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Abstract
In data-driven bearing fault diagnosis, sufficient fault data
is fundamental for algorithm training and validation, how-
ever, in most industry applications, only very few fault
measurements can be provided, which brings bearing dy-
namics model as an alternative to produce bearing re-
sponse under defects. In this paper, a Modelica model for
the whole bearing test rig was built, including test bearing,
driving motor and hydraulic loading system. For the test
bearing, a 5 degree-of-freedom (5-DoF) model was pro-
posed to identify the normal bearing dynamics, and a fault
model was employed to characterize the defect position,
defect size, defect shape and multiple defects. Theory
and process to implement the virtual bearing test bench
in Modelica were detailed, and 3 cases were conducted to
validate the effectiveness of the proposed model.
Keywords: Bearing Diagnosis, Fault Modeling, Modelica,
Bearing Test Bench

1 Introduction
Dynamics simulation under defect is essential for bearing
fault diagnostics. However, traditional research method
based on experiments is of high cost and low efficiency
since it requires a real test rig and the defect needs to
be generated artificially. Furthermore, out of safety con-
sideration, experiment-based research usually runs under
only some specific working conditions and defect sizes,
which restricts the exploration of bearing dynamics under
extreme conditions and fault specifications. To bridge the
gap, this paper proposes a virtual bearing test bench in
Modelica to serve as a general platform for fault bearing
dynamics simulation.

To date, the methods for fault bearing dynamics
simulation can be classified into 2 categories, namely
mechanism-based models and signal-based models. Cui
et al. (Cui, X. Chen, and S. Chen (2015)) built a 5-DoF
model to characterize bearing’s dynamic behavior. Be-
sides, a defect model was also established to deal with
defect position, defect shape and defect size (Liu, Shao,
and Lim (2012)). Whereas, other researchers investigated
the fault bearing dynamics response from the perspective
of signal analysis. The first model identifying the ampli-
tude spectrum of bearing with a single defect on the in-

ner race was proposed by McFadden in 1983 (McFadden
and Smith (1984)). In 2000, slight random variations were
further incorporated into the impulse responses to resem-
ble actual vibration signals caused by bearing faults (Ho
and R. Randall (2000)). After that, Cong et al. (Cong et
al. (2013)) put forward a new fault signal model for bear-
ing based on the combination of decaying oscillation fault
signal model and rotor dynamic response influence, espe-
cially, the defect load was divided into alternate load and
determinate load.

For real test bench, dynamics from driving and loading
systems also affect test bearing response. Nevertheless, to
our exhausted knowledge, nearly all published papers on
bearing fault modeling only focus on the bearing and just
set speed and load as constants, without considering the
dynamics from driving motor and loading actuator, which
leads to the goal to build a whole bearing test bench in this
paper.

The remainder of this paper is organized as follows.
Section 2 details the modeling theory of bearing test
bench, including 5-DoF bearing dynamics model, bearing
defect model, driving and loading system model. Section
3 outlines the model structure in Modelica and demon-
strates how to use this virtual test bench to simulate bear-
ing with specific defects. Section 4 concludes this paper.

2 Modeling in Modelica
2.1 Test Bearing
The ball bearing is composed of outer ring, inner ring,
cage and rolling elements. A normal bearing achieves dy-
namic balance in a stable operating condition, while a se-
ries of impulses will be generated once there is a defect
between the contact surfaces. In the following, a 5-DoF
dynamics model and a defect model will be introduced.

2.1.1 5-DoF Dynamics Model

This model describes the nonlinear dynamic behavior of
bearing, as shown in Figure 1. In the 5-DoF model, 4
DoF represents the horizontal and vertical direction of in-
ner and outer rings, and 1 DoF stands for the vertical direc-
tion of a unit resonator, which is modeled as spring-mass
system (Cui, X. Chen, and S. Chen (2015)).

