://specification.modelica.org/maint/3.5/MLS.
pdf.

Otter, Martin et al. (2015). “Formal Requirements Modeling for
Simulation-Based Verification”. In: 11th International Mod-
elica Conference. Versailles, France, pp. 625–635. DOI: 10.
3384/ecp15118625.

Pfeiffer, Andreas (2012). “Optimization Library for Interac-
tive Multi-Criteria Optimization Tasks”. In: 9th International
Modelica Conference. Munich, Germany, pp. 669–680. DOI:
10.3384/ecp12076669.

Pfeiffer, Andreas, Ingrid Bausch-Gall, and Martin Otter (2012).
“Proposal for a Standard Time Series File Format in HDF5”.
In: 9th International Modelica Conference. Munich, Ger-
many, pp. 495–505. DOI: 10.3384/ecp12076495.

Reiner, M. (2011). “Modellierung und Steuerung von struk-
turelastischen Robotern”. PhD thesis. Technische Universität
München, Fakultät für Maschinenwesen.

Riedmaier, S. et al. (2021). “Unified Framework and Survey for
Model Verification, Validation and Uncertainty Quantifica-
tion”. In: Archives of Computational Methods in Engineering
28, pp. 2655–2688. DOI: 10.1007/s11831-020-09473-7.

Schamai, Wladimir (2013). “Model-Based Verification of Dy-
namic System Behavior against Requirements: Method, Lan-
guage, and Tool”. PhD thesis. University of Linköping. URL:
http://liu.divaportal.org/smash/record.jsf?pid=diva2:654890.

Tatar, Mugur and Jakob Mauss (2014). “Systematic Test and
Validation of Complex Embedded Systems”. In: ERTS 2014
- Embedded Real Time Software and Systems. Toulouse,
France. URL: https : / / www. researchgate . net / publication /
259871632_Systematic_Test_and_Validation_of_Complex_
Embedded_Systems/.

Thuy, Nguyen (2014). “FORM-L: A Modelica Extension for
Properties Modelling Illustrated on a Practical Example”.
In: 10th International Modelica Conference. Lund, Sweden,
pp. 1227–1236. DOI: 10.3384/ecp140961227.

Tiller, Michael and Peter Harman (2014). “recon – Web and net-
work friendly simulation data formats”. In: Proceedings of
the 10th International Modelica Conference. DOI: 10.3384/
ecp140961081.

Tundis, Andrea et al. (2017). “Model-Based Dependability
Analysis of Physical Systems with Modelica”. In: Hindawi,
Modelling and Simulation in Engineering, Volume 2017. DOI:
10.1155/2017/1578043.

Wei, Wang et al. (2016). “Vibration performance analysis of ve-
hicle with the non-pneumatic new mechanical elastic wheel
in the impulse input experiment”. In: Journal of Vibroengi-
neering, Vol. 18, Issue 6, 2016. DOI: 10 . 21595 / jve . 2016 .
16988.

Zimmer, Dirk, Martin Otter, and Elmqvist (2014). “Custom An-
notations: Handling Meta-Information in Modelica”. In: 10th
International Modelica Conference. Lund, Sweden, pp. 174–
182. DOI: 10.3384/ecp14096173.

Continuous Development and Management of Credible Modelica Models

372 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181359