Based on Newton’s second law, the bearing dynamic
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Figure 1. The 5-DoF model of bearing (Cui, X. Chen, and S.
Chen (2015)).

equilibrium equations can be formulated as Equation 1
(Cui, X. Chen, and S. Chen (2015)).

msẍs +Rsẋs +Ksxs + fx = 0 ,

msÿs +Rsẏs +Ksys + fy = Fy −msg ,

mpẍp +Rpẋp +Kpxp − fx = 0 ,

mpÿp +(Rp +RR)ẏp +(Kp +Kr)yp −RRẏb ,

−KRyb − fy =−mpg ,

mRÿb +RR(ẏb − ẏp)+KR(yb − yp) =−mRg .

(1)

fx and fy are contact force at x and y axis respectively, Fy
is external load. The meanings and values of other vari-
ables are summarized in Table 1. According to Hertzian
contact theory, the contact force between rolling element
and raceways can be given by:

f j = Kbδ
1.5
j , (2)

with j from 1 to nb, nb is the number of rolling elements.
Kb stands for ball’s stiffness, δ denotes deformation. The
deformation of the jth ball, δ j, is determined by the dis-
placement between the inner and outer races, the angular
position θ j and the total clearance c caused by the oil film
and assembly clearance, as:

δraw j = (xs − xp)cosθ j +(ys − yp)sinθ j − c . (3)

The angular position of the jth ball can be calculated by
Equation 4.

θraw j =
2π( j−1)

nb
+ωct +φ0 , (4)

where φ0 is initial cage angular position and ωc is cage an-
gular frequency, which can be further obtained from shaft
frequency ωs like Equation 5.

ωc =

(
1− Db

Dp

)
ωs

2
, (5)

where Db and Dp are the ball diameter and pitch diameter
respectively.

Normally, for bearings in real applications, there exists in-
evitable sliding when a ball rolls on the raceways. The
sliding direction depends on where the ball is located,
when the ball enters into the load zone, the angular speed
of the ball center is faster than that of the cage, otherwise,
the ball slides backward. Consequently, when sliding con-
sidered , the angular position of each ball can be modified
by Equation 6 (Cui, X. Chen, and S. Chen (2015)).

θ j = θraw j +ξ j

(
1
2

rand
)

φslip . (6)

There are two constants and a sign function in Equation
6. φslip is a parameter defining the mutation percentage
of average contact frequency, which is normally between
0.01 and 0.02 rad. rand is a random number with uniform
distribution in the range of [0,1], and the sign function ξ j
is expressed as:

ξ j =

{
1, load zone
−1, else

(7)

Considering δ j should be nonnegative in physics, thus, its
final value is determined by:

δ j = Max(δraw j ,0) . (8)

With the contact force of each ball obtained from Equa-
tion 2, the total contact forces in x and y direction can be
determined with the Equations 9 and 10.

fx =
nb

∑
j=1

f j cosθ j , (9)

fy =
nb

∑
j=1

f j sinθ j . (10)

2.1.2 Defect Model
When bearing has defects either on races or balls, an ad-
ditional deformation, δ f au, will release when ball moves
over the defect zone. Thus, with defect considered, defor-
mation of the jth ball can be further identified as:

δraw j = (xs − xp)cosθ j +(ys − yp)sinθ j − c−δ f au j .
(11)

Once bearing deformation under defect is obtained, it can
be substituted into Equations 9 and 10, where the nonlin-
ear contact force can be calculated and further substituted
into Equation 1 to get the fault bearing response. Appar-
ently, δ f au changes with defect position, defect shape and
number of defects, which will be discussed respectively in
the following.

2.1.3 Defect Position
Firstly, four basic geometrical parameters are chosen to
characterize the defect, as demonstrated in Figure 2, the
defect width B, the defect depth Hd , the defect initial angle
φd and the defect span angle ∆φd . Take a defect on the
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outer ring as an example, the relation between ∆φd and B
can be expressed as:

sin
(

1
2

∆φd

)
=

B
Db +Dp

. (12)

Suppose the local defect depth is cd , the additional defor-

Figure 2. Size definition of defect on the outer ring.

mation δ f au generates only when a ball falls into the defect
zone within φd and φd +∆φd , so the deformation released
by defect on raceway is given by:

δ f au j =

{
cd , φd ≤ θ j ≤ φd +∆φd

0, else
(13)

The defect location on the outer ring or inner ring changes
with different rules. For the outer ring, the defect is fixed
at the defect initial angle φdo, however, for the inner ring,
the defect location changes with time when the inner ring
rotates. Thus, φd in Equation 13 can be further modeled
as follows.

φd =

{
φdo, defect on the outer ring
ωst +φdi, defect on the inner ring

(14)

Different from rings, when a defect happens on a rolling
element, the defect spins with ball speed ωb and its posi-
tion φs can be obtained like:

φs = ωbt +φsini , (15)

hereby the ball speed ωb can be calculated from shaft
speed as follows,

ωb =
ωs

2
Dp

Db

[
1−

(
Db

Dp
cosα

)2
]
. (16)

The defect on balls contacts the inner and outer ring pe-
riodically. Besides, the curvature radiuses of inner and
outer rings are different, therefore, the same defect span
angle ∆φd produces different angular widths. The angular

widths of defect on the outer ring and inner ring, ∆φbo and
∆φbi, can be calculated by Equations 17 and 18.

∆φbo = ∆φd
Db

Do
, (17)

∆φbi = ∆φd
Db

Di
, (18)

with Do and Di as the diameters of outer ring and inner
ring respectively.

Obviously, the curvature radius determines the depth
when ball enters into the raceway, and the curvature ra-
diuses of ball cdr, inner ring cdi and outer ring cdo can be
obtained respectively by Equations 19, 20 and 21 (Mishra,
Samantaray, and Chakraborty (2017)).

cdr =
1

2
(

Db −
√

D2
b −B2

) , (19)

cdi =
1

2
(

Di −
√

D2
i −B2

) , (20)

cdo =
1

2
(

Do −
√

D2
o −B2

) , (21)

During one revolution of the ball, defect contacts the
inner ring and outer ring in succession, with an angular
distance of π . So, cd can be given by Equation 22 (Mishra,
Samantaray, and Chakraborty (2017)).

cd =

{
cdr − cdo, 0 ≤ ϕs ≤ ∆φbo

cdr + cdi, π ≤ ϕs ≤ π +∆φbi
(22)

Deformation released by fault only appears on the fault
ball (kth ball). As a result, the contact deformation with
ball defect is given by:

δ j =

{
0, j ̸= k
cd , j = k

(23)

2.1.4 Multiple Defects

When bearing has multiple defects, the model is expanded
into a matrix. For simplicity, no matter how many and
what kind of defects the bearing has, the total impact on
the bearing vibration is supposed to be the sum of effect
that each defect has on each ball. Thus, a 3×nd matrix N
is defined to deal with multiple defects modeling.

N3×nd =

p1 p2 · · · pnd

φd1 φd2 · · · φdnd

∆φd1 ∆φd1 · · · ∆φdnd

 (24)

where pnd , φdnd
and ∆φdnd

stand for the nth
d defect po-

sition, defect initial angle and defect span angle respec-
tively. In this model, pi is defined with Equation 25 for
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i = 1,2 · · ·nd .

pi =


1, outer ring fault
2, inner ring fault
3, ball fault

(25)

The deformation on each ball caused by each defect can
be determined based on above discussion. For a bearing
with nb rolling elements and nd defects, the deformation
depth is an nd ×nb matrix as:

δnd×nb =

 δ11 · · · δ1nb
...

. . .
...

δnd1 · · · δndnb

 (26)

The total deformation depth caused by all defects for each
ball is obtained through elementwise addition in column.
Therefore, a deformation vector with nb dimensions is
given as Equation 27.

δ1×nb =
[
δ1,δ1, · · · ,δnb

]
(27)

Consequently, the defect model for bearing with nd de-
fects is established. The calculation of contact force and
acceleration is the same as the single defect model.

2.1.5 Defect Shape and Size

Besides defect position, defect shape also has much in-
fluence on bearing acceleration response. Most existing
bearing defect models, however, simplify the defect depth
cd as a constant value. In practice, the value of cd differs
with defect shape as well as the ratio of defect size to ball
diameter (Cui, X. Chen, and S. Chen (2015)). In order to
accurately model the defect shape, the released deforma-
tion is modeled by a piece-wise function. In this research,
two ratios, ball to defect ratio ηbd and length to width ra-
tio ηd , are defined in Equation 28 and 29 for defect shape
modeling,

ηbd =
Db

min(L,B)
, (28)

ηd =
L
B
, (29)

where B and L represent the width and length of the defect
respectively (Cui, X. Chen, and S. Chen (2015)). With
the combination of these two ratios, the defect shape is
grouped into four types (Hr1, Hr2, Hr3, Hr4), which is
given by Equation 30 (Cui, X. Chen, and S. Chen (2015)).

cd =


Hr1 , ηbd ≫ 1
Hr2 , ηbd > 1andηd ≤ 1
Hr3 , ηbd > 1andηd > 1
Hr4 , ηbd ≤ 1

(30)

The maximal depth of defect for each case is denoted with
c
′
d , which will be explained later.

In case 1, the defect size is too small compared with ball
diameter, so the ball leaves defect immediately as soon as
it contacts the defect. Therefore, as shown in Figure 3(a),
there is no deformation change in the defect zone, and Hr1
can be modeled as:

Hr1 = c
′
d , 0 ≤ ϕ j ≤ ∆φd . (31)

For case 2, the ball’s moving path over the defect zone is
like a half-sine wave, as shown in Figure 3(b). The de-
formation released from defect increases gradually to the
maximum and then decreases, which can be given by:

Hr2 = c
′
d sin

(
π

∆φd
ϕ j

)
, 0 ≤ ϕ j ≤ ∆φd (32)

In case 3, as revealed in Figure 3(c), cd rises up to the
maximal depth gradually and remains at the maximum be-
tween φ1 and φ2. After that, cd begins to decrease when
the ball gets out of defect. This shape is expressed by
Equations 33 and 34.

Hr3 =


c
′
d sin

(
π

2φ1
ϕ j

)
0 ≤ ϕ j < φ1

c
′
d φ1 ≤ ϕ j < φ2

c
′
d sin

(
π

2φ1
ϕ j +

π

2

)
φ2 ≤ ϕ j < ∆φd

(33)

φ1 = ∆φdλ , φ2 = ∆φd(1−λ ) , (34)

hereby λ is the ratio of φ1 to ∆φd . φ1 is the position where
the ball reaches defect bottom.

In case 4, since the ratio of ball to defect ηbd is less than
that in case 3. Thus, the ball reaches the defect bottom
within a complete 1/4 sine wave, and defect shape can be
modeled as:

Hr4 =


c
′
d sin

(
2π

∆φd
ϕ j

)
, 0 ≤ ϕ j < φ1

c
′
d , φ1 ≤ ϕ j < φ2

c
′
d sin

(
2π − 2π

∆Φd
ϕ j

)
, φ2 ≤ ϕ j < ∆φd

(35)

The maximum depth c
′
d is given by Equations (Cui, X.

Chen, and S. Chen (2015)):

Hd =
Db

2
−

√(
Db

2

)2

−
(

B
2

)2

, (36)

with
c
′
d = min(H,Hd) . (37)
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(a) Hr1 (b) Hr2

(c) Hr3 (d) Hr4

Figure 3. Defect depth cd under different defect shape.

Table 1. Bearing parameters.

Symbol Quantity Value

ms Shaft mass 3,263 8kg
Rs Shaft damping 1,376 8 ·103Nsm−1

Ks Shaft stiffness 7,42 ·107Nm−1

mp Pedal mass 6,638kg
Rp Pedal damping 2,210 7 ·103Nsm−1

Kp Pedal stiffness 1,51 ·107Nm−1

mR Resonator mass 1kg
RR Resonator stiffness 9,424 8 ·103Nsm−1

KR Resonator stiffness 8,882 6 ·109Nm−1

nb Ball number 9
Dp Pitch diameter 3,932 ·10−2m
Db Ball diameter 7,94 ·10−3m
φslip Ball slip angle 0,01 rad
rand Mutation percentage 0
Kb Ball stiffness 1,89 ·1010Nm−1

c Bearing clearance 0
α Contact angle 0◦

Table 2. Defect parameters.

Symbol Quantity Value

L Axial defect length 3 ·10−4m
B Race defect width 10 ·10−4m
H Radial defect depth 6 ·10−4m
λ Ratio of φ1 to ∆φd 0,2
φd Initial defect position 270◦

k Order of the defective ball 4
w Spall width 3 ·10−3m
φsini Initial position of spall 0◦

2.1.6 Parameters

Parameter specification of the 5-DoF dynamics model is
shown in Table 1, which includes geometrical and ma-
terial parameters (Mishra, Samantaray, and Chakraborty
(2017)). The defect model parameters can be defined by
users out of simulation requirements. In this paper, they
are set as in Table 2.

Once the bearing model has been finished, the charac-
teristic frequencies can be calculated by Equations 38-42,
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including ball pass frequency of outer ring (BPFO), ball
pass frequency of inner ring (BPFI), ball spin frequency
(BSF), fundamental train frequency (FT F) and element
defect frequency (EDF). All of them will be used for
analysis and discussion in the following sections (Robert
B Randall and Antoni (2011)).

BPFO =
nb f
2

(
1− Db

Dp
cosα

)
, (38)

BPFI =
nb f
2

(
1+

Db

Dp
cosα

)
, (39)

BSF =
f Dp

2Db

[
1−

(
Db

Dp
cosα

)2
]
, (40)

FT F =
f
2

(
1− Db

Dp
cosα

)
, (41)

EDF = 2BSF . (42)

2.2 Driving System
Besides test bearing, the virtual bearing test bench also
consists of a driving module and a loading module, where
the loading module guarantees that test bearing works un-
der defined external load, and driving module is responsi-
ble for speed profile definition. In this paper, the driving
module is modeled by a DC motor and a shaft, while the
loading module is modeled by an electro-hydraulic servo
system.

Based on Newton’s second law and Kirchhoff’s voltage
law, the DC motor can be modeled as:

JM
dω

dt
+Cnω +TL = Te , (43)

LM
di
dt

+Ri+ e =U , (44)

where the generated torque Te and the back electromotive
force (EMF) e can be further modeled as following.

Te = Kt · i , (45)

e = Ke ·ω . (46)

The speed of the DC motor is controlled by a PID con-
troller.

2.3 Shaft
The connecting shaft is employed to transmit the moment
Te from DC-motor. Its dynamics is modeled as:

kS

∫
(ωin −ωout)dt + cS (ωin −ωout) = Te −TL , (47)

where kS is the stiffness and cS is the damping coefficient,
ωin and ωout are the input and output speed of the shaft, TL
is load torque.

2.4 Loading System
2.4.1 Components of Electro-hydraulic Servo System
The electro-hydraulic servo system consists of three com-
ponents: servo amplifier, servo valve and actuator. The
servo amplifier is used to convert signal from voltage to
current, the servo valve is a proportional relief valve, and
the actuator is a hydraulic cylinder. The asymmetrical
cylinder is controlled by a four-way valve with position
feedback.

2.4.2 Modeling of Electro-hydraulic Servo System
The servo amplifier is modeled as a proportional compo-
nent, which amplifies the control voltage and then converts
into current i to control the electromagnetic force acting
on the valve spool,

i(t) = K f ue(t) . (48)

The servo valve is modeled as a second-order system like
follows (Rydberg (2016)).

Gsv(s) =
QL(s)
I(s)

=
Kgy

s2

ω2
sv
+ 2ξsv

ωsv
s+1

. (49)

The gain is obtained from

Ksv =
KIE

KSF
·KQ , (50)

where KIF , KSF and Kq are the gain of current to force, the
stiffness of valve spool and the flow gain respectively. The
natural frequency and servo valve damping coefficient are
given by:

ωsv =
√

KsF/m , (51)

ξsv =
Bp

2
√

mKSF
. (52)

The actuator in this study is modeled as an asymmetric
cylinder, which can be regarded as a valve-controlled pis-
ton with position feedback. In general, three sub-models
are developed to describe the flow characteristics, flow
balance and force balance respectively. The flow charac-
teristics after linearization can be simplified as:

QL(s) = KqXv(s)−KcPL(s) , (53)

the flow balance equation is identified as:

QL(s) = ApsXp(s)+λcPL(s)+
vt

4βe
sPL(s) , (54)

and the force balance equation can be formulated as:

ApPL(s) = Mts2Xp(s)+BcXp(s)+FL , (55)

where Xv and Kc are the displacement of valve and the
flow-pressure factor. QL, Xp and PL stand for the load flow,
the displacement of piston and the pressure of the load

Modeling of A Bearing Test Bench and Analysis of Defect Bearing Dynamics in Modelica

378 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181373



Figure 4. Structure of the developed library in OpenModelica.

flow respectively. Ap, λc, Vt and βe are the piston area,
the total leakage coefficient, the cylinder volume as well
as the volume elastic modulus coefficient. Mt and Bc are
the mass of piston and the damping factor of cylinder.

Combining Equations 53 to 55 gives the transfer func-
tion of piston displacement to valve displacement, as
shown in Equation 56, where the total leakage λc is omit-
ted and the damping factor is assumed to be small (Mi-
tianiec and Bac (2011)).

Gh(s) =
Xp(s)
Xv(s)

=
Kq/Ap

s
(

s2

ω2
h
+ 2ξh

ωh
s+1

) , (56)

with

ωh =

√
4βeA2

p⃗

VtMt
, (57)

ξh =
Kc

Ap

√
βeMt

Vt
. (58)

In short, a proportional system is used to model the ampli-
fier, Gsv for the servo valve and Gh for hydraulic cylinder.
The loading system is also controlled by a PID controller.

3 Implementation
In this research, a model library is created for a virtual
bearing test bench in OpenModelica-v1.16.0. As shown
in Figure 4(left), 3 main modules like TestBearings, Driv-
ingSystem and LoadingSystem are packaged and can be
used as plug-in components in modeling. Figure 4(right)
displays the components used in each module, and they
are also sub-packaged with corresponding names. Like
the TestBearings package provides three instance mod-
els as Healthy, RaceDefect and BallDefect and a Com-

Figure 5. Layer diagram of the VirtualBench.

ponents sub-package containing a DoF model and another
sub-package named DefectModel.

These models can be constructed into any configura-
tion as required, all components, sub-packages and mod-
els can be used separately or in combination to meet user
demand. Nevertheless, a configuration instance, Virtual-
Bench, is provided at the top of Library.

3.1 System Configuration
Figure 5 demonstrates the layer diagram of proposed test
bench, which consists of physical part (top) and con-
troller part (bottom). The physical part is established
with models developed in above sections, and it outputs
three signals, namely rotational speed “omega”, acceler-
ation “accx” and radial load “load”. Moreover, the rota-
tional speed and radial load are inputs to the controller
part to provide required conditions for test bearing. The
TestBearing model has all parameters mentioned in Sec-
tion 2.1, with four pages of parameter-input dialog box
for users to define fault position, design parameters, mate-
rial parameters, and defect parameters. Specifically, “po-
sition” is a selection parameter to define where the de-
fect is located; design parameters include basic geomet-
rical information such as ball number, pitch diameter and
ball diameter; material properties include mass, stiffness,
and damping factor of the outer ring, inner ring, rolling
element as well as the resonator. Besides, the most im-
portant parameters are defect properties. Different param-
eters are required for different defect scenarios. As long
as the number of defects and other defect parameters are
given, this defect model can be used for multiple defects
as well. The operating conditions are provided by Motor,
Shaft, and E_hydraulicsServo. Generally, the TestBearing
model can be employed to study the vibration response of
fault bearing and all the parameters of any model or com-
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Figure 6. Flowchart of simulation with the virtual bearing test
bench.

ponent can be defined by users for specific objectives.

3.2 Procedure of Virtual Bearing Test Bench
The flowchart in Figure 6 demonstrates the process to
run simulations with proposed virtual bearing test bench.
Firstly, the model configuration and precheck is required,
specific simulation model should be constructed based on
the developed Modelica components. After that, it is nec-
essary to set simulation period, interval length and the out-
put format. Then, in the step of Input data, geometrical
and material parameters, defect properties and operating
conditions should be defined, and some parameters can be
selected as variables to study the effects of defects on vi-
bration from different aspects. At last, run the simulation
and save results.

3.3 Case Simulation and Analysis
Based on the developed bearing test bench, three simula-
tion cases are conducted for validation. Case A focuses on
the defect position, case B and case C deals with multiple
defects and defect shape respectively. Simulation time and
interval length of 3 cases are set as 10 s and 0.0001 s, with
"DASSL" solver as the integration method.

3.3.1 Case A: Defect Position

In case A, three simulations are designed to obtain the
bearing responses when a defect occurs on the outer ring,
inner ring or a ball respectively. The signal characteristics
in both time-domain and frequency-domain are analyzed.

Figure 7 shows the time domain response and envelope
spectrum of bearing with a single defect on the outer ring.
The theoretical fault characteristic frequency (BPFO) is
35.91 Hz, corresponding to 0.0278 s. In time domain,
the impulse decaying oscillation repeats with a period of
0.0279 s, and the impulse magnitude is nearly constant. In
frequency domain, BPFO (35.94 Hz) is extracted in the
envelope spectrum, which is very close to the theoretical
value.

Figure 8 describes the simulated signal when a defect is

Figure 7. Response in time-domain and envelope spectrum of
bearing with outer race fault.

Figure 8. Response in time-domain and envelope spectrum of
bearing with inner race fault.

defined on the inner ring. The shaft frequency ( fs) is set
as 10 Hz, so the theoretical BPFI is 54.09 Hz (0.018 s).
The vibration response from 5.1036 s to 5.1961 s repre-
sents the output during a whole revolution of inner ring,
with 5.1036 s - 5.1403 s standing for the load zone and
5.1403 s - 5.1961 s the non-load zone. The time interval
between 5.1036 s and 5.1961 s is 0.0925 s, which corre-
sponds to fs (10.14 Hz) in the envelope spectrum. Within
one cycle, there are three peaks at 5.1036 s, 5.1218 s and
5.1403 s, and every two adjacent peaks are 0.018 s apart
away, which is related to the BPFI. Furthermore, the inner
ring defect rotates with time, which results in load change
at the defect position. Thus, the signal presents various
amplitudes during one cycle.
The vibration response of bearing with a defect on the ball

is demonstrated in Figure 9. In time-domain, the time in-
terval between every two impulses is approximate 0.021 s.
When a defect occurs on a ball, the defect strikes both the
outer ring and inner ring in a full rotation. As a result,
peaks can be found in frequency-domain at EDF and its
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Figure 9. Response in time-domain and envelope spectrum of
bearing with ball fault.

harmonics, with fc as the sideband. The theoretical EDF
is 47.50 Hz, and the simulated value is 47.45 Hz.

In short, both time-domain and frequency-domain re-
sponses contain useful defect information. In time-
domain, defect position (outer ring, inner ring or ball)
can be deduced from the time interval between adjacent
peaks. In frequency-domain, defect position can be in-
ferred from the characteristic frequencies (BPFO, BPFI
or EDF) in the envelope spectrum. Furthermore, the am-
plitude of peaks under different fault positions varies ac-
cordingly. The peak amplitudes are nearly constant when
a defect occurs on the outer ring, however, the peak ampli-
tudes change during a cycle when a defect happens on the
inner ring or a ball. In addition, in the inner-ring defect, fs
can be found in the envelope spectrum as sideband, while
in the ball defect, the sideband is replaced by fc.

3.3.2 Case B: Multiple Defects

The second case focuses on multiple defects. The angle
between two adjacent defects is defined as ψ and the angle
between every two rolling elements in this study is 40◦.
Therefore, in total, there are 3 relations: ψ > 40◦, ψ <
40◦, ψ = 40◦. Given space limitation, only the case with
2 defects and ψ < 40◦ is simulated.

Two defects are defined at 255◦ and 285◦. Once the
rolling elements rotate, each ball collides with these two
defects successively, resulting in two sequences of colli-
sions. Therefore, in Figure 10, two impacts are observed
in a cycle, which identifies the number of defects. Accord-
ing to the direction of acceleration, the impacts at 5.0712 s
(B) and 5.0990 s (D) are caused by the defect at 255◦,
while the impacts at 5.0642 s (A) and 5.0920 s (C) by de-
fect at 285◦.

The time delay between two strikes due to multiple de-
fects on the races can be calculated as follows (Patel, Tan-

Figure 10. Bearing response with two defects on the outer ring
separated by 30◦.

Table 3. Time delay of two defects.

Φ 30◦

τ calculated [s] 0.0209
τ simulated [s] 0.0208

don, and Pandey (2014)).

τ(Φ) =


Φ

x ft
, x ≤ Φ

abs(x−Φ)

x ft
, x > Φ

(59)

with

ft =
{

BPFO, defects on outer ring
BPFI, defects on inner ring

(60)

The time delay between B and C is 0.0208 s, which cor-
responds to the angle between 255◦ and 285◦. The theo-
retical time delay and simulation result are summarized in
Table 3.

3.3.3 Case C: Defect Shape
Case C is designed to study the relationship between de-
fect shape and vibration response, with a rectangle de-
fect defined for validation. The defect is located at 270°,
the width and length are defined as 1.5 × 10−4 m and
3× 10−4 m. With shaft frequency set as 1 Hz and radial
load as −30 kN, the vibration signal is presented in Figure
11.

There are three peaks in a cycle, which appears at
4.5313 s, 4.6712 s and 4.8103 s respectively, as shown in
Figure 11. These 3 peaks represent the time points when
a ball enters and leaves the load zone, and then enters into
the load zone again, respectively. Only the balls in load
zone generate deformations, so the acceleration changes
suddenly at the entry and exit of load zone. Therefore, ac-
celeration between 4.5313 s and 4.6712 s in Figure 11 is
the signal that occurs in defect zone.
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Figure 11. Acceleration in time-domain of bearing with a
rectangle-shape defect.

Figure 12. Signal output with a rectangle-shape defect: φ2: an-
gle between ball and defect start edge; cd2: additional deforma-
tion of ball caused by defect; ax: acceleration in x-direction.

To further study the signal in defect zone, the angle be-
tween ball center and the defect starting edge (φ2), and
the additional deformation generated by the defect (cd2)
are presented to demonstrate the transient process when
the 2nd ball passes through the defect zone. As shown in
Figure 12, φ2 and cd2 increase at 4.6012 s, indicating that
the ball enters into the defect zone at this time. Thus, ax
shows an impulse at this moment. Likewise, the peak at
4.6038 s is the result of ball exiting because φ2 changes
to 0 at this point. The change of cd2 presents a rectangle
profile, which agrees well with the defined defect shape.

4 Conclusion
In this paper, a model of the whole bearing test bench in-
cluding test bearing, connecting shaft, driving system and
loading system is developed in OpenModelica. The pro-
posed virtual test bench can be used to simulate bearing
dynamics response, especially under different defect sce-
narios characterized by defect position, multiple defects,
defect shape and defect size. It can be also employed as
an alternative to a real test bench to generate fault sig-
nals for fault diagnosis algorithm development and valida-
tion, which could be a good supplement of experimental
measurement when a large amount of data is required in
machine learning or deep learning methods. The model-
ing theory and implementation process of the whole best
bench are detailed, and three cases are designed to validate
its effectiveness.

Due to the advantages in characteristics of open source,

the OpenModelica has much superiority over the MAT-
LAB/Simulink, furthermore, it also has more user-friendly
interfaces with Python. In the future, the virtual bearing
test bench developed in this paper will be adopted to study
the transfer learning from the physics model to the real test
bench.
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